Beyond SGLT2: Exploring the Therapeutic Potential of Lesser-Known SGLT Isoform Inhibitors
Abstract
1. Introduction
1.1. Glucose Transporters
1.2. SGLT Isoforms, Their Localization and Functions in the Body
2. Methodology of Data Acquisition
3. Phlorizin, Selective SGLT2 Inhibitors and Dual SGLT1/SGLT2 Inhibitors
3.1. Phlorizin as a Lead Compound for Selective SGLT2 Inhibitors
3.2. Dual SGLT1/SGLT2 Inhibitors
4. Selective Inhibitors of SGLT1 Transporter
4.1. New Synthetic Selective Inhibitors of SGLT1
4.2. In Silico Studies
4.3. Medicinal Plant Extracts as Sources of Selective SGLT1 Inhibitors
4.4. Natural Compounds from Food Potentially Active Towards SGLT1
5. SGLT3 Inhibitors
6. SGLT4 and SGLT5 Inhibitors
7. SGLT6 Inhibitors
8. Strengths, Limitations and Future Directions
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ojo, O.A.; Ibrahim, H.S.; Rotimi, D.E.; Ogunlakin, A.D.; Ojo, A.B. Diabetes mellitus: From molecular mechanism to pathophysiology and pharmacology. Med. Nov. Technol. Devices 2023, 19, 100247. [Google Scholar] [CrossRef]
- Navale, A.M.; Paranjape, A.N. Glucose transporters: Physiological and pathological roles. Biophys. Rev. 2016, 8, 5–9. [Google Scholar] [CrossRef]
- Caspi, I.; Tremmel, D.M.; Pulecio, J.; Yang, D.; Liu, D.; Yan, J.; Odorico, J.S.; Huangfu, D. Glucose transporters are key components of the human glucostat. Diabetes 2024, 73, 1336–1351. [Google Scholar] [CrossRef] [PubMed]
- Sano, R.; Shinozaki, Y.; Ohta, T. Sodium–glucose cotransporters: Functional properties and pharmaceutical potential. J. Diabetes Investig. 2020, 11, 770–782. [Google Scholar] [CrossRef] [PubMed]
- Nevola, R.; Villani, A.; Imbriani, S.; Alfano, M.; Criscuolo, L.; Beccia, D.; Ruocco, R.; Delle Femine, A.; Gragnano, F.; Cozzolino, D.; et al. Sodium-glucose co-transporters family: Current evidence, clinical applications and perspectives. Front. Biosci.-Landmark 2023, 58, 103. [Google Scholar] [CrossRef]
- Gyimesi, G.; Pujol-Giménez, J.; Kanai, Y.; Hediger, M.A. Sodium-coupled glucose transport, the SLC5 family, and therapeutically relevant inhibitors: From molecular discovery to clinical application. Pflug. Arch. Eur. J. Physiol. 2020, 472, 1177–1206. [Google Scholar] [CrossRef] [PubMed]
- Scheepers, A.; Joost, H.G.; Schürmann, A. The glucose transporter families SGLT and GLUT: Molecular basis of normal and aberrant function. J. Parenter. Enter. Nutr. 2004, 28, 364–371. [Google Scholar] [CrossRef]
- Diez-Sampedro, A.; Barcelona, S. Sugar binding residue affects apparent Na-affinity and transport stoichiometry in mouse sodium/glucose cotransporter type 3B. J. Biol. Chem. 2011, 286, 7975–7982. [Google Scholar] [CrossRef]
- Fonseca-Correa, J.I.; Correa-Rotter, R. Sodium-glucose cotransporter 2 inhibitors mechanisms of action: A review. Front. Med. 2021, 8, 777861. [Google Scholar] [CrossRef]
- Aljure, O.; Díez-Sampedro, A. Functional characterization of mouse sodium/glucose transporter type 3b. Am. J. Physiol. Cell Physiol. 2010, 299, C58–C65. [Google Scholar] [CrossRef]
- Wicik, Z.; Nowak, A.; Jarosz-Popek, J.; Wolska, M.; Eyileten, C.; Siller-Matula, J.M.; von Lewinski, D.; Sourij, H.; Filipiak, K.J.; Postuła, M. Characterization of the SGLT2 interaction network and its regulation by SGLT2 inhibitors: A bioinformatic analysis. Front. Pharmacol. 2022, 13, 901340. [Google Scholar] [CrossRef] [PubMed]
- Raut, S.; Bhalerao, A.; Powers, M.; Gonzalez, M.; Mancuso, S.; Cucullo, L. Hypometabolism, Alzheimer’s disease, and possible therapeutic targets: An overview. Cells 2023, 12, 2019. [Google Scholar] [CrossRef]
- Hsia, D.S.; Grove, O.; Cefalu, W.T. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Kumar, B.; Ashique, S.; Yasmin, S.; Venkatesan, K.; Islam, A.; Ghosh, S.; Sahu, A.; Bhui, U.; Ansari, M.Y. A critical review on SGLT2 inhibitors for diabetes mellitus, renal health, and cardiovascular conditions. Diabetes Res. Clin. Pract. 2025, 221, 112050. [Google Scholar] [CrossRef]
- O’Hara, D.V.; Lam, C.S.P.; McMurray, J.J.V.; Yi, T.W.; Hocking, S.; Dawson, J.; Raichand, S.; Januszewski, A.S.; Jardine, M.J. Applications of SGLT2 inhibitors beyond glycaemic control. Nat. Rev. Nephrol. 2024, 20, 513–529. [Google Scholar] [CrossRef]
- Lam-Chung, C.E. Comprehensive review of SGLT2 inhibitors’ efficacy through their diuretic mode of action in diabetic patients. Front. Endocrinol. 2023, 14, 1174692. [Google Scholar] [CrossRef]
- Seidu, S.; Alabraba, V.; Davies, S.; Newland-Jones, P.; Fernando, K.; Bain, S.C.; Diggle, J.; Evans, M.; James, J.; Kanumilli, N.; et al. SGLT2 inhibitors—The new standard of care for cardiovascular, renal and metabolic protection in type 2 diabetes: A narrative review. Diabetes Ther. 2024, 15, 1099–1124. [Google Scholar] [CrossRef]
- Yu, Y.; Xia, Y.; Liang, G. Exploring novel lead scaffolds for SGLT2 inhibitors: Insights from machine learning and molecular dynamics simulations. Int. J. Biol. Macromol. 2024, 263, 130375. [Google Scholar] [CrossRef]
- Nieczyporuk, M.; Tyrna, P.; Cader, T.; Sikora, A.; Staneta, S. Pharmacological treatment of diabetes mellitus: An overview of new sodium-glucose cotransporter 2 inhibitors for the treatment of diabetes mellitus. J. Endocrinol. Metab. 2024, 14, 89–102. [Google Scholar] [CrossRef]
- Debnath, A.; Sharma, S.; Mazumder, R.; Mazumder, A.; Singh, R.; Kumar, A.; Dua, A.; Singhal, P.; Kumar, A.; Singh, G. In search of novel SGLT2 inhibitors by high-throughput virtual screening. Curr. Drug Discov. Technol. 2024, 21, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Borkar, R.M.; Kanval, A.; Raju, B.; Pulimamidi, S.S.; Das, A.P.; Agarwal, S.M.; Banerjee, S.K.; Srinivas, R. A pharmacokinetic study to correlate the hypoglycemic effect of phlorizin in rats: Identification of metabolites as inhibitors of sodium/glucose cotransporters. J. Mass Spectrom. 2013, 58, e4964. [Google Scholar] [CrossRef]
- Ni, T.; Zhang, S.; Rao, J.; Zhao, J.; Huang, H.; Liu, Y.; Ding, Y.; Liu, Y.; Ma, Y.; Zhang, S.; et al. Phlorizin, an important glucoside: Research progress on its biological activity and mechanism. Molecules 2024, 29, 741. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, S.; Liu, Y.; Spichtig, D.; Kapoor, S.; Koepsell, H.; Mohebbi, N.; Segerer, S.; Serra, A.L.; Rodriguez, D.; et al. Targeting of sodium-glucose cotransporters with phlorizin inhibits polycystic kidney disease progression in Han:SPRD rats. Kidney Int. 2013, 84, 962–968. [Google Scholar] [CrossRef]
- Zambrowicz, B.; Lapuerta, P.; Strumph, P.; Banks, P.; Wilson, A.; Ogbaa, I.; Sands, A.; Powell, D. LX4211 therapy reduces postprandial glucose levels in patients with type 2 diabetes mellitus and renal impairment despite low urinary glucose excretion. Clin. Ther. 2015, 37, 71–82.e12. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, Y.; Hong, Y.; Wei, Y.; Zhu, Y.; Huang, L.; Yang, Y.; Sun, R.; Li, J. Effect of SY009, a novel SGLT1 inhibitor; on the plasma metabolome and bile acids in patients with type 2 diabetes mellitus. Front. Endocrinol. 2025, 16, 1487058. [Google Scholar] [CrossRef]
- Cefalo, C.M.A.; Cinti, F.; Moffa, S.; Impronta, F.; Sorice, G.P.; Mezza, T.; Pontecorvi, A.; Giaccari, A. Sotagliflozin, the first dual SGLT inhibitor: Current outlook and perspectives. Cardiovasc. Diabetol. 2019, 18, 20. [Google Scholar] [CrossRef] [PubMed]
- Sever, M.; Merzel, F. Influence of SGLT1 sugar uptake inhibitors on water transport. Molecules 2023, 28, 5295. [Google Scholar] [CrossRef] [PubMed]
- Shibazaki, T.; Tomae, M.; Ishikawa-Takemura, Y.; Fushimi, N.; Itoh, F.; Yamada, M.; Isaji, M. KGA-2727, a novel selective inhibitor of a high-affinity sodium glucose cotransporter (SGLT1), exhibits antidiabetic efficacy in rodent models. J. Pharmacol. Exp. Ther. 2012, 342, 288–296. [Google Scholar] [CrossRef]
- Sawa, Y.; Saito, M.; Ishida, N.; Ibi, M.; Matsushita, N.; Morino, Y.; Taira, E.; Hirose, M. Pretreatment with KGA-2727, a selective SGLT1 inhibitor, is protective against myocardial infarction-induced ventricular remodeling and heart failure in mice. J. Pharmacol. Sci. 2020, 142, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Takemura, M.; Fushimi, N.; Fujimori, Y.; Onozato, T.; Kurooka, T.; Asari, T.; Takeda, H.; Kobayashi, M.; Nishibe, H.; et al. Mizagliflozin, a novel selective SGLT1 inhibitor, exhibits potential in the amelioration of chronic constipation. Eur. J. Pharmacol. 2017, 806, 25–31. [Google Scholar] [CrossRef]
- Lin, Z.M.; Gao, H.Y.; Shi, S.H.; Li, Y.T. Mizagliflozin ameliorates diabetes induced kidney injury by inhibitor inhibit inflammation and oxidative stress. World J. Diabetes 2025, 16, 92711. [Google Scholar] [CrossRef]
- Ishida, N.; Saito, M.; Sato, S.; Tezuka, Y.; Sanbe, A.; Taira, E.; Hirose, M. Mizagliflozin, a selective SGLT1 inhibitor, improves vascular cognitive impairment in a mouse model of small vessel disease. Pharmacol. Res. Perspect. 2021, 9, e00869. [Google Scholar] [CrossRef]
- Ishida, N.; Saito, M.; Sato, S.; Tezuka, Y. Effects of mizagliflozin, a selective SGLT1 inhibitor, on chronic hypoperfusion-induced vascular cognitive impairment. Proc. Annu. Meet. Jpn. Pharm. Soc. 2022, 95, 3-P-195. [Google Scholar] [CrossRef]
- Tsunokake, S.; Iwabuchi, E.; Miki, Y.; Kanai, A.; Onodera, Y.; Sasano, H.; Ishida, T.; Suzuki, T. SGLT1 as an adverse prognostic factor in invasive ductal carcinoma of the breast. Breast Cancer Res. Treat. 2023, 201, 499–513. [Google Scholar] [CrossRef]
- Huang, L.; Cao, B.; Geng, Y.; Zhou, X.; Yang, Y.; Ma, T.; Lin, H.; Huang, Z.; Zhuo, L.; Li, J. A randomized double-blind phase Ib clinical trial of SY-009 in patients with type 2 diabetes mellitus. Eur. J. Pharm. Sci. 2024, 192, 106644. [Google Scholar] [CrossRef]
- Io, F.; Gunji, E.; Koretsune, H.; Kato, K.; Sugisaki-Kitano, M.; Okumura-Kitajima, L.; Kimura, K.; Uchida, S.; Yamamoto, K. SGL5213, a novel and potent intestinal SGLT1 inhibitor, suppresses intestinal glucose absorption and enhances plasma GLP-1 and GLP-2 secretion in rats. Eur. J. Pharmacol. 2019, 853, 136–144. [Google Scholar] [CrossRef]
- Ho, H.-J.; Kikuchi, K.; Oikawa, D.; Watanabe, S.; Kanemitsu, Y.; Saigusa, D.; Kujirai, R.; Ikeda-Ohtsubo, W.; Ichijo, M.; Akiyama, Y.; et al. SGLT-1-specific inhibition ameliorates renal failure and alters the gut microbial community in mice with adenine-induced renal failure. Physiol. Rep. 2021, 9, e15092. [Google Scholar] [CrossRef] [PubMed]
- Honda, Y.; Ozaki, A.; Iwaki, M.; Kobayashi, T.; Nogami, A.; Kessoku, T.; Ogawa, Y.; Tomeno, W.; Imajo, K.; Yoneda, M.; et al. Protective effect of SGL5213, a potent intestinal sodium-glucose cotransporter 1 inhibitor, in nonalcoholic fatty liver disease in mice. J. Pharmacol. Sci. 2021, 147, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Powell, D.R.; Smith, M.G.; Doree, D.D.; Harris, A.L.; Greer, J.; DaCosta, C.M.; Thompson, A.; Jeter-Jones, S.; Xiong, W.; Carson, K.G.; et al. LX2761, a sodium/glucose cotransporter 1 inhibitor restricted to the intestine, improves glycemic control in mice. J. Pharmacol. Exp. Ther. 2017, 362, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Nemade, M.; Patil, K.; Bedse, A.; Chandra, P.; Ranjan, R.; Tare, H.; Bhise, M. Phenol glucosides as potential inhibitors of SGLT1 for enhanced diabetes mellitus treatment in patients with declining renal function. Int. J. Drug Deliv. Technol. 2023, 13, 948–954. [Google Scholar] [CrossRef]
- Watabe, E.; Kawanabe, A.; Kamitori, K.; Ichihara, S.; Fujiwara, Y. Sugar binding of sodium–glucose cotransporters analyzed by voltage-clamp fluorometry. J. Biol. Chem. 2024, 300, 107215. [Google Scholar] [CrossRef] [PubMed]
- Bouhrim, M.; Ouassou, H.; Boutahiri, S.; Daoudi, N.E.; Mechchate, H.; Gressier, B.; Eto, B.; Imtara, H.; Alotaibi, A.A.; Al-Zharani, M.; et al. Opuntia dillenii (Ker gawl.) haw., seeds oil antidiabetic potential using in vivo, in vitro, in situ, and ex vivo approaches to reveal its underlying mechanism of action. Molecules 2021, 26, 1677. [Google Scholar] [CrossRef] [PubMed]
- Calzada, F.; Valdes, M.; Martínez-Solís, J.; Velázquez, C.; Barbosa, E. Annona cherimola Miller and its flavonoids, an important source of products for the treatment of diabetes mellitus: In vivo and in silico evaluations. Pharmaceuticals 2023, 16, 724. [Google Scholar] [CrossRef]
- Satsu, H.; Shibata, R.; Suzuki, H.; Kimura, S.; Shimizu, M. Inhibitory effect of tangeretin and cardamonin on human intestinal SGLT1 activity in vitro and blood glucose levels in mice in vivo. Nutrients 2020, 13, 3382. [Google Scholar] [CrossRef]
- Noonong, K.; Pranweerapaiboon, K.; Chaithirayanon, K.; Surayarn, K.; Ditracha, P.; Changklungmoa, N.; Kueakhai, P.; Hiransai, P.; Bunluepuech, K. Antidiabetic potential of Lysiphyllum strychnifolium (Craib) A. Schmitz compounds in human intestinal epithelial Caco-2 cells and molecular docking-based approaches. BMC Complement. Med. Ther. 2022, 22, 235. [Google Scholar] [CrossRef]
- Zhouyao, H.; Malunga, L.N.; Chu, Y.F.; Eck, P.; Ames, N.; Thandapilly, S.J. The inhibition of intestinal glucose absorption by oat-derived avenanthramides. J. Food Biochem. 2022, 46, e14324. [Google Scholar] [CrossRef]
- Bauer, I.; Rimbach, G.; Nevermann, S.; Neuhauser, C.; Schwarzinger, B.; Schwarzinger, C.; Weghuber, J.; Luersen, K. In-vitro antidiabetic activity of a Bistorta officinalis delarbre root extract cannot be confirmed in the in-vivo models hen’s egg test and drosophila melanogaster. J. Physiol. Pharmacol. 2023, 74, 31–42. [Google Scholar]
- Ranđelović, S.; Bipat, R. A review of coumarins and coumarin-related compounds for their potential antidiabetic effect. Clin. Med. Insights Endocrinol. Diabetes 2021, 14, 11795514211042023. [Google Scholar] [CrossRef]
- Singh Aidhen, I.; Thoti, N. Natural products & bioactivity inspired synthetic pursuits interfacing with carbohydrates: Ongoing journey with C-glycosides. Chem. Rec. 2021, 21, 3131–3177. [Google Scholar]
- Sudarshan, K.; Singh Aidhen, I. Convenient synthesis of 3-glycosylated isocoumarins. Eur. J. Org. Chem. 2017, 2017, 34–38. [Google Scholar] [CrossRef]
- Ortega, R.; Valdés, M.; Alarcón-Aguilar, F.J.; Fortis-Barrera, Á.; Barbosa, E.; Velazquez, C.; Calzada, F. Antihyperglycemic effects of Salvia polystachya Cav. and its terpenoids: α-glucosidase and SGLT1 inhibitors. Plants 2022, 11, 575. [Google Scholar] [CrossRef]
- Zhao, C.; Zhao, H.; Zhang, C.-C.; Yang, X.-H.; Chen, K.; Xue, Y.; Li, Q.; Deng, S.-Y.; Cai, H.-Z. Impact of Lycium barbarum polysaccharide on the expression of glucagon-like peptide 1 in vitro and in vivo. Int. J. Biol. Macromol. 2023, 224, 908–918. [Google Scholar] [CrossRef]
- Zhou, P.; Li, T.; Zhao, J.; Al-Ansi, W.; Fan, M.; Qian, H.; Li, Y.; Wang, L. Grain bound polyphenols: Molecular interactions, release characteristics, and regulation mechanisms of postprandial hyperglycemia. Food Res. Int. 2025, 208, 116291. [Google Scholar] [CrossRef]
- Boonyanuphong, P.; Utaipan, T.; Tongkeaw, P.; Konthapakdee, N. Functional food potential: Pre-gelatinized banana flour blended with peel powder to regulate glucose absorption in caco-2 cells intestinal model. J. Food Meas. Charact. 2024, 18, 9695–9707. [Google Scholar] [CrossRef]
- Liu, S.; Ai, Z.; Meng, Y.; Chen, Y.; Ni, D. Comparative studies on the physicochemical profile and potential hypoglycemic activity of different tea extracts: Effect on sucrase-isomaltase activity and glucose transport in Caco-2 cells. Food Res. Int. 2021, 148, 110604. [Google Scholar] [CrossRef]
- Marcobal, A.M.; McConnell, B.R.; Drexler, R.A.; Ng, K.M.; Maldonado-Gomez, M.X.; Conner, A.M.S.; Vierra, C.G.; Krishnakumar, N.; Gerber, H.M.; Garcia, J.K.A.; et al. Highly soluble β-glucan fiber modulates mechanisms of blood glucose regulation and intestinal permeability. Nutrients 2024, 16, 2240. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.; Adhikari, B.; Brennan, M.A.; Luo, S.; Cheng, P.; Bai, W.; Brennan, C.S. Acidic polysaccharides from black ear and silver ear mushrooms modulated the release and transport of glucose from gelatinised sorghum starch during digestion. Food Chem. 2023, 411, 135426. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Narumi, K.; Taguchi, R.; Ishihara, K.; Satoh, H.; Mori, T.; Okamoto, K.; Furugen, A.; Kobayashi, M. Salmon Milt extract suppresses glucose uptake by downregulating SGLT1 and GLUT2 expression in Caco-2 cells. Biol. Pharm. Bull. 2024, 47, 1477–1483. [Google Scholar] [CrossRef]
- Costa, A.S.G.; Peixoto, J.A.B.; Machado, S.; Espírito Santo, L.; Soares, T.F.; Andrade, N.; Azevedo, R.; Almeida, A.; Costa, H.S.; Oliveira, M.B.P.P.; et al. Coffee pulp from Azores: A novel phytochemical-rich food with potential anti-diabetic properties. Foods 2025, 14, 306. [Google Scholar] [CrossRef]
- Erukainure, O.L.; Salau, V.F.; Olofinsan, K.A.; Chukwuma, C.I.; Osagie, O.A.; Ebuehi, O.A.T.; Islam, M.S. Leucine suppresses glucose absorption with concomitant modulation of metabolic activities linked to postprandial hyperglycemia in jejunums of isolated rats’ small intestines. Nutrire 2023, 48, 4. [Google Scholar] [CrossRef]
- Yan, Q.; Tong, H.; Tang, S.; Tan, Z.; Han, X.; Zhou, C. L-Theanine administration modulates the absorption of dietary nutrients and expression of transporters and receptors in the intestinal mucosa of rats. BioMed Res. Int. 2017, 2017, 9747256. [Google Scholar] [CrossRef]
- Vincente, A.G.; Cabral, P.D.; Hong, N.J.; Asirwatham, J.; Saez, F.; Garvin, J.L. Fructose reabsorption by rat proximal tubules: Role of Na-linked cotransporters and the effect of dietary fructose. Am. J. Ren. Physiol. 2019, 316, F473–F480. [Google Scholar]
- Kamitori, K.; Shirota, M.; Fujiwara, Y. Structural basis of the selective sugar transport in sodium-glucose cotransporters: Structural basis of sugar selectivity in hSGLT. J. Mol. Biol. 2022, 434, 167464. [Google Scholar] [CrossRef] [PubMed]
- Hara, H.; Takayanagi, K.; Shimizu, T.; Iwashita, T.; Ikari, A.; Maeshima, A.; Hasegawa, H. Possible involvement of up-regulated salt-dependent glucose transporter-5 (SGLT5) in high-fructose diet-induced hypertension. Hypertens. Res. 2025, 48, 1068–1079. [Google Scholar] [CrossRef]
- Wright, E.M. Renal Na(+)-glucose cotransporters. Am. J. Physiol. Ren. Physiol. 2001, 280, F10–F18. [Google Scholar] [CrossRef]
- Wright, E.M. SGLT2 Inhibitors: Physiology and pharmacology. Kidney360 2021, 2, 2027–2037. [Google Scholar] [CrossRef]
- Zhang, R.; Jadhav, D.A.; Kim, N.; Kramer, B.; Gonzalez-Vicente, A. Profiling cell heterogeneity and fructose transporter expression in the rat nephron by integrating single-cell and microdissected tubule segment transcriptomes. Int. J. Mol. Sci. 2024, 25, 3071. [Google Scholar] [CrossRef] [PubMed]
- Baader-Pagler, T.; Eckhardt, M.; Himmelsbach, F.; Sauer, A.; Stierstorfer, B.E.; Hamilton, B.S. SGLT6—A pharmacological target for the treatment of obesity? Adipocyte 2018, 7, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Jarosz-Popek, J.; Eyileten, C.; Gager, G.M.; Nowak, A.; Szwed, P.; Wicik, Z.; Palatini, J.; von Lewinski, D.; Sourij, H.; Siller-Matula, J.M.; et al. The interaction between non-coding RNAs and SGLT2: A review. Int. J. Cardiol. 2024, 398, 131419. [Google Scholar] [CrossRef]
- Wei, M.; Wang, L.; Su, X.; Zhao, B.; You, Z. Multi-hop graph structural modeling for cancer-related circRNA-miRNA interaction prediction. Pattern Recognit. 2026, 170, 112078. [Google Scholar] [CrossRef]











| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berecka-Rycerz, A.; Gumieniczek, A.; Skroban, J.; Wicha-Komsta, K. Beyond SGLT2: Exploring the Therapeutic Potential of Lesser-Known SGLT Isoform Inhibitors. Appl. Sci. 2025, 15, 11603. https://doi.org/10.3390/app152111603
Berecka-Rycerz A, Gumieniczek A, Skroban J, Wicha-Komsta K. Beyond SGLT2: Exploring the Therapeutic Potential of Lesser-Known SGLT Isoform Inhibitors. Applied Sciences. 2025; 15(21):11603. https://doi.org/10.3390/app152111603
Chicago/Turabian StyleBerecka-Rycerz, Anna, Anna Gumieniczek, Julia Skroban, and Katarzyna Wicha-Komsta. 2025. "Beyond SGLT2: Exploring the Therapeutic Potential of Lesser-Known SGLT Isoform Inhibitors" Applied Sciences 15, no. 21: 11603. https://doi.org/10.3390/app152111603
APA StyleBerecka-Rycerz, A., Gumieniczek, A., Skroban, J., & Wicha-Komsta, K. (2025). Beyond SGLT2: Exploring the Therapeutic Potential of Lesser-Known SGLT Isoform Inhibitors. Applied Sciences, 15(21), 11603. https://doi.org/10.3390/app152111603
 
        



