Intensified Rainfall, Growing Floods: Projecting Urban Drainage Challenges in South-Central China Under Climate Change Scenarios
Abstract
1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data and Data Processing
3.1.1. Climate Data
3.1.2. Rainfall Observations
3.1.3. Land-Use, Digital Elevation, and the Drainage System
3.1.4. Stormwater Flow Data and Flooding Records
3.2. Methodology
3.2.1. Dynamic Downscaling of Future Extreme Rainfall
- Model Configuration and Domain Setup
- Physical parameterization schemes
- Simulation execution and temporal configuration
3.2.2. Extreme Distribution Analysis of Non-Stationary Rainfall Intensity
3.2.3. Storm Pattern Designing for Urban Hydrology Simulation
3.2.4. Urban Flood Risk Assessment
3.2.5. Model Performance Verification
4. Results
4.1. WRF Parameterization Optimization and Precipitation Bias Correction
4.2. Non-Stationary Rainfall Intensity Under Climate Change
4.3. Urban Flooding Risk Assessment
5. Discussion
5.1. Non-Stationarity of Extreme Rainfall and the Inadequacy of Traditional IDF Curves
5.2. From Intensified Rainfall to Escalating Urban Flood Risk and Design Implications
5.3. Limitations and Uncertainties
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, Y.; Tan, X.; Liu, Y.; Xia, M.; Chen, X. Combined effects of future urban development and rainfall patterns on flood characteristics in the Qinhuai River basin. Urban Clim. 2025, 59, 102256. [Google Scholar] [CrossRef]
- Zhao, Z.; Sadaghiani, M.R.S.; Yang, W.; Hua, P.; Zhang, J.; Krebs, P. Estimating storm runoff extreme in small ungauged catchments using an integrated modeling approach. Sustain. Horiz. 2024, 9, 100092. [Google Scholar] [CrossRef]
- Fang, D.; Hao, L.; Cao, Z.; Huang, X.; Qin, M.; Hu, J.; Liu, Y.; Sun, G. Combined effects of urbanization and climate change on watershed evapotranspiration at multiple spatial scales. J. Hydrol. 2020, 587, 124869. [Google Scholar] [CrossRef]
- Moazzem, S.; Bhuiyan, M.; Muthukumaran, S.; Fagan, J.; Jegatheesan, V. A Critical Review of Nature-Based Systems (NbS) to Treat Stormwater in Response to Climate Change and Urbanization. Curr. Pollut. Rep. 2024, 10, 286–311. [Google Scholar] [CrossRef]
- Luo, K.; Zhang, X. Increasing urban flood risk in China over recent 40 years induced by LUCC. Landsc. Urban Plan. 2022, 219, 104317. [Google Scholar] [CrossRef]
- Cea, L.; Costabile, P. Flood Risk in Urban Areas: Modelling, Management and Adaptation to Climate Change. A Review. Hydrology 2022, 9, 50. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, T.; Arkema, K.K.; Han, B.; Lu, F.; Ruckelshaus, M.; Ouyang, Z. Coastal vulnerability to climate change in China’s Bohai Economic Rim. Environ. Int. 2021, 147, 106359. [Google Scholar] [CrossRef]
- Du, Q.; Sun, Y.; Guan, Q.; Pan, N.; Wang, Q.; Ma, Y.; Li, H.; Liang, L. Vulnerability of grassland ecosystems to climate change in the Qilian Mountains, northwest China. J. Hydrol. 2022, 612, 128305. [Google Scholar] [CrossRef]
- Gu, X.; Ye, L.; Xin, Q.; Zhang, C.; Zeng, F.; Nerantzaki, S.D.; Papalexiou, S.M. Extreme Precipitation in China: A Review on Statistical Methods and Applications. Adv. Water Resour. 2022, 163, 104144. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, X.; Ren, L.; Pan, M.; Jiang, S.; Liu, Y.; Yuan, F.; Fang, X. Simulation of Extreme Precipitation in Four Climate Regions in China by General Circulation Models (GCMs): Performance and Projections. Water 2021, 13, 1509. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Y.; Shen, Y.; Yang, J.; Zheng, G.; Smith, J.; Niyogi, D. Urban development pattern’s influence on extreme rainfall occurrences. Nat. Commun. 2024, 15, 3997. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Mao, F.; Gong, Z.; Hannah, D.M.; Cai, Y.; Wu, J. A disaster-damage-based framework for assessing urban resilience to intense rainfall-induced flooding. Urban Clim. 2023, 48, 101402. [Google Scholar] [CrossRef]
- Manandhar, B.; Cui, S.; Wang, L.; Shrestha, S. Urban Flood Hazard Assessment and Management Practices in South Asia: A Review. Land 2023, 12, 627. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, P.; Li, Y.; Sheng, Y.; Wang, B.; Popovych, N.; Hu, T. Contributions of climate change and urbanization to urban flood hazard changes in China’s 293 major cities since 1980. J. Environ. Manag. 2024, 353, 120113. [Google Scholar] [CrossRef]
- Yazdanfar, Z.; Sharma, A. Urban drainage system planning and design--challenges with climate change and urbanization: A review. Water Sci. Technol. 2015, 72, 165–179. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Z.; Cai, Y.; Qiu, J.; Huang, B. Impacts of Climate Change on Urban Drainage Systems by Future Short-Duration Design Rainstorms. Water 2021, 13, 2718. [Google Scholar] [CrossRef]
- Ferdowsi, A.; Piadeh, F.; Behzadian, K.; Mousavi, S.-F.; Ehteram, M. Urban water infrastructure: A critical review on climate change impacts and adaptation strategies. Urban Clim. 2024, 58, 102132. [Google Scholar] [CrossRef]
- Tamm, O.; Saaremäe, E.; Rahkema, K.; Jaagus, J.; Tamm, T. The intensification of short-duration rainfall extremes due to climate change—Need for a frequent update of intensity–duration–frequency curves. Clim. Serv. 2023, 30, 100349. [Google Scholar] [CrossRef]
- Monachese, A.P.; Gómez-Villarino, M.T.; López-Santiago, J.; Sanz, E.; Almeida-Ñauñay, A.F.; Zubelzu, S. Challenges and Innovations in Urban Drainage Systems: Sustainable Drainage Systems Focus. Water 2024, 17, 76. [Google Scholar] [CrossRef]
- Xu, T.; Xie, Z.; Jiang, F.; Yang, S.; Deng, Z.; Zhao, L.; Wen, G.; Du, Q. Urban flooding resilience evaluation with coupled rainfall and flooding models: A small area in Kunming City, China as an example. Water Sci. Technol. 2023, 87, 2820–2839. [Google Scholar] [CrossRef]
- Zou, J.; Chen, B.; Duan, C.; Wang, H. Assessing Economic Loss from Urban Waterlogging in Beijing under Climate Change Using a Hydraulic Model. ACS Sustain. Chem. Eng. 2024, 12, 13090–13105. [Google Scholar] [CrossRef]
- Wang, M.; Fu, X.; Zhang, D.; Chen, F.; Liu, M.; Zhou, S.; Su, J.; Tan, S.K. Assessing urban flooding risk in response to climate change and urbanization based on shared socio-economic pathways. Sci. Total Environ. 2023, 880, 163470. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Feng, Q.; Engel, B.A.; Yu, T.; Zhang, X.; Qian, Y. A probabilistic assessment of urban flood risk and impacts of future climate change. J. Hydrol. 2023, 618, 129267. [Google Scholar] [CrossRef]
- Luo, N.; Guo, Y.; Feng, J.; Ding, R.; Gao, Z.; Zhao, Z. Dynamic Downscaling Simulation and Projection of Precipitation Extremes Over China Under a Shared Socioeconomic Pathway Scenario. J. Geophys. Res. Atmos. 2022, 127, e2022JD037133. [Google Scholar] [CrossRef]
- Huang, D.; Gao, S. Impact of different reanalysis data on WRF dynamical downscaling over China. Atmos. Res. 2018, 200, 25–35. [Google Scholar] [CrossRef]
- Bao, J.; Feng, J.; Wang, Y. Dynamical downscaling simulation and future projection of precipitation over China. J. Geophys. Res. Atmos. 2015, 120, 8227–8243. [Google Scholar] [CrossRef]
- Zhang, J.; Li, C.; Zhang, X.; Zhao, T. Improving simulations of extreme precipitation events in China by the CMIP6 global climate models through statistical downscaling. Atmos. Res. 2024, 303, 107344. [Google Scholar] [CrossRef]
- Yoshikane, T.; Yoshimura, K. A downscaling and bias correction method for climate model ensemble simulations of local-scale hourly precipitation. Sci. Rep. 2023, 13, 9412. [Google Scholar] [CrossRef]
- Gao, J.; Pesaresi, M. Downscaling SSP-consistent global spatial urban land projections from 1/8-degree to 1-km resolution 2000–2100. Sci. Data 2021, 8, 281. [Google Scholar] [CrossRef]
- Lazoglou, G.; Anagnostopoulou, C.; Tolika, K.; Kolyva-Machera, F. A review of statistical methods to analyze extreme precipitation and temperature events in the Mediterranean region. Theor. Appl. Climatol. 2018, 136, 99–117. [Google Scholar] [CrossRef]
- Bali, T.G. The generalized extreme value distribution. Econ. Lett. 2003, 79, 423–427. [Google Scholar] [CrossRef]
- Hosking, J.R.M.; Wallis, J.R. Parameter and Quantile Estimation for the Generalized Pareto Distribution. Technometrics 1987, 29, 339–349. [Google Scholar] [CrossRef]
- Hossain, I.; Khastagir, A.; Aktar, M.N.; Imteaz, M.A.; Huda, D.; Rasel, H.M. Comparison of estimation techniques for generalised extreme value (GEV) distribution parameters: A case study with Tasmanian rainfall. Int. J. Environ. Sci. Technol. 2021, 19, 7737–7750. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, M.; Ma, Z.; Zhang, Z.; Yue, S.; Xiao, D.; Zhu, Z.; Wen, Y.; Lu, G. An online participatory system for SWMM-based flood modeling and simulation. Environ. Sci. Pollut. Res. Int. 2022, 29, 7322–7343. [Google Scholar] [CrossRef]
- Available online: https://www.mmm.ucar.edu/ (accessed on 15 July 2019).
- Yukimoto, S.; Adachi, Y.; Hosaka, M.; Sakami, T.; Yoshimura, H.; Hirabara, M.; Tanaka, T.Y.; Shindo, E.; Tsujino, H.; Deushi, M.; et al. A New Global Climate Model of the Meteorological Research Institute: MRI-CGCM3—Model Description and Basic Performance. J. Meteorol. Soc. Jpn. Ser. II 2012, 90A, 23–64. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.; Lu, J.; Fu, X.; Zhang, Y.; Liang, D.; Xu, Q. Precipitation projections using a spatiotemporally distributed method: A case study in the Poyang Lake watershed based on the MRI-CGCM3. Hydrol. Earth Syst. Sci. 2019, 23, 1649–1666. [Google Scholar] [CrossRef]
- Yuan, W. Diurnal cycles of precipitation over subtropical China in IPCC AR5 AMIP simulations. Adv. Atmos. Sci. 2013, 30, 1679–1694. [Google Scholar] [CrossRef]
- Available online: http://esgf-node.llnl.gov/ (accessed on 10 August 2019).
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Available online: http://www.gscloud.cn/ (accessed on 20 June 2020).
- Gao, S.; Huang, D.; Du, N.; Ren, C.; Yu, H. WRF ensemble dynamical downscaling of precipitation over China using different cumulus convective schemes. Atmos. Res. 2022, 271, 106116. [Google Scholar] [CrossRef]
- Yang, Q.; Yu, Z.; Wei, J.; Yang, C.; Gu, H.; Xiao, M.; Shang, S.; Dong, N.; Gao, L.; Arnault, J.; et al. Performance of the WRF model in simulating intense precipitation events over the Hanjiang River Basin, China—A multi-physics ensemble approach. Atmos. Res. 2021, 248, 105206. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Li, Q.; Yang, J.; Li, L.; Wang, T. Impact of different microphysics and cumulus parameterizations in WRF for heavy rainfall simulations in the central segment of the Tianshan Mountains, China. Atmos. Res. 2020, 244, 105052. [Google Scholar] [CrossRef]
- Tewari, M.; Chen, F.; Dudhia, J.; Ray, P.; Miao, S.; Nikolopoulos, E.; Treinish, L. Understanding the sensitivity of WRF hindcast of Beijing extreme rainfall of 21 July 2012 to microphysics and model initial time. Atmos. Res. 2022, 271, 106085. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, X.; Duan, K.; Shang, W.; Li, M.; Shi, P. Optimizing simulation of summer precipitation by weather research and forecasting model over the mountainous southern Tibetan Plateau. Atmos. Res. 2023, 281, 106484. [Google Scholar] [CrossRef]
- Tang, J.; Lu, Y.; Wang, S.; Guo, Z.; Lu, Y.; Fang, J. Projection of Hourly Extreme Precipitation Using the WRF Model Over Eastern China. J. Geophys. Res. Atmos. 2022, 128, e2022JD036448. [Google Scholar] [CrossRef]
- Deng, C.; Chi, Y.; Huang, Y.; Jiang, C.; Su, L.; Lin, H.; Jiang, L.; Guan, X.; Gao, L. Sensitivity of WRF multiple parameterization schemes to extreme precipitation event over the Poyang Lake Basin of China. Front. Environ. Sci. 2023, 10, 1102864. [Google Scholar] [CrossRef]
- Gu, Y.; Peng, D.; Deng, C.; Zhao, K.; Pang, B.; Zuo, D. Atmospheric–hydrological modeling for Beijing’s sub-center based on WRF and SWMM. Urban Clim. 2022, 41, 101066. [Google Scholar] [CrossRef]
- Available online: https://cran.r-project.org/web/packages/ismev/index.html (accessed on 20 April 2020).
- Sidek, L.M.; Jaafar, A.S.; Majid, W.H.A.W.A.; Basri, H.; Marufuzzaman, M.; Fared, M.M.; Moon, W.C. High-Resolution Hydrological-Hydraulic Modeling of Urban Floods Using InfoWorks ICM. Sustainability 2021, 13, 259. [Google Scholar] [CrossRef]
- Wang, K.; Chen, J.; Hu, H.; Tang, Y.; Huang, J.; Wu, Y.; Lu, J.; Zhou, J. Urban Waterlogging Simulation and Disaster Risk Analysis Using InfoWorks Integrated Catchment Management: A Case Study from the Yushan Lake Area of Ma’anshan City in China. Water 2024, 16, 3383. [Google Scholar] [CrossRef]
- Wei, H.; Wu, H.; Zhang, L.; Liu, J. Urban flooding simulation and flood risk assessment based on the InfoWorks ICM model: A case study of the urban inland rivers in Zhengzhou, China. Water Sci. Technol. 2024, 90, 1338–1358. [Google Scholar] [CrossRef]
- Available online: https://boards.autodesk.com/icm/ (accessed on 10 August 2023).
- Wang, L.; Zhu, J.; Wang, D. Comparative analysis of high-resolution CMIP6 GCM and CMIP5 RCM: Unveiling biases and advancements in simulating compound extreme events in China. Clim. Dyn. 2025, 63, 91. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, X.; Chen, P.; Zhu, B.; Cai, W.; Wu, W.; Guo, Q.; Iribagiza, M.R. Assessing the effects of combined future climate and land use/cover changes on streamflow in the Upper Fen River Basin, China. J. Hydrol. Reg. Stud. 2024, 53, 101853. [Google Scholar] [CrossRef]
- Tong, Y.; Gao, X.; Han, Z.; Xu, Y.; Xu, Y.; Giorgi, F. Bias correction of temperature and precipitation over China for RCM simulations using the QM and QDM methods. Clim. Dyn. 2020, 57, 1425–1443. [Google Scholar] [CrossRef]
- Myhre, G.; Alterskjaer, K.; Stjern, C.W.; Hodnebrog, O.; Marelle, L.; Samset, B.H.; Sillmann, J.; Schaller, N.; Fischer, E.; Schulz, M.; et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 2019, 9, 16063. [Google Scholar] [CrossRef]
- Rosenberg, E.A.; Keys, P.W.; Booth, D.B.; Hartley, D.; Burkey, J.; Steinemann, A.C.; Lettenmaier, D.P. Precipitation extremes and the impacts of climate change on stormwater infrastructure in Washington State. Clim. Change 2010, 102, 319–349. [Google Scholar] [CrossRef]
- He, Y.; Manful, D.; Warren, R.; Forstenhäusler, N.; Osborn, T.J.; Price, J.; Jenkins, R.; Wallace, C.; Yamazaki, D. Quantification of impacts between 1.5 and 4 °C of global warming on flooding risks in six countries. Clim. Change 2022, 170, 15. [Google Scholar] [CrossRef]
- Zhou, Q. A Review of Sustainable Urban Drainage Systems Considering the Climate Change and Urbanization Impacts. Water 2014, 6, 976–992. [Google Scholar] [CrossRef]
- Martel, J.-L.; Brissette, F.P.; Lucas-Picher, P.; Troin, M.; Arsenault, R. Climate Change and Rainfall Intensity–Duration–Frequency Curves: Overview of Science and Guidelines for Adaptation. J. Hydrol. Eng. 2021, 26, 03121001. [Google Scholar] [CrossRef]
- Xu, M.; Bravo de Guenni, L.; Córdova, J.R. Climate change impacts on rainfall intensity–duration–frequency curves in local scale catchments. Environ. Monit. Assess. 2024, 196, 372. [Google Scholar] [CrossRef]














| Event Name | Event Date | Max 1 h Rainfall (mm) | Max 24 h Rainfall (mm) | Event Total Rainfall (mm) | 
|---|---|---|---|---|
| ‘6.7’ event | 7 June 1997 | 40.89 | 197.05 | 254.83 | 
| ‘10.31’ event | 31 October 2008 | 6.50 | 91.80 | 140.80 | 
| ‘7.3’ event | 3 July 2016 | 50.70 | 72.00 | 209.81 | 
| ‘6.30’ event | 30 June 2017 | 59.30 | 134.81 | 351.90 | 
| Scheme | Microphysics | Cumulus | Radiation | Planetary Boundary Layer | 
|---|---|---|---|---|
| Sch. 1 | Thompson | Grell–3D | CAM | YSU | 
| Sch. 2 | WSM6 | KF (new Eta) | RRTMG | MYJ | 
| Sch. 3 | WSM3 | BMJ | RRTM + Dudia | BouLac | 
| Sch. 4 | WSM5 | Grell-Freitas | Goddard | ACM2 | 
| Sch. 5 | Lin | KF | RRTMG | YSU | 
| Parameters | Reference Values | 
|---|---|
| initial loss (mm) | 1.5–6.0 | 
| fixed runoff coefficient | 0–1 | 
| initial infiltration rate (Horton method) (mm/h) | 30–80 | 
| stable infiltration rate (Horton method) (mm/h) | 6–20 | 
| attenuation coefficient (Horton method) (1/h) | 2–7 | 
| pipe Manning coefficient (n) | 0.011–0.024 | 
| surface Manning coefficient (n) | impervious: 0.005–0.05 previous: 0.05–0.5 | 
| Extreme Events | Schemes | Total Rainfall (mm) | RE (%) | RMSE (mm) | MBE (mm) | SD (mm) | 
|---|---|---|---|---|---|---|
| ‘6.7’ | Sch. 1 | 164.99 | −16.27 | 72.37 | −55.72 | 47.18 | 
| Sch. 2 | 201.69 | 2.35 | 27.57 | −15.46 | 23.31 | |
| Sch. 3 | 37.07 | −81.19 | 128.13 | −111.78 | 63.97 | |
| Sch. 4 | 116.75 | −40.75 | 64.76 | −45.23 | 47.35 | |
| Sch. 5 | 153.17 | −22.27 | 32.06 | −24.66 | 20.93 | |
| ‘10.31’ | Sch. 1 | 79.32 | −13.60 | 5.95 | −0.41 | 6.07 | 
| Sch. 2 | 89.56 | −2.44 | 5.72 | 4.19 | 3.97 | |
| Sch. 3 | 60.26 | −34.35 | 15.88 | −13.49 | 8.57 | |
| Sch. 4 | 59.32 | −35.38 | 15.84 | −12.57 | 9.84 | |
| Sch. 5 | 83.03 | −9.56 | 4.34 | −2.57 | 3.58 | |
| ‘7.3’ | Sch. 1 | 26.25 | −63.54 | 25.11 | −19.30 | 16.40 | 
| Sch. 2 | 77.15 | 7.15 | 7.08 | 4.36 | 5.70 | |
| Sch. 3 | 2.48 | −96.56 | 40.71 | −33.25 | 24.00 | |
| Sch. 4 | 2.59 | −96.40 | 41.24 | −33.60 | 24.41 | |
| Sch. 5 | 80.50 | 11.81 | 11.67 | 7.22 | 9.37 | |
| ‘6.30’ | Sch. 1 | 142.69 | 5.85 | 29.92 | −6.59 | 29.81 | 
| Sch. 2 | 138.40 | 2.67 | 27.55 | 18.82 | 20.55 | |
| Sch. 3 | 81.40 | −39.61 | 35.10 | −20.57 | 29.05 | |
| Sch. 4 | 66.56 | −50.62 | 37.60 | −27.29 | 26.43 | |
| Sch. 5 | 143.51 | 6.46 | 32.01 | 21.44 | 24.28 | 
| Return Period (Years) | Storm Intensity (mm/24 h) | ||
|---|---|---|---|
| 2020s | 2040s | 2060s | |
| 50 | 236.2 | 252.4 | 260.4 | 
| 100 | 263.0 | 275.2 | 285.0 | 
| Ponding Depth (mm) | 2020s | 2040s | 2060s | |||
|---|---|---|---|---|---|---|
| 50-Year | 100-Year | 50-Year | 100-Year | 50-Year | 100-Year | |
| 2–150 | 4.84% | 6.11% | 5.56% | 6.86% | 5.96% | 7.43% | 
| 150–300 | 0.53% | 0.67% | 0.63% | 0.77% | 0.66% | 0.85% | 
| 300–500 | 5.29% | 6.63% | 6.10% | 7.41% | 6.47% | 8.02% | 
| >500 | 0.99% | 1.38% | 1.20% | 1.52% | 1.35% | 1.62% | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, Z.; Wu, Y.; He, W.; She, N.; Li, Z. Intensified Rainfall, Growing Floods: Projecting Urban Drainage Challenges in South-Central China Under Climate Change Scenarios. Appl. Sci. 2025, 15, 11577. https://doi.org/10.3390/app152111577
Bao Z, Wu Y, He W, She N, Li Z. Intensified Rainfall, Growing Floods: Projecting Urban Drainage Challenges in South-Central China Under Climate Change Scenarios. Applied Sciences. 2025; 15(21):11577. https://doi.org/10.3390/app152111577
Chicago/Turabian StyleBao, Zhengduo, Yuxuan Wu, Weining He, Nian She, and Zhenjun Li. 2025. "Intensified Rainfall, Growing Floods: Projecting Urban Drainage Challenges in South-Central China Under Climate Change Scenarios" Applied Sciences 15, no. 21: 11577. https://doi.org/10.3390/app152111577
APA StyleBao, Z., Wu, Y., He, W., She, N., & Li, Z. (2025). Intensified Rainfall, Growing Floods: Projecting Urban Drainage Challenges in South-Central China Under Climate Change Scenarios. Applied Sciences, 15(21), 11577. https://doi.org/10.3390/app152111577
 
        


 
       