Hazard Assessment of Shallow Loess Landslides Under Different Rainfall Intensities Based on the SINMAP Model: A Case Study of Yuzhong County
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Principle of the SINMAP Model
2.3. Personnel Risk Level Distribution
2.4. Data Preparation and Parameter Settings
2.5. Establishment of the SINMAP Model and Analysis of Influencing Factors
3. Results
3.1. Stability Distribution Under Different Rainfall Intensities
3.2. Landslide Distribution and Density
3.3. Personnel Risk Level Distribution Under Different Rainfall
4. Discussion
4.1. Study Results and Their Comparison with Similar Studies
4.2. Model Sensitivity Analysis
4.3. Model Validation
4.4. Limitations and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, L.; Wu, X.; He, Z.; Xue, D.; Luo, F.; Bai, W.; Kang, G.; Chen, X.; Zhang, Y. Susceptibility Assessment of Landslides in the Loess Plateau Based on Machine Learning Models: A Case Study of Xining City. Sustainability 2023, 15, 14761. [Google Scholar] [CrossRef]
- Xie, C.; Huang, Y.; Li, L.; Li, T.; Xu, C. Detailed Inventory and Spatial Distribution Analysis of Rainfall-Induced Landslides in Jiexi County, Guangdong Province, China in August 2018. Sustainability 2023, 15, 13930. [Google Scholar] [CrossRef]
- Wei, L.; Zeng, Z.; Yan, J. Factors Affecting the Stability of Loess Landslides: A Review. Appl. Sci. 2024, 14, 2735. [Google Scholar] [CrossRef]
- Xiao, Y.; Wei, L.; Liu, X. Failure Mechanism and Movement Process Inversion of Rainfall-Induced Landslide in Yuexi Country. Sustainability 2025, 17, 5639. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, J.; Li, Y.; Liu, X.; Qiang, F.; He, Y. A Bibliometric Analysis of Geological Hazards Monitoring Technologies. Sustainability 2025, 17, 962. [Google Scholar] [CrossRef]
- Zhang, F.; Huang, X. Trend and Spatiotemporal Distribution of Fatal Landslides Triggered by Non-Seismic Effects in China. Landslides 2018, 15, 1663–1674. [Google Scholar] [CrossRef]
- Wang, D.; Hao, M.; Chen, S.; Meng, Z.; Jiang, D.; Ding, F. Assessment of Landslide Susceptibility and Risk Factors in China. Nat. Hazards 2021, 108, 3045–3059. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, X. Landslide Susceptibility Assessment Considering Landslide Volume: A Case Study of Yangou Watershed on the Loess Plateau (China). Appl. Sci. 2022, 12, 4381. [Google Scholar] [CrossRef]
- Petrucci, O. Landslide Fatality Occurrence: A Systematic Review of Research Published between January 2010 and March 2022. Sustainability 2022, 14, 9346. [Google Scholar] [CrossRef]
- Dandridge, C.; Stanley, T.A.; Kirschbaum, D.B.; Lakshmi, V. Spatial and Temporal Analysis of Global Landslide Reporting Using a Decade of the Global Landslide Catalog. Sustainability 2023, 15, 3323. [Google Scholar] [CrossRef]
- Shu, H.; He, J.; Zhang, F.; Zhang, M.; Ma, J.; Chen, Y.; Yang, S. Construction of Landslide Warning by Combining Rainfall Threshold and Landslide Susceptibility in the Gully Region of the Loess Plateau: A Case of Lanzhou City, China. J. Hydrol. 2024, 645, 132148. [Google Scholar] [CrossRef]
- Mao, J.; Su, Q.; Zhu, Y.; Xiao, Y.; Yan, T.; Zhang, L. Multi-Sensor Remote Sensing for Early Identification of Loess Landslide Hazards: A Comprehensive Approach. Appl. Sci. 2025, 15, 6890. [Google Scholar] [CrossRef]
- Zhang, M.; Tang, X. Quantification and Analysis of Factors Influencing Territorial Spatial Conflicts in the Gully Region of the Loess Plateau: A Case Study of Qingyang City, Gansu Province, China. Sustainability 2025, 17, 3552. [Google Scholar] [CrossRef]
- Zhang, Z.; Zeng, R.; Meng, X.; Zhao, S.; Wang, S.; Ma, J.; Wang, H. Effects of Changes in Soil Properties Caused by Progressive Infiltration of Rainwater on Rainfall-Induced Landslides. Catena 2023, 233, 107475. [Google Scholar] [CrossRef]
- Li, W.; Liu, C.; Scaioni, M.; Sun, W.; Chen, Y.; Yao, D.; Chen, S.; Hong, Y.; Zhang, K.; Cheng, G. Spatio-Temporal Analysis and Simulation on Shallow Rainfall-Induced Landslides in China Using Landslide Susceptibility Dynamics and Rainfall I-D Thresholds. Sci. China Earth Sci. 2017, 60, 720–732. [Google Scholar] [CrossRef]
- Shen, S.; Deng, L.; Tang, D.; Chen, J.; Fang, R.; Du, P.; Liang, X. Landslide Hazard Assessment Based on Ensemble Learning Model and Bayesian Probability Statistics: Inference from Shaanxi Province, China. Sustainability 2025, 17, 1973. [Google Scholar] [CrossRef]
- Ma, J.; Zeng, R.; Meng, X.; Zhang, Z.; Zhao, S.; Wei, Z. Field Research on Preferential Infiltration in Rainfall-Induced Loess Landslides. Eng. Geol. 2025, 354, 108184. [Google Scholar] [CrossRef]
- An, K.; Kim, S.; Chae, T.; Park, D. Developing an Accessible Landslide Susceptibility Model Using Open-Source Resources. Sustainability 2018, 10, 293. [Google Scholar] [CrossRef]
- Yang, F.-Y.; Zhuo, L.; Xiao, M.-L.; Xie, H.-Q.; Liu, H.-Z.; He, J.-D. A Statistical Risk Assessment Model of the Hazard Chain Induced by Landslides and Its Application to the Baige Landslide. Appl. Sci. 2023, 13, 3577. [Google Scholar] [CrossRef]
- Wei, Z.; Li, Y.; Dong, J.; Cao, S.; Ma, W.; Wang, X.; Wang, H.; Tang, R.; Zhao, J.; Liu, X.; et al. The Identification and Influence Factor Analysis of Landslides Using SBAS-InSAR Technique: A Case Study of Hongya Village, China. Appl. Sci. 2024, 14, 8413. [Google Scholar] [CrossRef]
- Hou, C.; Liu, H.; Wang, X.; Hu, J.; Tang, Y.; Yao, X. Landslide Susceptibility Analysis Based on Dataset Construction of Landslides in Yiyang Using GIS and Machine Learning. Appl. Sci. 2025, 15, 5597. [Google Scholar] [CrossRef]
- Chen, W.; Sun, Z.; Han, J. Landslide Susceptibility Modeling Using Integrated Ensemble Weights of Evidence with Logistic Regression and Random Forest Models. Appl. Sci. 2019, 9, 171. [Google Scholar] [CrossRef]
- Huangfu, W.; Wu, W.; Zhou, X.; Lin, Z.; Zhang, G.; Chen, R.; Song, Y.; Lang, T.; Qin, Y.; Ou, P.; et al. Landslide Geo-Hazard Risk Mapping Using Logistic Regression Modeling in Guixi, Jiangxi, China. Sustainability 2021, 13, 4830. [Google Scholar] [CrossRef]
- Li, X.; Li, S. Large-Scale Landslide Displacement Rate Prediction Based on Multi-Factor Support Vector Regression Machine. Appl. Sci. 2021, 11, 1381. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Tan, S.; Zhou, J. Landslide Susceptibility Evaluation Based on a Coupled Informative–Logistic Regression Model—Shuangbai County as an Example. Sustainability 2023, 15, 12449. [Google Scholar] [CrossRef]
- Oh, H.-J.; Lee, S. Shallow Landslide Susceptibility Modeling Using the Data Mining Models Artificial Neural Network and Boosted Tree. Appl. Sci. 2017, 7, 1000. [Google Scholar] [CrossRef]
- Ma, S.; Chen, J.; Wu, S.; Li, Y. Landslide Susceptibility Prediction Using Machine Learning Methods: A Case Study of Landslides in the Yinghu Lake Basin in Shaanxi. Sustainability 2023, 15, 15836. [Google Scholar] [CrossRef]
- Gao, F.; Gao, X.; Yang, C.; Li, J. Research on the Evolution Network Model of the Landslide Disaster Chain: A Case Study of the Baige Landslide. Appl. Sci. 2024, 14, 499. [Google Scholar] [CrossRef]
- Tynchenko, Y.; Kukartsev, V.; Tynchenko, V.; Kukartseva, O.; Panfilova, T.; Gladkov, A.; Nguyen, V.; Malashin, I. Landslide Assessment Classification Using Deep Neural Networks Based on Climate and Geospatial Data. Sustainability 2024, 16, 7063. [Google Scholar] [CrossRef]
- Ji, Q.; Liang, Y.; Xie, F.; Yu, Z.; Wang, Y. Automatic and Efficient Detection of Loess Landslides Based on Deep Learning. Sustainability 2024, 16, 1238. [Google Scholar] [CrossRef]
- Li, M.; Tian, H. Insights from Optimized Non-Landslide Sampling and SHAP Explainability for Landslide Susceptibility Prediction. Appl. Sci. 2025, 15, 1163. [Google Scholar] [CrossRef]
- Keles, F.; Nefeslioglu, H.A. Infinite Slope Stability Model and Steady-State Hydrology-Based Shallow Landslide Susceptibility Evaluations: The Guneysu Catchment Area (Rize, Turkey). Catena 2021, 200, 105161. [Google Scholar] [CrossRef]
- Lin, W.; Yin, K.; Wang, N.; Xu, Y.; Guo, Z.; Li, Y. Landslide Hazard Assessment of Rainfall-Induced Landslide Based on the CF-SINMAP Model: A Case Study from Wuling Mountain in Hunan Province, China. Nat. Hazards 2021, 106, 679–700. [Google Scholar] [CrossRef]
- Gao, J.; Shi, X.; Li, L.; Zhou, Z.; Wang, J. Assessment of Landslide Susceptibility Using Different Machine Learning Methods in Longnan City, China. Sustainability 2022, 14, 16716. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Dietrich, W.E. A Physically Based Model for the Topographic Control on Shallow Landsliding. Water Resour. Res. 1994, 30, 1153–1171. [Google Scholar] [CrossRef]
- Pack, R.; Tarboton, D.; Goodwin, C. The SINMAP Approach to Terrain Stability Mapping. In Proceedings of the 8th Congress of the International Association of Engineering Geology, Vancouver, BC, Canada, 21–25 September 1998; pp. 1–8. [Google Scholar]
- Baum, R.L.; Savage, W.Z.; Godt, J.W. TRIGRS—A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0; Open-File Report; US Geological Survey: Reston, VA, USA, 2008. [Google Scholar]
- Meisina, C.; Scarabelli, S. A Comparative Analysis of Terrain Stability Models for Predicting Shallow Landslides in Colluvial Soils. Geomorphology 2007, 87, 207–223. [Google Scholar] [CrossRef]
- Feng, L.; Guo, M.; Wang, W.; Chen, Y.; Shi, Q.; Guo, W.; Lou, Y.; Kang, H.; Chen, Z.; Zhu, Y. Comparative Analysis of Machine Learning Methods and a Physical Model for Shallow Landslide Risk Modeling. Sustainability 2023, 15, 6. [Google Scholar] [CrossRef]
- He, J.; Qiu, H.; Qu, F.; Hu, S.; Yang, D.; Shen, Y.; Zhang, Y.; Sun, H.; Cao, M. Prediction of Spatiotemporal Stability and Rainfall Threshold of Shallow Landslides Using the TRIGRS and Scoops3D Models. Catena 2021, 197, 104999. [Google Scholar] [CrossRef]
- Yang, J. Landslide Damage from Extreme Rainstorm Geological Accumulation Layers within Plain River Basins. J. Coast. Res. 2018, 82, 1–11. [Google Scholar] [CrossRef]
- Wang, H. Analysis of the Causes of Loess Disasters under Human Engineering Activities. World Gard. 2021, 4, 187–188. [Google Scholar]
- Terhorst, B.; Kreja, R. Slope Stability Modelling with SINMAP in a Settlement Area of the Swabian Alb. Landslides 2009, 6, 309–319. [Google Scholar] [CrossRef]
- Yang, W.; Qiu, H.; Pei, Y.; Hu, S.; Cao, M. Evaluation of Shallow Loess Landslide Stability in Typical Loess Hilly Region: A Case Study of Zhidan County in Yan’an Area of Shaanxi Province. Quat. Sci. 2019, 39, 408–419. [Google Scholar]
- Fan, L.; Yahong, D.; Huandong, M.; Qian, F. A study of the stability evaluation method of rainfall-induced shallow loess landslides based on the Maxent-Sinmap slope model. Hydrogeol. Eng. Geol. 2023, 50, 146–158. [Google Scholar]
- Bueechi, E.; Klimeš, J.; Frey, H.; Huggel, C.; Strozzi, T.; Cochachin, A. Regional-Scale Landslide Susceptibility Modelling in the Cordillera Blanca, Peru—A Comparison of Different Approaches. Landslides 2019, 16, 395–407. [Google Scholar] [CrossRef]

















| Class | Stability Index | Predicted Condition | 
|---|---|---|
| 1 | SI > 1.5 | Extremely Stable | 
| 2 | 1.5 ≥ SI > 1.25 | Stable | 
| 3 | 1.25 ≥ SI > 1 | Basically Stable | 
| 4 | 1 ≥ SI > 0.5 | Potentially Unstable | 
| 5 | 0.5 ≥ SI > 0 | Unstable | 
| 6 | SI = 0 | Extremely Unstable | 
| Soil Density /kg·m−2 | Internal Friction Angle φ/° | Cohesion C/(Dimensionless) | Gravitational Acceleration g/m·s−2 | Moisture Content /% | ||
|---|---|---|---|---|---|---|
| φmin | φmax | Cmin | Cmax | |||
| 1500 | 25 | 33 | 0.27 | 0.4 | 9.81 | 10 | 
| Rainfall Category | Selected Rainfall /mm·d−1 | T/Rmin /mm | T/Rmax /mm | 
|---|---|---|---|
| Light Rain | 7.9 | 1,000,000 | 3,000,000 | 
| Moderate Rain | 20 | 395,000 | 1,185,000 | 
| Heavy Rain | 40 | 197,500 | 592,500 | 
| Rainstorm | 80 | 98,800 | 296,300 | 
| Severe Rainstorm | 150 | 52,700 | 158,000 | 
| Area/km2 Rainfall Category Stability Level | Light Rain | Moderate Rain | Heavy Rain | Rainstorm | Severe Rainstorm | 
|---|---|---|---|---|---|
| Extremely Stable | 2342.44 | 2253.95 | 2080.6 | 1934.31 | 1893.37 | 
| Stable | 360.91 | 378.08 | 394.26 | 395.25 | 369.16 | 
| Basically Stable | 344.42 | 374.45 | 423.98 | 450.06 | 439.47 | 
| Potentially Unstable | 184.89 | 215.29 | 288.59 | 347.04 | 361.92 | 
| Unstable | 53.82 | 62.73 | 91.14 | 137.69 | 175.01 | 
| Extremely Unstable | 15.52 | 17.51 | 23.44 | 37.64 | 63.07 | 
| Total | 3302 | 3302 | 3302 | 3302 | 3302 | 
| Landslide Density/(Points·km−2) Rainfall Category Stability Level | Light Rain | Moderate Rain | Heavy Rain | Rainstorm | Severe Rainstorm | 
|---|---|---|---|---|---|
| Extremely Stable | 0.005 | 0.004 | 0.004 | 0.002 | 0.001 | 
| Stable | 0.078 | 0.066 | 0.038 | 0.025 | 0.024 | 
| Basically Stable | 0.203 | 0.192 | 0.153 | 0.122 | 0.103 | 
| Potentially Unstable | 0.249 | 0.218 | 0.204 | 0.202 | 0.199 | 
| Unstable | 0.279 | 0.271 | 0.252 | 0.211 | 0.203 | 
| Extremely Unstable | 0.322 | 0.286 | 0.256 | 0.213 | 0.206 | 
| Area/km2 Rainfall Category Risk Level | Light Rain | Moderate Rain | Heavy Rain | Rainstorm | Severe Rainstorm | 
|---|---|---|---|---|---|
| Low | 2855.08 | 2798.93 | 2685.81 | 2558.69 | 2475.75 | 
| Medium | 332.61 | 371.38 | 441.43 | 503.25 | 515.69 | 
| High | 114.31 | 131.69 | 174.76 | 240.06 | 310.56 | 
| Area/km2 Rainfall Category Risk Level | Light Rain | Moderate Rain | Heavy Rain | Rainstorm | Severe Rainstorm | 
|---|---|---|---|---|---|
| Low | 164 | 159 | 155 | 150 | 143 | 
| Medium | 10 | 15 | 18 | 20 | 25 | 
| High | 2 | 2 | 3 | 6 | 8 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Teng, H.; Wang, M.; Deng, Y.; Liu, F.; Mu, H. Hazard Assessment of Shallow Loess Landslides Under Different Rainfall Intensities Based on the SINMAP Model: A Case Study of Yuzhong County. Appl. Sci. 2025, 15, 11556. https://doi.org/10.3390/app152111556
Wang P, Teng H, Wang M, Deng Y, Liu F, Mu H. Hazard Assessment of Shallow Loess Landslides Under Different Rainfall Intensities Based on the SINMAP Model: A Case Study of Yuzhong County. Applied Sciences. 2025; 15(21):11556. https://doi.org/10.3390/app152111556
Chicago/Turabian StyleWang, Peng, Hongwei Teng, Mingyuan Wang, Yahong Deng, Fan Liu, and Huandong Mu. 2025. "Hazard Assessment of Shallow Loess Landslides Under Different Rainfall Intensities Based on the SINMAP Model: A Case Study of Yuzhong County" Applied Sciences 15, no. 21: 11556. https://doi.org/10.3390/app152111556
APA StyleWang, P., Teng, H., Wang, M., Deng, Y., Liu, F., & Mu, H. (2025). Hazard Assessment of Shallow Loess Landslides Under Different Rainfall Intensities Based on the SINMAP Model: A Case Study of Yuzhong County. Applied Sciences, 15(21), 11556. https://doi.org/10.3390/app152111556
 
        



 
       