Assessing the Success of Automotive Sales Transactions Using Selected Machine Learning Algorithms
Abstract
1. Introduction
- An innovative, data-driven approach to predicting the success of sales transactions in the automotive industry based on actual configuration data was proposed;
- A systematic comparison of four machine learning algorithms—Random Forest, Gradient Boosting Machine, eXtreme Gradient Boosting, and Support Vector Machine with an RBF kernel—was conducted using multiple classification quality measures (accuracy, Kappa, F1-score, AUC);
- The most important technical features of vehicles (including engine type, drive, and model) that have the greatest impact on the likelihood of a successful sale were identified;
- Practical management recommendations were presented on the use of predictive results in the areas of sales, marketing, and production planning.
2. Literature Review
2.1. Customer Relationship Management and Predictive Analytics
2.2. Machine Learning in Sales Forecasting
2.3. Model Evaluation in Predictive Sales
2.4. Applications in the Automotive Industry
3. Materials and Methods
3.1. Data Preparation and Division
- Random Forest: A number of trees (ntree) from 100 to 1000, number of features per split (mtry) from 3 to 8;
- GBM: Number of iterations (n.trees) from 100 to 500, tree depth (interaction.depth) 1–5;
- XGBoost: Learning rate (eta): 0.01–0.3, number of trees: 200–800, depth: 3–8;
- SVM (RBF): Regularization parameter C: 0.1–10; gamma kernel parameter: 0.001–0.1.
3.2. ML Models Used in the Study
3.2.1. Logistic Regression
3.2.2. Random Forest
3.2.3. XGBoost
3.2.4. GBM Model
3.2.5. SVM Model with RBF Kernel
3.3. Comparison of Models
3.3.1. Accuracy
3.3.2. F1-Score for the Positive Class
3.3.3. Kappa Coefficient
3.3.4. AUC Metric
3.3.5. Feature Importance
4. Classification Results
4.1. Random Forest
4.2. XGBoost
4.3. GBM Model
4.4. SVM Model with RBF Kernel
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Structure of Input Data
- Model (factor)—model variant (e.g., A, C, E, GLA, GLC, GLE, EQE, EQS etc.);
- Fuel (factor)—type of fuel (petrol, diesel, hybrid, electric);
- Engine type (numeric)—a technical characteristic of the engine;
- Drive (factor)—type of drive (e.g. 4MATIC, 2WD);
- Number of sales (integer, goal definition only)—the number of units sold in a given configuration between 2021 and 2023.
- Success (factor: no/yes)—goal variable; yes, if the number of sales ≥ Q3 (definition by the third quartile).
References
- Gandomi, A.; Haider, M. Beyond the hype: Big data concepts, methods, and analytics. Int. J. Inf. Manag. 2015, 35, 137–144. [Google Scholar] [CrossRef]
- Kozłowski, E.; Wiśniowski, P.; Gis, M.; Zimakowska-Laskowska, M.; Borucka, A. Vehicle Acceleration and Speed as Factors Determining Energy Consumption in Electric Vehicles. Energies 2024, 17, 4051. [Google Scholar] [CrossRef]
- Zoltners, A.A.; Sinha, P.; Sahay, D.; Shastri, A.; Lorimer, S.E. Practical insights for sales force digitalization success. J. Pers. Sell. Sales Manag. 2021, 41, 87–102. [Google Scholar] [CrossRef]
- Sanchez-Segura, M.I.; González-Cruz, R.; Medina-Dominguez, F.; Dugarte-Peña, G.L. Valuable Business Knowledge Asset Discovery by Processing Unstructured Data. Sustainability 2022, 14, 12971. [Google Scholar] [CrossRef]
- Keusch, F.; Struminskaya, B.; Kreuter, F.; Weichbold, M. Combining Active and Passive Mobile Data Collection: A Survey of Concerns. In Big Data Meets Survey Science, 1st ed.; Hill, C.A., Biemer, P.P., Buskirk, T.D., Japec, L., Kirchner, A., Kolenikov, S., Lyberg, L.E., Eds.; Wiley: Hoboken, NJ, USA, 2020; pp. 657–682. [Google Scholar] [CrossRef]
- Challagalla, G.; Venkatesh, R.; Kohli, A.K. Proactive Postsales Service: When and why does it Pay Off? J. Mark. 2009, 73, 70–87. [Google Scholar] [CrossRef]
- Qaium, H.; Maliha, Z.N.; Sharif, B.N.; Arif, H. Influence of Artificial Intelligence on Customer Relationship Management (CRM). Int. J. Commun. Networks Inf. Secur. (IJCNIS) 2024, 16, 653–662. [Google Scholar]
- Ajiva, O.A.; Ejike, O.G.; Abhulimen, A.O. Addressing challenges in customer relations management for creative industries: Innovative solutions and strategies. Int. J. Appl. Res. Soc. Sci. 2024, 6, 1747–1757. [Google Scholar] [CrossRef]
- Khalid, H.M.; Dangelmaier, M.; Lim, T. The CATER approach to vehicle mass customization. In Proceedings of the 2007 IEEE International Conference on Industrial Engineering and Engineering Management, Singapore, 2–4 December 2007; pp. 1273–1276. [Google Scholar] [CrossRef]
- Helo, P.; Xu, Q.; Kyllönen, S.; Jiao, R. Integrated Vehicle Configuration System—Connecting the domains of mass customization. Comput. Ind. 2010, 61, 44–52. [Google Scholar] [CrossRef]
- Usuga Cadavid, J.P.; Lamouri, S.; Grabot, B. Trends in Machine Learning Applied to Demand & Sales Forecasting: A Review. In Proceedings of the International Conference on Information Systems, Logistics and Supply Chain, Lyon, France, 8–11 July 2018. [Google Scholar]
- Ansari, K.; Ghasemaghaei, M. Big Data Analytics Capability and Firm Performance: Meta-Analysis. J. Comput. Inf. Syst. 2023, 63, 1477–1494. [Google Scholar] [CrossRef]
- Oesterreich, T.D.; Anton, E.; Teuteberg, F. What translates big data into business value? A meta-analysis of the impacts of business analytics on firm performance. Inf. Manag. 2022, 59, 103685. [Google Scholar] [CrossRef]
- Borucka, A.; Grzelak, M. Application of Logistic Regression for Production Machinery Efficiency Evaluation. Appl. Sci. 2019, 9, 4770. [Google Scholar] [CrossRef]
- Ma, L.; Zeng, J.; Zhang, B.; Jiao, R.; Gong, C. Smart Strategies for Local Energy Grids: Optimizing Energy Management with Hybrid Electric Vehicle Integration. Eksploat. I Niezawodn.—Maint. Reliab. 2025, 27, 206049. [Google Scholar] [CrossRef]
- Ahmed, A.; Alshurideh, M.; Al Kurdi, B.; Salloum, S.A. Digital Transformation and Organizational Operational Decision Making: A Systematic Review. In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2020; Series Title: Advances in Intelligent Systems and Computing; Hassanien, A.E., Slowik, A., Snášel, V., El-Deeb, H., Tolba, F.M., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; Volume 1261, pp. 708–719. [Google Scholar] [CrossRef]
- Tian, H.; Qiu, Y.; Wang, H.; He, J.; Liu, L.; Sun, Y.; Du, X.; Chen, C. Research on Dynamic Weighted FMECA for Reliability of CNC Machine Tools Based on Spherical Fuzzy Sets. Eksploat. I Niezawodn.—Maint. Reliab. 2025, 27, 203500. [Google Scholar] [CrossRef]
- Kim, K.; Kim, B. Decision-Making Model for Reinforcing Digital Transformation Strategies Based on Artificial Intelligence Technology. Information 2022, 13, 253. [Google Scholar] [CrossRef]
- Rumin, P.; Kotowicz, J.; Zastawna-Rumin, A. Predictive maintenance of belt conveyor idlers based on measurements, analytical calculations and decision-making algorithms. Eksploat. I Niezawodn.—Maint. Reliab. 2025, 27, 202096. [Google Scholar] [CrossRef]
- Petrie, R.; Denvil, S.; Ames, S.; Levavasseur, G.; Fiore, S.; Allen, C.; Antonio, F.; Berger, K.; Bretonnière, P.A.; Cinquini, L.; et al. Coordinating an operational data distribution network for CMIP6 data. Geosci. Model Dev. 2021, 14, 629–644. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, G.; Wu, Y.; Zhang, G.; Zheng, R. Optimal predictive maintenance for a nonstationary gamma process. Eksploat. I Niezawodn.—Maint. Reliab. 2025, 27, 203543. [Google Scholar] [CrossRef]
- Fan, C.; Chen, M.; Wang, X.; Wang, J.; Huang, B. A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data. Front. Energy Res. 2021, 9, 652801. [Google Scholar] [CrossRef]
- He, X.; Su, C.; Zhang, Y.; Tang, J. Optimal Imperfect Predictive Maintenance Based on Interval Remaining UsefulLife Prediction. Eksploat. I Niezawodn.—Maint. Reliab. 2025, 27, 203458. [Google Scholar] [CrossRef]
- Ngai, E.; Xiu, L.; Chau, D. Application of data mining techniques in customer relationship management: A literature review and classification. Expert Syst. Appl. 2009, 36, 2592–2602. [Google Scholar] [CrossRef]
- Shang, C.; You, F. Data Analytics and Machine Learning for Smart Process Manufacturing: Recent Advances and Perspectives in the Big Data Era. Engineering 2019, 5, 1010–1016. [Google Scholar] [CrossRef]
- Borucka, A.; Sobczuk, S. The Use of Machine Learning Methods in Road Safety Research in Poland. Appl. Sci. 2025, 15, 861. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Srivastava, P.R.; Sharma, D.; Eachempati, P. Big data analytics and machine learning: A retrospective overview and bibliometric analysis. Expert Syst. Appl. 2019, 184, 115561. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Q. Risk identification model of aviation system based on text mining and risk propagation. Eksploat. I Niezawodn.—Maint. Reliab. 2024, 27, 192767. [Google Scholar] [CrossRef]
- Mittal, S.; Sangwan, O.P. Big Data Analytics using Machine Learning Techniques. In Proceedings of the 2019 9th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 10–11 January 2019; pp. 203–207. [Google Scholar] [CrossRef]
- Adi, E.; Anwar, A.; Baig, Z.; Zeadally, S. Machine learning and data analytics for the IoT. Neural Comput. Appl. 2020, 32, 16205–16233. [Google Scholar] [CrossRef]
- Li, X.; Song, K.; Shi, J. Degradation generation and prediction based on machine learning methods: A comparative study. Eksploat. I Niezawodn.—Maint. Reliab. 2024, 27, 192168. [Google Scholar] [CrossRef]
- Boone, T.; Ganeshan, R.; Jain, A.; Sanders, N.R. Forecasting sales in the supply chain: Consumer analytics in the big data era. Int. J. Forecast. 2019, 35, 170–180. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Chandra, S.; Dhar, D. Customer behaviour forecasting using predictive analysis of sales data. In Proceedings of the Second International Conference on Innovations in Software Architecture and Computational Systems (ISACS 2022), Kolkata, India, 21–22 July 2022; p. 020008. [Google Scholar] [CrossRef]
- Choudhury, P.; Starr, E.; Agarwal, R. Machine learning and human capital complementarities: Experimental evidence on bias mitigation. Strateg. Manag. J. 2020, 41, 1381–1411. [Google Scholar] [CrossRef]
- Schmidt, A.; Kabir, M.W.U.; Hoque, M.T. Machine Learning Based Restaurant Sales Forecasting. Mach. Learn. Knowl. Extr. 2022, 4, 105–130. [Google Scholar] [CrossRef]
- Semenov, I.; Jacyna, M.; Milewska, B. Improvement uptime of the aging truckload fleets through optimizing maintenance activities. Eksploat. I Niezawodn.—Maint. Reliab. 2025, 28. [Google Scholar] [CrossRef]
- Dairu, X.; Shilong, Z. Machine Learning Model for Sales Forecasting by Using XGBoost. In Proceedings of the 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE), Guangzhou, China, 15–17 January 2021; pp. 480–483. [Google Scholar] [CrossRef]
- Malik, S.; Khan, M.; Abid, M.K.; Aslam, N. Sales Forecasting Using Machine Learning Algorithm in the Retail Sector. J. Comput. Biomed. Inform. 2024, 6, 282–294. [Google Scholar]
- Sajawal, M.; Usman, S.; Sanad Alshaikh, H.; Hayat, A.; Ashraf, M.U. A Predictive Analysis of Retail Sales Forecasting using Machine Learning Techniques. Lahore Garrison Univ. Res. J. Comput. Sci. Inf. Technol. 2022, 6, 33–45. [Google Scholar] [CrossRef]
- Gustriansyah, R.; Ermatita, E.; Rini, D.P. An approach for sales forecasting. Expert Syst. Appl. 2022, 207, 118043. [Google Scholar] [CrossRef]
- Eglite, L.; Birzniece, I. Retail Sales Forecasting Using Deep Learning: Systematic Literature Review. Complex Syst. Inform. Model. Q. 2022, 30, 53–62. [Google Scholar] [CrossRef]
- Xie, P.; Li, C. Dynamic Modeling and Optimization of Energy Storage in Peer-to-Peer Energy Trading Systems. Eksploat. I Niezawodn.—Maint. Reliab. 2024, 27, 195761. [Google Scholar] [CrossRef]
- Deniz, E.; Çökekoğlu Bülbül, S. Predicting Customer Purchase Behavior Using Machine Learning Models. Inf. Technol. Econ. Bus. 2024, 1, 1–6. [Google Scholar] [CrossRef]
- Gedam, V.V.; Raut, R.D.; Lopes de Sousa Jabbour, A.B.; Narkhede, B.E.; Grebinevych, O. Sustainable manufacturing and green human resources: Critical success factors in the automotive sector. Bus. Strategy Environ. 2021, 30, 1296–1313. [Google Scholar] [CrossRef]
- Wang, Y.; Kung, L.; Byrd, T.A. Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technol. Forecast. Soc. Chang. 2018, 126, 3–13. [Google Scholar] [CrossRef]
- Mukherjee, S.; Das, A. Industrial Data Operations: Empowering the Energy Industry with Smarter Data Management Solutions. In Proceedings of the GOTECH, Dubai City, United Arab Emirates, 21–23 April 2025. [Google Scholar] [CrossRef]
- Kumar, V.; Reinartz, W.J. Customer Relationship Management: Concept, Strategy, and Tools, 3rd ed.; Springer Texts in Business and Economics; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Ledro, C.; Nosella, A.; Vinelli, A. Artificial intelligence in customer relationship management: Literature review and future research directions. J. Bus. Ind. Mark. 2022, 37, 48–63. [Google Scholar] [CrossRef]
- Guerola-Navarro, V.; Gil-Gomez, H.; Oltra-Badenes, R.; Soto-Acosta, P. Customer relationship management and its impact on entrepreneurial marketing: A literature review. Int. Entrep. Manag. J. 2024, 20, 507–547. [Google Scholar] [CrossRef]
- Ascarza, E. Retention Futility: Targeting High-Risk Customers Might be Ineffective. J. Mark. Res. 2018, 55, 80–98. [Google Scholar] [CrossRef]
- Hassani, H.; Huang, X.; Silva, E. Digitalisation and Big Data Mining in Banking. Big Data Cogn. Comput. 2018, 2, 18. [Google Scholar] [CrossRef]
- Fang, K.; Jiang, Y.; Song, M. Customer profitability forecasting using Big Data analytics: A case study of the insurance industry. Comput. Ind. Eng. 2016, 101, 554–564. [Google Scholar] [CrossRef]
- Probst, P.; Wright, M.N.; Boulesteix, A. Hyperparameters and tuning strategies for random forest. WIREs Data Min. Knowl. Discov. 2019, 9, e1301. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Verbeke, W.; Martens, D.; Baesens, B. Social network analysis for customer churn prediction. Appl. Soft Comput. 2014, 14, 431–446. [Google Scholar] [CrossRef]
- Natekin, A.; Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobot. 2013, 7. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.W.; Chang, C.C.; Lin, C.J. A Practical Guide to Support Vector Classification; Technical Report; Department of Computer Science, National Taiwan University: Taipei, Taiwan, 2003. [Google Scholar]
- Sharma, A.; Kumar Panigrahi, P. A Review of Financial Accounting Fraud Detection based on Data Mining Techniques. Int. J. Comput. Appl. 2012, 39, 37–47. [Google Scholar] [CrossRef]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gunasekaran, A.; Sharma, R. Analysis of the driving and dependence power of barriers to adopt industry 4.0 in Indian manufacturing industry. Comput. Ind. 2018, 101, 107–119. [Google Scholar] [CrossRef]
- Moussa, A.; Aoulmi, Z. Improving Electric Vehicle Maintenance by Advanced Prediction of Failure Modes Using Machine Learning Classifications. Eksploat. I Niezawodn.—Maint. Reliab. 2025, 27, 201372. [Google Scholar] [CrossRef]
- Ghodake, S.P.; Malkar, V.R.; Santosh, K.; Jabasheela, L.; Abdufattokhov, S.; Gopi, A. Enhancing Supply Chain Management Efficiency: A Data-Driven Approach using Predictive Analytics and Machine Learning Algorithms. Int. J. Adv. Comput. Sci. Appl. 2024, 15, 672–686. [Google Scholar] [CrossRef]
- Adamiak, B.; Andrych-Zalewska, M.; Merkisz, J.; Chłopek, Z. The uniqueness of pollutant emission and fuel consumption test results for road vehicles tested on a chassis dynamometer. Eksploat. I Niezawodn.—Maint. Reliab. 2024, 27, 195747. [Google Scholar] [CrossRef]
- Cherif, I.L.; Kortebi, A. On using eXtreme Gradient Boosting (XGBoost) Machine Learning algorithm for Home Network Traffic Classification. In Proceedings of the IEEE 2019 Wireless Days (WD), Manchester, UK, 24–26 April 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Nahid, A.A.; Abbas, R. Effective Intrusion Detection System Using XGBoost. Information 2018, 9, 149. [Google Scholar] [CrossRef]
- Fatima, S.; Hussain, A.; Amir, S.B.; Awan, M.G.Z.; Ahmed, S.H.; Aslam, S.M.H. XGBoost and Random Forest Algorithms: An in Depth Analysis. Pak. J. Sci. Res. 2023, 3, 26–31. [Google Scholar] [CrossRef]
- Imani, M.; Beikmohammadi, A.; Arabnia, H.R. Comprehensive Analysis of Random Forest and XGBoost Performance with SMOTE, ADASYN, and GNUS Under Varying Imbalance Levels. Technologies 2025, 13, 88. [Google Scholar] [CrossRef]
- Couronné, R.; Probst, P.; Boulesteix, A.L. Random forest versus logistic regression: A large-scale benchmark experiment. BMC Bioinform. 2018, 19, 270. [Google Scholar] [CrossRef]
- Airlangga, G. Comparative Study of XGBoost, Random Forest, and Logistic Regression Models for Predicting Customer Interest in Vehicle Insurance. Sinkron 2024, 8, 2542–2549. [Google Scholar] [CrossRef]





| Sub-Division | Reference | Topic/Contribution | 
|---|---|---|
| Digital transformation, data analytics, and machine learning in general | [24,34,43,45] | - Application of data mining techniques in CRM - Machine learning and human capital in decision-making - Predicting customer purchase behavior in automotive industry using XGBoost - Big data analytics in healthcare | 
| Customer relationship management and predictive analytics | [24,47,50,51,52] | - CRM: Concept, strategy, and tools - Retention futility: Targeting high-risk customers - Digitalization and big data mining in banking - Managing customer profitability in the era of big data | 
| Machine learning in sales forecasting | [43,53,54,55,56,57] | - Hyperparameters and tuning strategies for Random Forest - XGBoost: A scalable tree boosting system - Random Forests - Social network analysis for customer churn prediction - Gradient boosting machine tutorial - Predictive analytics using advanced boosting methods | 
| Model evaluation in predictive sales | [60,61] | - Performance measures for classification tasks - Advanced manufacturing technology adoption in automotives | 
| Applications in the automotive industry | [43,50,51,52,61] | - Applications of big data in the automotive industry - Customer profitability analytics in automotives - Predictive customer retention in automotives - Advanced manufacturing and digital transformation in automotives - Automotive industry adoption of predictive analytics and machine learning | 
| Model | Accuracy | Kappa | Sensitivity | Specificity | F1-Score | AUC | Balanced Accuracy | 
|---|---|---|---|---|---|---|---|
| Random Forest | 0.8431 | 0.6250 | 0.8462 | 0.8421 | 0.7333 | 0.8968 | 0.8441 | 
| GBM | 0.7843 | 0.4960 | 0.7692 | 0.7895 | 0.6452 | 0.8623 | 0.7794 | 
| SVM(RBF) | 0.8039 | 0.4560 | 0.5385 | 0.8947 | 0.5833 | 0.7955 | 0.7166 | 
| XGBoost | 0.7255 | 0.3120 | 0.5385 | 0.7895 | 0.5000 | 0.7996 | 0.6640 | 
| Logistic regression | 0.6792 | 0.1210 | 0.2667 | 0.8421 | 0.5544 | 0.3200 | 0.7439 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazur, M.; Stopka, O.; Stopková, M.; Hanzl, J.; Borucka, A.; Czerniak, R. Assessing the Success of Automotive Sales Transactions Using Selected Machine Learning Algorithms. Appl. Sci. 2025, 15, 11562. https://doi.org/10.3390/app152111562
Mazur M, Stopka O, Stopková M, Hanzl J, Borucka A, Czerniak R. Assessing the Success of Automotive Sales Transactions Using Selected Machine Learning Algorithms. Applied Sciences. 2025; 15(21):11562. https://doi.org/10.3390/app152111562
Chicago/Turabian StyleMazur, Mateusz, Ondrej Stopka, Mária Stopková, Jiří Hanzl, Anna Borucka, and Robert Czerniak. 2025. "Assessing the Success of Automotive Sales Transactions Using Selected Machine Learning Algorithms" Applied Sciences 15, no. 21: 11562. https://doi.org/10.3390/app152111562
APA StyleMazur, M., Stopka, O., Stopková, M., Hanzl, J., Borucka, A., & Czerniak, R. (2025). Assessing the Success of Automotive Sales Transactions Using Selected Machine Learning Algorithms. Applied Sciences, 15(21), 11562. https://doi.org/10.3390/app152111562
 
        



 
       