Assessment of Effectiveness of Organic and Mineral Sorbents for In Situ Stabilisation of Petrol-Contaminated Soils: Effect on Trace Element Bioaccumulation in Oats (Avena sativa L.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment Design
2.2. Analytical Methodologies
2.3. Statistical Methods
3. Results
3.1. Trace Elements in Plants
3.2. Relations Between Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adipah, S. Introduction of petroleum hydrocarbons contaminants and its human effects. J. Environ. Sci. Public Health 2019, 3, 1–9. [Google Scholar] [CrossRef]
- Patel, A.B.; Shaikh, S.; Jain, K.R.; Desai, C.; Madamwar, D. Polycyclic Aromatic Hydrocarbons: Sources, toxicity, and remediation approaches. Front. Microbiol. 2020, 11, 62813. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Chebbi, A.; Formicola, F.; Prasad, S.; Gomez, F.H.; Franzetti, A.; Vaccari, M. Remediation of soil polluted with petroleum hydrocarbons and its reuse for agriculture: Recent progress, challenges, and perspectives. Chemosphere 2022, 293, 133572. [Google Scholar] [CrossRef] [PubMed]
- Ghahri, A.; Seydi, P.; Ranjbar, A.; Hatami, H.; Beheshti, T.; Seydi, E. Evaluation of exposure to volatile organic compounds (BTEX) and Polycyclic Aromatic Hydrocarbons (PAHs) in gas station workers and oxidative stress assessment in Karaj City. Toxicol. Rep. 2024, 13, 101767. [Google Scholar] [CrossRef] [PubMed]
- Haghollahi, A.; Fazaelipoor, M.H.; Schaffie, M. The effect of soil type on the bioremediation of petroleum contaminated soils. J. Environ. Manag. 2016, 180, 197–201. [Google Scholar] [CrossRef]
- Das, N.; Bhuyan, B.; Pandey, P. Correlation of soil microbiome with crude oil contamination drives detection of hydrocarbon degrading genes which are independent to quantity and type of contaminants. Environ. Res. 2022, 215, 114185. [Google Scholar] [CrossRef] [PubMed]
- Sui, X.; Wang, X.; Li, Y.; Ji, H. Remediation of petroleum-contaminated soils with microbial and microbial combined methods: Advances, mechanisms, and challenges. Sustainability 2021, 13, 9267. [Google Scholar] [CrossRef]
- Gao, H.; Wu, M.; Liu, H.; Xu, Y.; Liu, Z. Effect of petroleum hydrocarbon pollution levels on the soil microecosystem and ecological function. Environ. Pollut. 2022, 293, 118511. [Google Scholar] [CrossRef]
- Zahermand, S.; Vafaeian, M.; Bazyar, M.H. Analysis of the physical and chemical properties of soil contaminated with oil (petroleum) hydrocarbons. Earth Sci. Res. J. 2020, 24, 163–168. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, L.; Zhang, X. Bioremediation of petroleum hydrocarbon-contaminated soil by petroleum-degrading bacteria immobilized on biochar. RSC Adv. 2019, 9, 35304–35311. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J.; Zaborowska, M.; Kucharski, J. Regulation of the microbiome in soil contaminated with diesel oil and gasoline. Int. J. Mol. Sci. 2025, 26, 6491. [Google Scholar] [CrossRef] [PubMed]
- Stepanova, A.Y.; Gladkov, E.A.; Osipova, E.S.; Gladkova, O.V.; Tereshonok, D.V. Bioremediation of soil from petroleum contamination. Processes 2022, 10, 1224. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Kordala, N. Trace element contents in petrol-contaminated soil following the application of compost and mineral materials. Materials 2022, 15, 5233. [Google Scholar] [CrossRef]
- Gospodarek, J.; Rusin, M.; Kandziora-Ciupa, M.; Nadgórska-Socha, A. The subsequent effects of soil pollution by petroleum products and its bioremediation on the antioxidant response and content of elements in Vicia faba plants. Energies 2021, 14, 7748. [Google Scholar] [CrossRef]
- Neina, D. The role of soil pH in plant nutrition and soil remediation. Appl. Environ. Soil Sci. 2019, 2019, 5794869. [Google Scholar] [CrossRef]
- Antoniadis, V.; Levizou, E.; Shaheen, S.M.; Ok, Y.S.; Sebastian, A.; Baum, C.; Prasad, M.N.V.; Wenzel, W.W.; Rinklebe, J. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation—A review. Earth-Sci. Rev. 2017, 171, 621–645. [Google Scholar] [CrossRef]
- Cheraghi, M.; Sobhan, A.S.; Lorestani, B.; Merrikhpour, H.; Parvizimosaed, H. Biochemical and physical characterization of petroleum hydrocarbon contaminated soils in Tehran. J. Chem. Health Risks 2015, 5, 199–208. [Google Scholar] [CrossRef]
- Iwegbue, C.M.A. Assessment of heavy metal speciation in soils impacted with crude oil in the Niger Delta, Nigeria. Chem. Speciat. Bioavailab. 2011, 23, 7–15. [Google Scholar] [CrossRef]
- Zhu, H.; Gao, Y.; Li, D. Germination of grass species in soil affected by crude oil contamination. Int. J. Phytorem. 2018, 20, 567–573. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Borowik, A.; Zaborowska, M.; Kucharski, J. Revitalization of soil contaminated by petroleum products using materials that improve the physicochemical and biochemical properties of the soil. Molecules 2024, 29, 5838. [Google Scholar] [CrossRef]
- Ekundayo, E.; Emede, T.; Osayande, D. Effects of crude oil spillage on growth and yield of maize (Zea mays L.) in soils of midwestern Nigeria. Plant Foods Hum. Nutr. 2001, 56, 313–324. [Google Scholar] [CrossRef]
- Haider, F.U.; Ejaz, M.; Cheema, S.A.; Khan, M.I.; Zhao, B.; Liqun, C.; Salim, M.A.; Naveed, M.; Khan, N.; Núñez-Delgado, A.; et al. Phytotoxicity of petroleum hydrocarbons: Sources, impacts and remediation strategies. Environ. Res. 2021, 197, 111031. [Google Scholar] [CrossRef] [PubMed]
- Krzyszczak, A.; Dybowski, M.; Jośko, I.; Kusiak, M.; Sikora, M.; Czech, B. The antioxidant defense responses of Hordeum vulgare L. to polycyclic aromatic hydrocarbons and their derivatives in biochar-amended soil. Environ. Pollut. 2022, 294, 118664. [Google Scholar] [CrossRef] [PubMed]
- Olaranont, Y.; Stewart, A.B.; Traiperm, P. Physiological and anatomical responses of a common beach grass to crude oil pollution. Environ. Sci. Pollut. Res. 2018, 25, 28075–28085. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowski, P.; Małuszyńska, I.; Małuszyński, M.J.; Pawluśkiewicz, B.; Gnatowski, T.; Baczewska-Dąbrowska, A.H.; Kalaji, H.M. Photosynthetic efficiency of plants as an indicator of tolerance to petroleum-contaminated soils. Sustainability 2024, 16, 10811. [Google Scholar] [CrossRef]
- da Silva Correa, H.; Blum, C.T.; Galvão, F.; Maranho, L.T. Effects of oil contamination on plant growth and development: A review. Environ. Sci. Pollut. Res. 2022, 29, 43501–43515. [Google Scholar] [CrossRef]
- Devatha, C.P.; Vishnu Vishal, A.; Purna Chandra Rao, J. Investigation of physical and chemical characteristics on soil due to crude oil contamination and its remediation. Appl. Water Sci. 2019, 9, 89. [Google Scholar] [CrossRef]
- Adamczyk-Szabela, D.; Wolf, W.M. The impact of soil pH on heavy metals uptake and photosynthesis efficiency in Melissa officinalis, Taraxacum officinalis, Ocimum basilicum. Molecules 2022, 27, 4671. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Kordala, N. Importance of compost, bentonite, and calcium oxide in reducing trace element content in maize on agricultural soil contaminated with diesel oil. Agriculture 2023, 13, 1948. [Google Scholar] [CrossRef]
- Gospodarek, J.; Rusin, M.; Nadgórska-Socha, A. The long-term effect of petroleum-derived substances and their bioremediation on the host plant (Vicia faba L.) and a herbivore (Sitona spp.). Agronomy 2020, 10, 1066. [Google Scholar] [CrossRef]
- Li, C.; Zhou, K.; Qin, W.; Tian, C.; Qi, M.; Yan, X.; Han, W. A Review on heavy metals contamination in soil: Effects, sources, and remediation techniques. Soil Sediment. Contam. Int. J. 2019, 28, 380–394. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, F.; Xing, X.; Peng, J.; Wang, J.; Ji, M.; Li, B.L. A review on remediation technology and the remediation evaluation of heavy metal-contaminated soils. Toxics 2024, 12, 897. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, S.; Rinklebe, J.; Selim, M. Impact of various amendments on immobilization and phytoavailability of nickel and zinc in a contaminated floodplain soil. Int. J. Environ. Sci. Technol. 2015, 12, 2765–2776. [Google Scholar] [CrossRef]
- Sánchez-Castro, I.; Molina, L.; Prieto-Fernández, M.Á.; Segura, A. Past, present and future trends in the remediation of heavy-metal contaminated soil—Remediation techniques applied in real soil-contamination events. Heliyon 2023, 9, e16692. [Google Scholar] [CrossRef]
- Vouillamoz, J.; Milke, M.W. Effect of compost in phytoremediation of diesel-contaminated soils. Water Sci. Technol. 2001, 43, 291–295. [Google Scholar] [CrossRef]
- Henderson, S.C.; Dhar, A.; Naeth, M.A. Reclamation of hydrocarbon contaminated soils using soil amendments and native plant species. Resources 2023, 12, 130. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.W.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Ok, Y.S. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef]
- Muslim, W.A.; Al-Nasri, S.K.; Albayati, T.M.; Salih, I.K. Investigation of bentonite clay minerals as a natural adsorbents for Cs-137 real radioactive wastewater treatment. Desalin. Water Treat. 2024, 317, 100121. [Google Scholar] [CrossRef]
- Krupskaya, V.; Zakusin, S.; Zakusina, O.; Belousov, P.; Pokidko, B.; Morozov, I.; Zaitseva, T.; Tyupina, E.; Koroleva, T. On the question of finding relationship between structural features of smectites and adsorption and surface properties of bentonites. Minerals 2025, 15, 30. [Google Scholar] [CrossRef]
- Park, J.H.; Shin, H.J.; Kim, M.H.; Kim, J.S.; Kang, N.; Lee, J.Y.; Kim, K.T.; Lee, J.I.; Kim, D.D. Application of montmorillonite in bentonite as a pharmaceutical excipient in drug delivery systems. J. Pharm. Investig. 2016, 46, 363–375. [Google Scholar] [CrossRef]
- Kumararaja, P.; Shabeer, T.A.; Manjaiah, K.M. Effect of bentonite on heavy metal uptake by amaranth (Amaranthus blitum cv. Pusa Kirti) grown on metal contaminated soil. Horti. Soc. Ind. 2016, 73, 224–228. [Google Scholar] [CrossRef]
- Qv, M.; Bao, J.; Wang, W.; Dai, D.; Wu, Q.; Li, S.; Zhu, L. Bentonite addition enhances the biodegradation of petroleum pollutants and bacterial community succession during the aerobic co-composting of waste heavy oil with agricultural wastes. J. Hazard. Mater. 2024, 462, 132655. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Z.; Xie, H. Preparation, characterization and intercalation mechanism of bentonite modified with different organic ammonium. Chem. Eng. Sci. 2025, 301, 120758. [Google Scholar] [CrossRef]
- Song, Y.; Li, H.; Gan, X.; Zhang, M.; Xue, M.; Li, J. Comparative experimental study on calcium oxide, calcium hydroxide, and calcium carbonate solidified zinc-contaminated Red Clay. Geofluids 2022, 2022, 8428982. [Google Scholar] [CrossRef]
- Becerra-Agudelo, E.; López, J.E.; Betancur-García, H.; Carbal-Guerra, J.; Torres-Hernández, M.; Saldarriaga, J.F. Assessment of the application of two amendments (lime and biochar) on the acidification and bioavailability of Ni in a Ni-contaminated agricultural soils of northern Colombia. Heliyon 2022, 8, e10221. [Google Scholar] [CrossRef]
- Taraqqi-A-Kamal, A.; Atkinson, C.J.; Khan, A.; Zhang, K.; Sun, P.; Akther, S.; Zhang, Y. Biochar remediation of soil: Linking biochar production with function in heavy metal contaminated soils. Plant Soil Environ. 2021, 67, 183–201. [Google Scholar] [CrossRef]
- Gascó, G.; Álvarez, M.L.; Paz-Ferreiro, J.; Méndez, A. Combining phytoextraction by Brassica napus and biochar amendment for the remediation of a mining soil in Riotinto (Spain). Chemosphere 2019, 231, 562–570. [Google Scholar] [CrossRef]
- Mazzurco-Miritana, V.; Passatore, L.; Zacchini, M.; Pietrini, F.; Peruzzi, E.; Carloni, S.; Rolando, L.; Garbini, G.L.; Caracciolo, A.B.; Silvani, V.; et al. Promoting the remediation of contaminated soils using biochar in combination with bioaugmentation and phytoremediation techniques. Sci. Rep. 2025, 15, 11231. [Google Scholar] [CrossRef]
- Viana, R.S.R.; Chagas, J.K.M.; Paz-Ferreiro, J.; de Figueiredo, C.C. Enhanced remediation of heavy metal-contaminated soils using biochar and zeolite combinations with additives: A meta-analysis. Environ. Pollut. 2024, 367, 125617. [Google Scholar] [CrossRef]
- Xia, M.; Xu, K.; Zhang, S.; Zhang, C.; Wang, X.; Li, J. Insights into the low-temperature rapid catalytic pyrolysis and remediation mechanism of weathered petroleum-contaminated saline-alkali soil using Beta zeolite. Environ. Res. 2024, 263, 120266. [Google Scholar] [CrossRef]
- Radziemska, M.; Mazur, Z. Content of selected heavy metals in Ni-contaminated soil following the application of halloysite and zeolite. J. Ecol. Eng. 2016, 17, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Guo, H. Volatile Organic Compounds (VOCs) emitted from petroleum and their influence on photochemical smog formation in the atmosphere. J. Pet. Environ. Biotechnol. 2012, 3, e104. [Google Scholar] [CrossRef]
- Yanxun, S.; Yani, W.; Hui, Q.; Yuan, F. Analysis of the groundwater and soil pollution by oil leakage. Procedia Environ. Sci. 2011, 11, 939–944. [Google Scholar] [CrossRef]
- Montaño-López, F.; Biswas, A. Are heavy metals in urban garden soils linked to vulnerable populations? A case study from Guelph, Canada. Sci. Rep. 2021, 11, 11286. [Google Scholar] [CrossRef]
- Oloruntoba, A.; Omoniyi, A.O.; Shittu, Z.A.; Ajala, R.O.; Kolawole, S.A. Heavy metal contamination in soils, water, and food in Nigeria from 2000–2019: A systematic review on methods, pollution level and policy implications. Water Air Soil Poll. 2024, 235, 586. [Google Scholar] [CrossRef]
- Panagos, P.; Jones, A.; Lugato, E.; Ballabio, C. A Soil monitoring law for Europe. Glob. Chall. 2025, 9, 2400336. [Google Scholar] [CrossRef]
- Akasa, L.U. Trends of oat production area, productivity and utilization status in Ethiopia. Am. J. Biosci. Bioinforma. 2023, 2, 14–19. [Google Scholar] [CrossRef]
- Tobiasz-Salach, R.; Stadnik, B.; Bajcar, M. Oat as a potential source of energy. Energies 2023, 16, 6019. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources; International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; p. 236. Available online: https://www.isric.org/sites/default/files/WRB_fourth_edition_2022-12-18.pdf (accessed on 10 June 2025).
- Characteristics of 95 Unleaded Gasoline. 2025. Available online: https://www.orlen.pl/en/for-business/products/fuels/petrol/unleaded-95 (accessed on 22 October 2025).
- Wyszkowski, M.; Kordala, N. Mineral and organic materials as factors reducing the effect of petrol on heavy metal content in soil. Materials 2024, 17, 3528. [Google Scholar] [CrossRef]
- US-EPA Method 3051A. Microwave Assisted Acid Digestion of Sediment, Sludges, Soils, and Oils; United States Environmental Protection Agency: Washington, DC, USA, 2007; pp. 1–30. Available online: https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf (accessed on 10 June 2025).
- Carter, M.R.; Gregorich, E.G. Soil Sampling and Methods of Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008; p. 1224. [Google Scholar]
- ISO 10390; Soil Quality—Determination of pH. International Organization for Standardization: Geneva, Switzerland, 2005.
- Jaremko, D.; Kalembasa, D. A comparison of methods for the determination of cation exchange capacity of soils. Ecol. Chem. Eng. 2014, 21, 487–498. [Google Scholar] [CrossRef]
- Shimadzu Corporation. Shimadzu Analytical and Measuring Instruments. In User’s Manual; Shimadzu Corporation: Kyoto, Japan, 2016. [Google Scholar]
- Korzeniowska, J.; Stanisławska-Glubiak, E. Evaluation of the Egner–Riehm DL and Mehlich 3 tests for the determination of phosphorus: The influence of soil properties on extraction efficiency and test conversion. Agronomy 2024, 14, 2921. [Google Scholar] [CrossRef]
- Ferreira, L.S.; Oliveira, V.S.; Marchiori, J.J.P.; Ferreira, T.C.; Bernabé, A.C.B.; Boone, G.T.F.; Pereira, L.L.S.; Carriço, E. The nutrient magnesium in soil and plant: A review. Int. J. Plant Soil Sci. 2023, 35, 136–144. [Google Scholar] [CrossRef]
- TIBCO Software Inc. Statistica (Data Analysis Software System), version 13.3; TIBCO Software: Palo Alto, CA, USA, 2017. [Google Scholar]
- Elgazali, A.; Althalb, H.; Elmusrati, I.; Ahmed, H.M.; Banat, I.M. Remediation approaches to reduce hydrocarbon contamination in petroleum-polluted soil. Microorganisms 2023, 11, 2577. [Google Scholar] [CrossRef] [PubMed]
- Nuruzzaman, M.; Bahar, M.M.; Naidu, R. Diffuse soil pollution from agriculture: Impacts and remediation. Sci. Total Environ. 2025, 962, 178398. [Google Scholar] [CrossRef] [PubMed]
- Kicińska, A.; Pomykała, R.; Izquierdo-Diaz, M. Changes in soil pH and mobility of heavy metals in contaminated soils. Eur. J. Soil Sci. 2022, 73, e13203. [Google Scholar] [CrossRef]
- Arroyo, S.; Rosano-Ortega, G.; Martínez-Gallegos, S.; Pérez-Armendariz, B.; Vega-Lebrún, C.A. Reduction of hydrocarbons in contaminated soil through paired sorption and advanced oxidation processes. Soil Secur. 2021, 4, 100013. [Google Scholar] [CrossRef]
- Sharma, A.; Kapoor, D.; Wang, J.; Shahzad, B.; Kumar, V.; Bali, A.S.; Jasrotia, S.; Zheng, B.; Yuan, H.; Yan, D. Chromium bioaccumulation and its impacts on plants: An overview. Plants 2020, 9, 100. [Google Scholar] [CrossRef]
- Adesina, G.; Adelasoye, K. Effect of crude oil pollution on heavy metal contents, microbial population in soil, and maize and cowpea growth. Agric. Sci. 2014, 5, 43–50. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Kordala, N. Role of different material amendments in shaping the content of heavy metals in maize (Zea mays L.) on soil polluted with petrol. Materials 2022, 15, 2623. [Google Scholar] [CrossRef]
- Wang, C.; Guo, L.; Li, Y.; Wang, Z. Systematic comparison of C3 and C4 plants based on metabolic network analysis. BMC Syst. Biol. 2012, 6 (Suppl. S2), S9. [Google Scholar] [CrossRef]
- Rusin, M.; Gospodarek, J.; Barczyk, G.; Nadgórska-Socha, A. Antioxidant responses of Triticum aestivum plants to petroleum-derived substances. Ecotoxicology 2018, 27, 1353–1367. [Google Scholar] [CrossRef]
- Tsamos, P.; Stefanou, S.; Noli, F. Assessment of distribution of heavy metals and radionuclides in soil and plants nearby an oil refinery in northern Greece. Case Stud. Chem. Environ. Eng. 2024, 9, 100593. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Soil–plant transfer of trace elements—An environmental issue. Geoderma 2004, 122, 143–149. [Google Scholar] [CrossRef]
- Odukoya, J.; Lambert, R.; Sakrabani, R. Impact of crude oil on yield and phytochemical composition of selected green leafy vegetables. Int. J. Veg. Sci. 2019, 25, 554–570. [Google Scholar] [CrossRef]
- Gusiatin, Z.M.; Kulikowska, D. Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts. Environ. Technol. 2016, 37, 2337–2347. [Google Scholar] [CrossRef] [PubMed]
- Walker, D.J.; Clemente, R.; Bernal, M.P. Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere 2004, 57, 215–224. [Google Scholar] [CrossRef]
- Castaldi, P.; Santona, L.; Melis, P. Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth. Chemosphere 2005, 60, 365–371. [Google Scholar] [CrossRef]
- Medyńska-Juraszek, A.; Bednik, M.; Chohura, P. Assessing the influence of compost and biochar amendments on the mobility and uptake of heavy metals by green leafy vegetables. Int. J. Environ. Res. Public Health 2020, 17, 7861. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, L.; Zhang, J.; Ren, L.; Zhou, Y.; Zheng, Y.; Luo, L.; Yang, Y.; Huang, H.; Chen, A. Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. Sci. Total Environ. 2020, 701, 134751. [Google Scholar] [CrossRef]
- Shrestha, P.; Bellitürk, K.; Görres, J.H. Phytoremediation of heavy metal-contaminated soil by switchgrass: A comparative study utilizing different composts and coir fiber on pollution remediation, plant productivity, and nutrient leaching. Int. J. Environ. Res. Public Health 2019, 16, 1261. [Google Scholar] [CrossRef]
- Sun, R.; Fu, M.; Ma, L.; Zhou, Y.; Li, Q. Iron reduction in composting environment synergized with quinone redox cycling drives humification and free radical production from humic substances. Bioresour. Technol. 2023, 384, 129341. [Google Scholar] [CrossRef]
- Huang, M.; Zhu, Y.; Li, Z.; Huang, B.; Luo, N.; Liu, C.; Zeng, G. Compost as a Soil Amendment to Remediate Heavy Metal-Contaminated Agricultural Soil: Mechanisms, Efficacy, Problems, and Strategies. Water Air Soil Pollut. 2016, 227, 359. [Google Scholar] [CrossRef]
- Cui, D.; Tan, W.; Yue, D.; Yu, H.; Dang, Q.; Xi, B. Reduction capacity of humic acid and its association with the evolution of redox structures during composting. Waste Manag. 2022, 153, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Gai, S.; Cheng, K.; Yang, F. Roles of humic substances redox activity on environmental remediation. J. Hazard. Mater. 2022, 435, 129070. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Guo, X.; Wu, J.; Chen, K. Effect of compost amendment and bioaugmentation on PAH degradation and microbial community shifting in petroleum-contaminated soil. Chemosphere 2020, 256, 126998. [Google Scholar] [CrossRef]
- Wasilkowski, D.; Nowak, A.; Michalska, J.; Mrozik, A. Ecological restoration of heavy metal-contaminated soil using Na-bentonite and green compost coupled with the cultivation of the grass Festuca arundinacea. Ecol. Eng. 2019, 138, 420–433. [Google Scholar] [CrossRef]
- Nie, X.; Huang, X.; Li, M.; Lu, Z.; Ling, X. Advances in soil amendments for remediation of heavy metal-contaminated soils: Mechanisms, impact, and future prospects. Toxics 2024, 12, 872. [Google Scholar] [CrossRef]
- Klik, B.; Holatko, J.; Jaskulska, I.; Gusiatin, M.Z.; Hammerschmiedt, T.; Brtnicky, M.; Liniauskienė, E.; Baltazar, T.; Jaskulski, D.; Kintl, A.; et al. Bentonite as a functional material enhancing phytostabilization of post-industrial contaminated soils with heavy metals. Materials 2022, 15, 8331. [Google Scholar] [CrossRef]
- Zhang, D.; Ding, A.; Li, T.; Wu, X.; Liu, Y.; Naidu, R. Immobilization of Cd and Pb in a contaminated acidic soil amended with hydroxyapatite, bentonite, and biochar. J. Soils Sediments 2021, 21, 2262–2272. [Google Scholar] [CrossRef]
- Eleraky, M.I.; Razek, T.M.A.; Hasani, I.W.; Fahim, Y.A. Adsorptive removal of lead, copper, and nickel using natural and activated Egyptian calcium bentonite clay. Sci. Rep. 2025, 15, 13050. [Google Scholar] [CrossRef]
- Schifano, V.; MacLeod, C.; Hadlow, N.; Dudeney, R. Evaluation of quicklime mixing for the remediation of petroleum contaminated soils. J. Hazard. Mater. 2007, 141, 395–409. [Google Scholar] [CrossRef]
- Lim, J.E.; Ahmad, M.; Usman, A.R.A.; Lee, S.S.; Jeon, W.-T.; Oh, S.-E.; Yang, J.W.; Ok, Y.S. Effects of natural and calcined poultry waste on Cd, Pb and As mobility in contaminated soil. Environ. Earth Sci. 2013, 69, 11–20. [Google Scholar] [CrossRef]
- Xiang, Z.; Gao, H.; Yan, H.; Li, Y.; Diao, Z.; Zhang, E.; Li, C.; Cao, Y. Study on the treatment of nickel-contaminated soil using calcium oxide. Water Air Soil Pollut. 2020, 231, 188. [Google Scholar] [CrossRef]
- Lahori, A.H.; Zhang, Z.; Guo, Z.; Mahar, A.; Li, R.; Awasthi, M.K.; Sial, T.A.; Kumbhar, F.; Wang, P.; Shen, F.; et al. Potential use of lime combined with additives on (im)mobilization and phytoavailability of heavy metals from Pb/Zn smelter contaminated soils. Ecotoxicol. Environ. Saf. 2017, 145, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Wu, Y.; Liang, P.; Song, Q.; Zhang, H.; Wu, J.; Wu, W.; Liu, X.; Dong, C. Alkaline amendments improve the health of soils degraded by metal contamination and acidification: Crop performance and soil bacterial community responses. Chemosphere 2020, 257, 127309. [Google Scholar] [CrossRef] [PubMed]
- Wyszkowski, M.; Ziółkowska, A. Effect of compost, bentonite and calcium oxide on content of some macroelements in plants from soil contaminated by petrol and diesel oil. J. Elem. 2009, 14, 405–418. [Google Scholar] [CrossRef]
- Bradl, H.B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid. Interface Sci. 2004, 277, 1–18. [Google Scholar] [CrossRef]
- Tang, X.; Li, X.; Liu, X.; Hashmi, M.Z.; Xu, J.; Brookes, P.C. Effects of inorganic and organic amendments on the uptake of lead and trace elements by Brassica chinensis grown in an acidic red soil. Chemosphere 2015, 119, 177–183. [Google Scholar] [CrossRef]
- Violante, A.; Cozzolino, V.; Perelomov, L.; Caporale, A.G.; Pigna, M. Mobility and bioavailability of heavy metals and metalloids in soil environments. J. Soil. Sci. Plant Nutr. 2010, 10, 268–292. [Google Scholar] [CrossRef]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of heavy metal(loid)s contaminated soils—To mobilize or to immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef]
- Król, A.; Mizerna, K.; Bożym, M. An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag. J. Hazard. Mater. 2020, 384, 121502. [Google Scholar] [CrossRef] [PubMed]
- Cappuyns, V.; Alian, V.; Vassilieva, E.; Swennen, R. pH Dependent leaching behavior of Zn, Cd, Pb, Cu and as from mining wastes and slags: Kinetics and mineralogical control. Waste Biomass Valor. 2014, 5, 355–368. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Borowik, A.; Zaborowska, M.; Kucharski, J. The potential for restoring the activity of oxidoreductases and hydrolases in soil contaminated with petroleum products using perlite and dolomite. Appl. Sci. 2024, 14, 3591. [Google Scholar] [CrossRef]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions, 2nd ed.; Wiley: New York, NY, USA, 1994. [Google Scholar]
- Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—A review. Waste Manag. 2008, 28, 215–225. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Xin, Y.; Huang, T.; Liu, J. Petroleum pollution affects soil chemistry and reshapes the diversity and networks of microbial communities. Ecotoxicol. Environ. Saf. 2022, 246, 114129. [Google Scholar] [CrossRef]




| Element | Cd | Pb | Cr | Ni | Zn | Cu | Mn | Fe | Co |
|---|---|---|---|---|---|---|---|---|---|
| Soil | 0.22 | 15.63 | 13.42 | 14.78 | 29.16 | 2.69 | 253.6 | 8256 | 3.44 |
| Compost | 0.06 | 1.86 | 1.24 | 0.49 | 32.86 | 39.56 | 54.4 | 229 | 0.49 |
| Bentonite | 0.30 | 9.78 | 2.82 | 2.44 | 14.44 | 12.92 | 147.5 | 4236 | 0.30 |
| CaO | 3.49 | 2.92 | 3.36 | 3.54 | 4.36 | 2.28 | 158.3 | 424 | 1.73 |
| Petrol Dose (cm3 kg−1 d.m. of Soil) | Amendments | Average | |||
|---|---|---|---|---|---|
| Without Amendments | Compost | Bentonite | CaO | ||
| 0 | 13.08 ± 0.33 d | 13.04 ± 0.35 d | 12.07 ± 0.24 d | 13.63 ± 0.29 d | 9.69 A |
| 2.5 | 11.72 ± 0.25 bc | 12.35 ± 0.25 c | 11.71 ± 0.27 bc | 12.94 ± 0.28 c | 12.52 D |
| 5 | 10.74 ± 0.25 b | 11.53 ± 0.28 bc | 11.29 ± 0.15 bc | 12.31 ± 0.18 c | 11.71 C |
| 10 | 7.34 ± 0.11 a | 10.54 ± 0.19 b | 9.62 ± 0.14 ab | 12.12 ± 0.21 c | 10.75 B |
| Average | 10.72 A | 11.87 C | 11.17 AB | 12.75 D | 11.17 |
| F for | petrol dose—937.43, p < 0.01; amendments—41.35, p < 0.01; interaction—48.74, p < 0.01 | ||||
| r | −0.995 * | −0.993 * | −0.980 * | −0.919 * | 0.124 |
| Petrol Dose (cm3 kg−1 d.m. of Soil) | Amendments | Average | |||
|---|---|---|---|---|---|
| Without Amendments | Compost | Bentonite | CaO | ||
| Cadmium (Cd) | |||||
| 0 | 0.165 ± 0.14 b | 0.110 ± 0.04 a | 0.110 ± 0.04 a | 0.105 ± 0.07 a | 0.123 A |
| 2.5 | 0.185 ± 0.07 bc | 0.125 ± 0.07 a | 0.115 ± 0.07 a | 0.115 ± 0.07 a | 0.135 B |
| 5 | 0.215 ± 0.10 cd | 0.110 ± 0.14 a | 0.125 ± 0.07 a | 0.120 ± 0.07 a | 0.143 B |
| 10 | 0.225 ± 0.07 d | 0.105 ± 0.07 a | 0.115 ± 0.07 a | 0.130 ± 0.10 a | 0.144 B |
| Average | 0.198 B | 0.113 A | 0.116 A | 0.118 A | 0.136 |
| F for | petrol dose—10.59, p < 0.01; amendments—187.99, p < 0.01; interaction—5.57, p < 0.01 | ||||
| r | 0.939 * | −0.507 | 0.349 | 0.984 * | 0.869 * |
| Lead (Pb) | |||||
| 0 | 0.849 ± 0.028 b | 0.496 ± 0.007 a | 1.501 ± 0.006 e | 1.500 ± 0.029 e | 1.087 A |
| 2.5 | 1.134 ± 0.040 cd | 0.812 ± 0.030 b | 1.786 ± 0.011 f | 1.706 ± 0.010 f | 1.360 B |
| 5 | 1.400 ± 0.010 e | 1.065 ± 0.033 c | 1.090 ± 0.036 c | 2.047 ± 0.020 g | 1.401 B |
| 10 | 1.317 ± 0.007 de | 1.359 ± 0.007 e | 1.013 ± 0.026 bc | 2.291 ± 0.032 h | 1.495 C |
| Average | 1.175 B | 0.933 A | 1.348 C | 1.886 D | 1.335 |
| F for | petrol dose—95.91, p < 0.01; amendments—509.37, p < 0.01; interaction—84.68, p < 0.01 | ||||
| r | 0.781 * | 0.982 * | −0.762 * | 0.977 * | 0.883 * |
| Chromium (Cr) | |||||
| 0 | 4.952 ± 0.070 a–d | 3.440 ± 0.085 a | 5.274 ± 0.091 a–d | 5.960 ± 0.025 c–e | 4.907 A |
| 2.5 | 6.363 ± 0.098 c–e | 3.835 ± 0.047 ab | 5.814 ± 0.086 b–e | 5.974 ± 0.035 c–e | 5.497 A |
| 5 | 8.394 ± 0.079 fg | 4.390 ± 0.059 a–c | 6.404 ± 0.097 d–f | 5.982 ± 0.032 c–e | 6.293 B |
| 10 | 10.266 ± 0.120 g | 4.535 ± 0.049 a–d | 7.289 ± 0.085 ef | 6.042 ± 0.071 c–e | 7.033 C |
| Average | 7.494 C | 4.050 A | 6.195 B | 5.990 B | 5.932 |
| F for | petrol dose—27.53, p < 0.01; amendments—64.50, p < 0.01; interaction—7.91, p < 0.01 | ||||
| r | 0.987 * | 0.927 * | 0.998 * | 0.969 * | 0.986 * |
| Nickel (Ni) | |||||
| 0 | 1.505 ± 0.018 a | 1.423 ± 0.021 a | 3.278 ± 0.015 e | 4.410 ± 0.018 f–h | 2.654 A |
| 2.5 | 1.610 ± 0.021 a | 2.531 ± 0.028 cd | 4.176 ± 0.018 fg | 4.725 ± 0.018 g–i | 3.261 B |
| 5 | 1.913 ± 0.025 ab | 3.056 ± 0.031 de | 3.931 ± 0.015 f | 4.818 ± 0.016 hi | 3.430 C |
| 10 | 2.275 ± 0.028 bc | 2.963 ± 0.018 de | 3.908 ± 0.025 f | 5.039 ± 0.038 i | 3.546 D |
| Average | 1.826 A | 2.493 B | 3.823 BC | 4.748 C | 3.223 |
| F for | petrol dose—57.05, p < 0.01; amendments—624.65, p < 0.01; interaction—8.04, p < 0.01 | ||||
| r | 0.991 * | 0.792 * | 0.462 | 0.958 * | 0.859 * |
| Zinc (Zn) | |||||
| 0 | 10.27 ± 0.08 ab | 10.21 ± 0.10 a | 11.07 ± 0.07 a–c | 14.02 ± 0.08 d–g | 11.39 A |
| 2.5 | 11.35 ± 0.09 a–c | 12.16 ± 0.04 b–d | 14.34 ± 0.08 fg | 14.46 ± 0.08 g | 13.08 A |
| 5 | 13.73 ± 0.10 d–g | 14.26 ± 0.06 e–g | 12.37 ± 0.05 c–e | 12.80 ± 0.07 c–g | 13.29 A |
| 10 | 12.27 ± 0.09 cd | 12.44 ± 0.08 c–f | 11.30 ± 0.07 a–c | 11.77 ± 0.11 a–c | 11.95 B |
| Average | 11.91 A | 12.27 B | 12.27 B | 13.26 A | 12.43 |
| F for | petrol dose—28.63, p < 0.01; amendments—11.81, p < 0.01; interaction—15.44, p < 0.01 | ||||
| r | 0.607 | 0.538 | −0.211 | −0.913 * | 0.098 |
| Petrol Dose (cm3 kg−1 d.m. of Soil) | Amendments | Average | |||
|---|---|---|---|---|---|
| Without Amendments | Compost | Bentonite | CaO | ||
| Copper (Cu) | |||||
| 0 | 6.916 ± 0.018 f | 7.516 ± 0.040 f | 7.333 ± 0.047 f | 4.400 ± 0.084 cd | 6.541 C |
| 2.5 | 6.733 ± 0.018 ef | 6.966 ± 0.024 f | 7.233 ± 0.094 f | 3.200 ± 0.034 bc | 6.033 C |
| 5 | 4.850 ± 0.018 d | 6.716 ± 0.007 ef | 4.766 ± 0.047 d | 2.483 ± 0.024 ab | 4.704 B |
| 10 | 3.116 ± 0.018 bc | 5.366 ± 0.024 de | 4.683 ± 0.018 d | 1.283 ± 0.023 a | 3.612 A |
| Average | 5.404 B | 6.641 D | 6.004 C | 2.842 A | 5.223 |
| F for | petrol dose—107.01, p < 0.01; amendments—169.47, p < 0.01; interaction—4.63, p < 0.01 | ||||
| r | −0.975 * | −0.988 * | −0.862 * | −0.985 * | −0.983 * |
| Manganese (Mn) | |||||
| 0 | 34.30 ± 1.09 d–f | 23.30 ± 0.42 ab | 17.45 ± 0.48 a | 21.10 ± 0.39 ab | 24.04 A |
| 2.5 | 34.55 ± 1.20 ef | 24.60 ± 0.14 a–c | 27.00 ± 0.57 b–d | 18.20 ± 0.42 a | 26.09 A |
| 5 | 60.09 ± 0.87 h | 31.60 ± 0.71 c–e | 31.65 ± 0.82 c–e | 22.25 ± 0.27 ab | 36.40 B |
| 10 | 94.24 ± 1.17 i | 41.25 ± 0.78 f | 51.84 ± 0.85 g | 38.70 ± 0.22 ef | 56.51 C |
| Average | 55.80 C | 30.19 B | 31.99 B | 25.06 A | 35.76 |
| F for | petrol dose—509.58, p < 0.01; amendments—432.05, p < 0.01; interaction—54.71, p < 0.01 | ||||
| r | 0.972 * | 0.984 * | 0.993 * | 0.888 * | 0.980 * |
| Iron (Fe) | |||||
| 0 | 46.37 ± 0.78 ab | 42.85 ± 1.08 ab | 52.54 ± 1.04 a–c | 51.14 ± 0.49 a–c | 48.23 A |
| 2.5 | 68.99 ± 0.58 de | 43.62 ± 1.38 ab | 55.12 ± 0.39 b–d | 49.15 ± 0.21 ab | 54.22 BC |
| 5 | 77.24 ± 1.29 e | 46.60 ± 1.38 ab | 65.74 ± 0.64 c–e | 43.37 ± 1.71 ab | 58.24 C |
| 10 | 78.84 ± 1.19 e | 42.00 ± 1.19 ab | 37.07 ± 0.78 a | 42.22 ± 2.09 ab | 50.03 AB |
| Average | 67.86 C | 43.77 A | 52.62 B | 46.47 A | 52.68 |
| F for | petrol dose—9.75, p < 0.01; amendments—56.53, p < 0.01; interaction—12.44, p < 0.01 | ||||
| r | 0.832 * | −0.151 | −0.552 * | −0.922 * | 0.090 |
| Cobalt (Co) | |||||
| 0 | 0.418 ± 0.011 c | 0.933 ± 0.023 fg | 0.345 ± 0.017 bc | 0.328 ± 0.016 a–c | 0.506 A |
| 2.5 | 0.625 ± 0.007 d | 0.985 ± 0.011 g | 0.323 ± 0.009 a–c | 0.412 ± 0.012 c | 0.586 B |
| 5 | 0.722 ± 0.021 de | 0.997 ± 0.014 g | 0.278 ± 0.002 ab | 0.280 ± 0.004 ab | 0.569 B |
| 10 | 0.817 ± 0.023 ef | 0.733 ± 0.027 de | 0.295 ± 0.007 a–c | 0.212 ± 0.016 a | 0.514 A |
| Average | 0.646 B | 0.912 C | 0.310 A | 0.308 A | 0.544 |
| F for | petrol dose—12.91, p < 0.01; amendments—696.60, p < 0.01; interaction—31.05, p < 0.01 | ||||
| r | 0.936 * | −0.753 * | −0.741 * | −0.780 * | −0.127 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wyszkowski, M.; Kordala, N. Assessment of Effectiveness of Organic and Mineral Sorbents for In Situ Stabilisation of Petrol-Contaminated Soils: Effect on Trace Element Bioaccumulation in Oats (Avena sativa L.). Appl. Sci. 2025, 15, 11555. https://doi.org/10.3390/app152111555
Wyszkowski M, Kordala N. Assessment of Effectiveness of Organic and Mineral Sorbents for In Situ Stabilisation of Petrol-Contaminated Soils: Effect on Trace Element Bioaccumulation in Oats (Avena sativa L.). Applied Sciences. 2025; 15(21):11555. https://doi.org/10.3390/app152111555
Chicago/Turabian StyleWyszkowski, Mirosław, and Natalia Kordala. 2025. "Assessment of Effectiveness of Organic and Mineral Sorbents for In Situ Stabilisation of Petrol-Contaminated Soils: Effect on Trace Element Bioaccumulation in Oats (Avena sativa L.)" Applied Sciences 15, no. 21: 11555. https://doi.org/10.3390/app152111555
APA StyleWyszkowski, M., & Kordala, N. (2025). Assessment of Effectiveness of Organic and Mineral Sorbents for In Situ Stabilisation of Petrol-Contaminated Soils: Effect on Trace Element Bioaccumulation in Oats (Avena sativa L.). Applied Sciences, 15(21), 11555. https://doi.org/10.3390/app152111555

