An Example of Hydromagnesite Distribution Mapping: Akgöl (Türkiye, Burdur)
Abstract
1. Introduction
2. Materials and Methods
2.1. Field and Laboratory Studies
2.1.1. Sample Collection
2.1.2. Laboratory Analysis Procedures
2.2. Data Processing
2.2.1. Digitization and Analysis of Sample Data
2.2.2. Image Processing
2.2.3. Database and Mineral Mapping
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Y.; Cheng, Q. A Fractal Filtering Technique for Processing Regional Geochemical Maps for Mineral Exploration. Geochem. Explor. Environ. Anal. 2001, 1, 147–156. [Google Scholar] [CrossRef]
- Kreuzer, O.P.; Yousefi, M.; Nykänen, V. Introduction to the Special Issue on Spatial Modelling and Analysis of Ore-Forming Processes in Mineral Exploration Targeting. Ore Geol. Rev. 2020, 119, 103391. [Google Scholar] [CrossRef]
- Wang, J.; Zuo, R. An Extended Local Gap Statistic for Identifying Geochemical Anomalies. J. Geochem. Explor. 2016, 164, 86–93. [Google Scholar] [CrossRef]
- Wang, J.; Zuo, R.; Liu, Q. Mapping Geochemical Anomalies by Accounting for the Uncertainty Of-Related Elemental Associations. Solid Earth 2024, 15, 731–746. [Google Scholar] [CrossRef]
- Kirkwood, C.; Cave, M.; Beamish, D.; Grebby, S.; Ferreira, A. A Machine Learning Approach to Geochemical Mapping. J. Geochem. Explor. 2016, 167, 49–61. [Google Scholar] [CrossRef]
- Franks, D.M.; Keenan, J.; Hailu, D. Mineral Security Essential to Achieving the Sustainable Development Goals. Nat. Sustain. 2023, 6, 21–27. [Google Scholar] [CrossRef]
- Loubser, M.; Verryn, S. Combining XRF and XRD Analyses and Sample Preparation to Solve Mineralogical Problems. S. Afr. J. Geol. 2008, 111, 229–238. [Google Scholar] [CrossRef]
- Secchi, M.; Zanatta, M.; Borovin, E.; Bortolotti, M.; Kumar, A.; Giarola, M.; Sanson, A.; Orberger, B.; Daldosso, N.; Gialanella, S.; et al. Mineralogical Investigations Using XRD, XRF, and Raman Spectroscopy in a Combined Approach. J. Raman Spectrosc. 2018, 49, 1023–1030. [Google Scholar] [CrossRef]
- Bortolotti, M.; Lutterotti, L.; Pepponi, G. Combining XRD and XRF Analysis in One Rietveld-like Fitting. Powder Diffr. 2017, 32 (Suppl. S1), S225–S230. [Google Scholar] [CrossRef]
- Howarth, R.J. A History of Regression and Related Model-Fitting in the Earth Sciences (1636?–2000). Nat. Resour. Res. 2001, 10, 241–286. [Google Scholar] [CrossRef]
- Coburn, T.C.; Freeman, P.A.; Attanasi, E.D. Empirical Methods for Detecting Regional Trends and Other Spatial Expressions in Antrim Shale Gas Productivity, with Implications for Improving Resource Projections Using Local Nonparametric Estimation Techniques. Nat. Resour. Res. 2012, 21, 1–21. [Google Scholar] [CrossRef]
- Granian, H.; Tabatabaei, S.H.; Asadi, H.H.; Carranza, E.J.M. Multivariate Regression Analysis of Lithogeochemical Data to Model Subsurface Mineralization: A Case Study from the Sari Gunay Epithermal Gold Deposit, NW Iran. J. Geochem. Explor. 2015, 148, 249–258. [Google Scholar] [CrossRef]
- Kumar, N.; Sinha, N.K. Geostatistics: Principles and Applications in Spatial Mapping of Soil Properties. In Geospatial Technologies in Land Resources Mapping, Monitoring and Management; Reddy, G.P.O., Singh, S.K., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 143–159. [Google Scholar] [CrossRef]
- Langkoke, R.; Ahmad, A.; Thamrin, M.; Husain, R.; Iqbal, M. Geocomputation and Spatial Analysis Applied for Geological Mapping: A Case Study in Palopo, South Sulawesi, Indonesia. J. Ecosolum 2024, 13, 68–81. [Google Scholar] [CrossRef]
- Hollingbery, L.A.; Hull, T.R. The Thermal Decomposition of Natural Mixtures of Huntite and Hydromagnesite. Thermochim. Acta 2012, 528, 45–52. [Google Scholar] [CrossRef]
- Hu, Q.F.; Song, L.Y.; Hu, X.X. Study on Exploitation and Utilization of Basic Magnesite. Inorg. Chem. Ind. 2005, 11, 44–46. [Google Scholar]
- Xi, Y. Study on Purification of a Low-Grade Hydromagnesite Ore in Tibet Area. Master’s Thesis, Liaoning University of Science and Technology, Anshan, China, 2020. [Google Scholar]
- Lin, Y.; Zheng, M.; Ye, C.; Power, I.M. Rare Earth Element and Strontium Isotope Geochemistry in Dujiali Lake, Central Qinghai-Tibet Plateau, China: Implications for the Origin of Hydromagnesite Deposits. Geochemistry 2019, 79, 337–346. [Google Scholar] [CrossRef]
- Li, X.H. Genesis and Prospecting Criteria of Naqu Shui Magnesite Deposit in Tibet. China Well Rock Salt 2022, 53, 21–24. [Google Scholar]
- van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.; van der Meijde, M.; Carranza, E.J.M.; de Smeth, J.B.; Woldai, T. Multi- and Hyperspectral Geologic Remote Sensing: A Review. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 112–128. [Google Scholar] [CrossRef]
- Jiao, L.-L.; Zhao, P.-C.; Liu, Z.-Q.; Wu, Q.-S.; Yan, D.-Q.; Li, Y.-L.; Chen, Y.-N.; Li, J.-S. Preparation of Magnesium Hydroxide Flame Retardant from Hydromagnesite and Enhance the Flame Retardant Performance of EVA. Polymers 2022, 14, 1567. [Google Scholar] [CrossRef]
- Young, G.A. Hydromagnesite Deposits of Atlin, B.C. In Geological Survey of Canada Summary Report; Geological Survey of Canada: Ottawa, ON, Canada, 1916; pp. 50–61. [Google Scholar]
- Zhao, T.; Dai, J.; Zhao, Y.; Ye, C. MTMF Method for Hydromagnesite Determination Based on Landsat8 and ZY1-02D Data: A Case Study of the Jiezechaka Salt Lake in Tibet. Aquat. Geochem. 2024, 30, 219–238. [Google Scholar] [CrossRef]
- Renaut, R.W. Morphology, Distribution, and Preservation Potential of Microbial Mats in the Hydromagnesite-Magnesite Playas of the Cariboo Plateau, British Columbia, Canada. Hydrobiologia 1993, 267, 75–98. [Google Scholar] [CrossRef]
- Braithwaite, C.J.R.; Zedef, V. Hydromagnesite Stromatolites and Sediments in an Alkaline Lake, Salda Golu, Turkey. J. Sediment. Res. 1996, 66, 991–1002. [Google Scholar] [CrossRef]
- Hatjilazaridou, K.; Chalkiopoulou, F.; Grossou-Valta, M. Greek Industrial Minerals: Current Status and Trends. Ind. Miner. 1998, 369, 45–63. [Google Scholar]
- Yılmaz Atay, H.; Çelik, E. Use of Turkish Huntite/Hydromagnesite Mineral in Plastic Materials as a Flame Retardant. Polym. Compos. 2010, 31, 1692–1700. [Google Scholar] [CrossRef]
- Liodakis, S.; Tsoukala, M. Environmental Benefits of Using Magnesium Carbonate Minerals as New Wildfire Retardants Instead of Commercially Available, Phosphate-Based Compounds. Environ. Geochem. Health 2010, 32, 391–399. [Google Scholar] [CrossRef]
- Zheng, M.P.; Xiang, J.; Wei, X.J.; Zheng, Y. Salt Lake on the Tibetan Plateau; Beijing Science & Technology Press: Beijing, China, 1989. [Google Scholar]
- Jiang, T.M.; Ji, L.M.; Cheng, H.D.; Li, B.K.; Li, G.; Ma, H.Z.; Zhang, X.Y.; Li, C.Z.; Ma, X.H.; Zhang, P.C. Algae Mineralization Experiment and Genetic Analysis of Hydromagnesite in Bangor Lake, Xizang (Tibet). Geol. Rev. 2021, 67, 1709–1726. [Google Scholar]
- Zhao, Y. Principles and Methods for Remote Sensing Application and Analysis; Science Press: Beijing, China, 2003; pp. 415–416. [Google Scholar]
- Yang, J.Z.; Zhao, Y.L. Technical Features of Remote Sensing and Its Application in the Geological Survey and Mineral Resources Survey. Miner. Explor. 2015, 6, 529–534. [Google Scholar]
- Dai, J.J.; Wang, D.H.; Wang, H.Y. A review of remote sensing survey of rare earth mineral resources in China. Acta Geol. Sin. 2019, 93, 1270–1278. [Google Scholar]
- Geng, X.X.; Yang, J.M.; Zhang, Y.J.; Yao, F.J. Application of RS Technology to Geology and Ore Deposit Research and the Development Prospect. Contrib. Geol. Miner. Resour. Res. 2008, 2, 89–93. [Google Scholar]
- Russell, M.J.; Ingham, J.K.; Zedef, V.; Maktav, D.; Sunar, F.; Hall, A.J.; Fallick, A.E. Search for Signs of Ancient Life on Mars: Expectations from Hydromagnesite Microbialites, Salda Lake, Turkey. J. Geol. Soc. Lond. 1999, 156, 869–888. [Google Scholar] [CrossRef]
- Salaj, S.S.; Upadhyay, R.; Srivastav, S.K. Mineral Abundance Mapping Using Hyperion Dataset in Part of Udaipur Dist Rajasthan, India. In Proceedings of the 14th Annual International Conference and Exhibition on Geospatial Information Technology and Applications, Gurgaon, India, 7–9 February 2012. [Google Scholar]
- Pour, A.B.; Hashim, M. Alteration Mineral Mapping Using ETM+ and Hyperion Remote Sensing Data at Bau Gold Field, Sarawak, Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2014, 18, 012149. [Google Scholar] [CrossRef]
- Mohammady Oskouei, M.; Babakan, S. Role of Smile Correction in Mineral Detection on Hyperion Data. J. Min. Environ. 2016, 7, 261–272. [Google Scholar] [CrossRef]
- Kargi, H. Principal Components Analysis for Borate Mapping. Int. J. Remote Sens. 2007, 28, 1805–1817. [Google Scholar] [CrossRef]
- Kavak, K.S. Recognition of Gypsum Geohorizons in the Sivas Basin (Turkey) Using ASTER and Landsat ETM+ Images. Int. J. Remote Sens. 2005, 26, 4583–4596. [Google Scholar] [CrossRef]
- Öztan, N.S. Evaporate Mapping in Bala Region (Ankara) by Remote Sensing Techniques. Master’s Thesis, Middle East Technical University, Ankara, Turkey, 2008. [Google Scholar]
- Öztan, N.S.; Süzen, M.L. Mapping Evaporate Minerals by ASTER. Int. J. Remote Sens. 2011, 32, 1651–1673. [Google Scholar] [CrossRef]
- Caceres, F.; Ali-Ammar, H.; Pirard, E. Mapping Evaporitic Minerals in Sud Lipez Salt Lakes, Bolivia, Using Remote Sensing. In Remote Sensing and Spectral Geology; Society of Economic Geologists: Littleton, CO, USA, 2009; pp. 199–208. [Google Scholar] [CrossRef]
- Özyavaş, A. Assessment of Image Processing Techniques and ASTER SWIR Data for the Delineation of Evaporates and Carbonate Outcrops along the Salt Lake Fault, Turkey. Int. J. Remote Sens. 2016, 37, 770–781. [Google Scholar] [CrossRef]
- Bölükbaşı, A.S. Elmalı (Antalya)–Açıgöl–Burdur Gölü (Burdur) Korkuteli (Antalya) Arasında Kalan Elmalı Napları Jeolojisi. In TPAO Raporları; No: 2415; TPAO: Ankara, Turkey, 1987. [Google Scholar]
- Bilgin, Z.R.; Karaman, T.; Öztürk, Z.; Şen, M.A.; Demirci, A.R. Yeşilova-Akgöl Civarının Jeolojisi; No: 9071; Jeoloji Etütleri Dairesi Başkanlığı: Ankara, Turkey, 1990. [Google Scholar]
- Yılmaz, Y.; Berberoğlu, E.; Gülle, İ. Burdur’un Doğası; Pegasus Görsel İletişim: Çorum, Turkey, 2019. [Google Scholar]
- Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The Power of Databases: The RRUFF Project. In Highlights in Mineralogical Crystallography; Armbruster, T., Danisi, R.M., Eds.; W. De Gruyter: Berlin, Germany, 2015; pp. 1–30. [Google Scholar]
- Son, Y.-S.; Lee, G.; Lee, B.H.; Kim, N.; Koh, S.-M.; Kim, K.-E.; Cho, S.-J. Application of ASTER Data for Differentiating Carbonate Minerals and Evaluating MgO Content of Magnesite in the Jiao-Liao-Ji Belt, North China Craton. Remote Sens. 2022, 14, 181. [Google Scholar] [CrossRef]
- Hunt, G.R. Spectral Signatures of Particulate Minerals in the Visible and near Infrared. Geophysics 1977, 42, 501–513. [Google Scholar] [CrossRef]
- Gaffey, S.J. Spectral Reflectance of Carbonate Minerals in the Visible and near Infrared (0.35–2.55 Microns); Calcite, Aragonite, and Dolomite. Am. Mineral. 1986, 71, 151–162. [Google Scholar]
- Clark, R.N. Spectroscopy of Rocks and Minerals and Principles of Spectroscopy. In Manual of Remote Sensing, Volume 3, Remote Sensing for the Earth Sciences; Rencz, A.N., Ed.; Wiley: Hoboken, NJ, USA, 1999; pp. 3–58. [Google Scholar]
- Edwards, H.G.M.; Moody, C.D.; Newton, E.M.; Villar, S.E.J.; Russell, M.J. Raman Spectroscopic Analysis of Cyanobacterial Colonization of Hydromagnesite, a Putative Martian Extremophile. Icarus 2005, 175, 372–381. [Google Scholar] [CrossRef]
- Demirel, C.; Balcı, N.; Akçer-Ön, S. Investigation of Biogeochemical Processes Affecting Modern Carbonate Precipitation in Lake Acıgöl, Lake Yarışlı And Lake Salda. In Proceedings of the Türkiye Kuvaterner Sempozyumu (TURQUA), İstanbul, Turkey, 8–11 May 2016. [Google Scholar]
- Sezer, B. Salda Gölü Güncel Magnezyum Çökellerinin Kristalizasyon Mekanizması ve SI (Saturation Index) Özellikleri. Master’s Thesis, İstanbul Teknik Üniversitesi, İstanbul, Turkey, 2004. [Google Scholar]
- Sert, M.; Arsoy, Z.; Çelik, M.Y. Salda Gölünün Kıyı Şeridini Oluşturan Kayaçların Karakterizasyonu. Curr. Acad. Stud. 2018, 1, 655–668. [Google Scholar]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayraktaroğlu, A.C.; Kargı, H. An Example of Hydromagnesite Distribution Mapping: Akgöl (Türkiye, Burdur). Appl. Sci. 2025, 15, 11536. https://doi.org/10.3390/app152111536
Bayraktaroğlu AC, Kargı H. An Example of Hydromagnesite Distribution Mapping: Akgöl (Türkiye, Burdur). Applied Sciences. 2025; 15(21):11536. https://doi.org/10.3390/app152111536
Chicago/Turabian StyleBayraktaroğlu, Abdurrahman Cihan, and Hulusi Kargı. 2025. "An Example of Hydromagnesite Distribution Mapping: Akgöl (Türkiye, Burdur)" Applied Sciences 15, no. 21: 11536. https://doi.org/10.3390/app152111536
APA StyleBayraktaroğlu, A. C., & Kargı, H. (2025). An Example of Hydromagnesite Distribution Mapping: Akgöl (Türkiye, Burdur). Applied Sciences, 15(21), 11536. https://doi.org/10.3390/app152111536

