Ephestia kuehniella Egg Detection Based on YOLOv10 with Modified Circle Representation
Abstract
1. Introduction
- Optimized Ephestia kuehniella egg object detection: The proposed YOLOv10-CR integrates the efficient and effective model architecture of YOLOv10 and a simple circle representation with less degree of freedom (DoF). It is a NMS-free and optimized approach for the detection of overlapping ball-shaped objects.
- Modified circle representation: We propose a modified circle representation applied to the architecture of YOLOv10 with superior detection performance for ball-shaped objects. We also introduce an improved circle intersection over union (cIOU) algorithm with enhanced generality and efficiency.
2. Architecture and Algorithm Improvement
2.1. Architecture
2.2. Circle IOU with Improved Algorithm
2.3. Circle Box Estimator and DFL for Modified Circle Representation
3. Experimental Design
3.1. Experimental Details
3.2. Evaluation Metrics
4. Results
4.1. Detection Experiments
4.2. Rotation Robustness Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.F.; Zhang, Z.Q. Development, survival and reproduction of a New Zealand strain of Amblydromalus limonicus (Acari: Phytoseiidae) on Typha orientalis pollen, Ephestia kuehniella eggs, and an artificial diet. Int. J. Acarol. 2017, 43, 153–159. [Google Scholar] [CrossRef]
- Yang, H.; Deng, R.; Lu, Y.; Zhu, Z.; Chen, Y.; Roland, J.T.; Lu, L.; Landman, B.A.; Fogo, A.B.; Huo, Y. CircleNet: Anchor-free glomerulus detection with circle representation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Lima, Peru, 4–8 October 2020; Springer: New York, NY, USA, 2020; pp. 35–44. [Google Scholar]
- Nguyen, E.H.; Yang, H.; Deng, R.; Lu, Y.; Zhu, Z.; Roland, J.T.; Lu, L.; Landman, B.A.; Fogo, A.B.; Huo, Y.; et al. Circle Representation for Medical Object Detection. IEEE Trans. Med. Imaging 2022, 41, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liang, P.; Sun, Z.; Song, B.; Cheng, E. CircleFormer: Circular Nuclei Detection in Whole Slide Images with Circle Queries and Attention. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Vancouver, BC, Canada, 8–12 October 2023; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J.; Ding, G. Yolov10: Real-time end-to-end object detection. arXiv 2024, arXiv:2405.14458. [Google Scholar]
- Zhang, R.; Xu, L.; Yu, Z.; Shi, Y.; Mu, C.; Xu, M. Deep-IRTarget: An Automatic Target Detector in Infrared Imagery Using Dual-Domain Feature Extraction and Allocation. IEEE Trans. Multimed. 2022, 24, 1735–1749. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, B.; Xu, L.; Huang, Y.; Xu, X.; Zhang, Q.; Jiang, Z.; Liuy, Y. A Benchmark and Frequency Compression Method for Infrared Few-Shot Object Detection. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5001711. [Google Scholar] [CrossRef]
- Li, X.; Wang, W.; Wu, L.; Chen, S.; Hu, X.; Li, J.; Tang, J.; Yang, J. Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection. arXiv 2020, arXiv:2006.04388. [Google Scholar] [CrossRef]
- Li, X.; Lv, C.; Wang, W.; Li, G.; Yang, L.; Yang, J. Generalized Focal Loss: Towards Efficient Representation Learning for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 3139–3153. [Google Scholar] [CrossRef] [PubMed]
- Glenn, J. Yolov8. Available online: https://github.com/ultralytics/ultralytics/tree/main (accessed on 20 February 2025).







| Hyperparameter | Hyperparameter | ||
|---|---|---|---|
| epochs | 120 | final learning rate | 10−4 |
| optimizer | SGD | box loss gain | 7.5 |
| momentum | 0.935 | class loss gain | 0.5 |
| initial learning rate | 10−2 | DFL loss gain | 1.5 |
| P | R | mAP50 | mAP50-95 | |
|---|---|---|---|---|
| YOLOv10-N | 0.939 | 0.899 | 0.975 | 0.820 |
| CircleNet | 0.925 | 0.930 | 0.934 | 0.805 |
| YOLOv10-CR (Ours) | 0.961 | 0.935 | 0.987 | 0.901 |
| Training Time (h) | Param (M) | FLOPs (G) | Latency (ms) | |
|---|---|---|---|---|
| YOLOv10-N | 1.395 | 2.57 | 8.2 | 14.7 |
| CircleNet | 1.562 | 7.83 | 30.26 | 15.4 |
| YOLOv10-CR (Ours) | 1.187 | 2.34 | 7.2 | 13.4 |
| First Experiment (%) | Second Experiment (%) | |
|---|---|---|
| YOLOv10-N | 0.94 | 0.85 |
| YOLOv10-CR (Ours) | 0.98 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, D.; She, C.; Zhang, Y.; Ma, Y.; Liu, L.; Chen, J.; Chen, Y. Ephestia kuehniella Egg Detection Based on YOLOv10 with Modified Circle Representation. Appl. Sci. 2025, 15, 11501. https://doi.org/10.3390/app152111501
He D, She C, Zhang Y, Ma Y, Liu L, Chen J, Chen Y. Ephestia kuehniella Egg Detection Based on YOLOv10 with Modified Circle Representation. Applied Sciences. 2025; 15(21):11501. https://doi.org/10.3390/app152111501
Chicago/Turabian StyleHe, Dongwei, Chaohuang She, Yanxuan Zhang, Ying Ma, Lisang Liu, Jian Chen, and Yi Chen. 2025. "Ephestia kuehniella Egg Detection Based on YOLOv10 with Modified Circle Representation" Applied Sciences 15, no. 21: 11501. https://doi.org/10.3390/app152111501
APA StyleHe, D., She, C., Zhang, Y., Ma, Y., Liu, L., Chen, J., & Chen, Y. (2025). Ephestia kuehniella Egg Detection Based on YOLOv10 with Modified Circle Representation. Applied Sciences, 15(21), 11501. https://doi.org/10.3390/app152111501

