Sustainable Recycling of Used Cooking Oils Through the Production of Biodegradable Antimicrobial Soaps
Abstract
1. Introduction
2. Materials and Methods
2.1. Fresh Oil Samples—Origin and Acquisition
2.2. Used Vegetable Oils—Origin and Usage Context
2.3. Essential Oils
2.4. Laboratory Simulation of Food Mix Frying
2.5. Filtration of Used Vegetable Oils
2.6. Purification of Used Vegetable Oils Collected
2.7. Bleaching of Purified Vegetable Oils
2.8. Soap Samples Preparation
2.9. Soap Recipe Preparation
2.10. Analysis of Vegetable Oils
2.11. Qualitative Analysis of Soap
2.12. Antibacterial Sensitivity Testing
2.12.1. Preparation of Soap Samples
2.12.2. Preparation of Microorganism Cultures
2.12.3. Antimicrobial Assay
3. Results
3.1. Experimental Study of Food Mix Frying
3.2. Technological Process for Soap Production
3.3. Analysis of Fresh, Used, and Purified Oils
3.4. FTIR
3.5. Chemical Composition of Essential Oils Used in Soap Production
3.6. Analysis of Soaps Obtained from Used Oils
3.7. Antimicrobial Analysis of Soaps
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cárdenas, J.; Orjuela, A.; Sánchez, D.L.; Narváez, P.C.; Katryniok, B.; Clark, J. Pre-treatment of used cooking oils for the production of green chemicals: A review. J. Clean. Prod. 2021, 289, 125129. [Google Scholar] [CrossRef]
- The Environmental Impacts of Dumping Cooking Oil in the Ground. 2024. Available online: https://bsirecycling.com/blog/the-environmental-impacts-of-dumping-cooking-oil-in-the-ground/ (accessed on 25 May 2025).
- Sunartono; Lenggogeni; Handayani, I.D.; Setiawan, H.; Adiarso, A.; Nelly, A.; Hermawan, E.; Wijono, R.A.; Wicaksana, D.E.P.; Marsudi, A.; et al. Assessing Competitiveness and Sustainability of the Cooking Oil Industry through the Valuation of Eco-Efficiency on the Utilization of Spent Bleaching Earth. Case Stud. Chem. Environ. Eng. 2025, 11, 101176. [Google Scholar] [CrossRef]
- Hamdi, N.A.; Sha’arani, S.; Azman, N.F.; Mohd. Rafi, S.B.; Norsin, E.; Othman, N. Management of Waste Cooking Oil and Its Potential for Value-Added Materials: A Mini Review. IOP Conf. Ser. Earth Environ. Sci. 2022, 1091, 012054. [Google Scholar] [CrossRef]
- Lopresto, C.G.; De Paola, M.G.; Calabrò, V. Importance of the Properties, Collection, and Storage of Waste Cooking Oils to Produce High-Quality Biodiesel—An Overview. Biomass Bioenergy 2024, 189, 107363. [Google Scholar] [CrossRef]
- Tye, C.T. Recent Advances in Waste Cooking Oil Management and Applications for Sustainable Environment. In Handbook of Research on Resource Management for Pollution and Waste Treatment; Affam, A.C., Ezechi, E.H., Eds.; IGI Global: Hershey, PA, USA, 2020; pp. 47–63. [Google Scholar] [CrossRef]
- Okpo, S.O.; Edafiadhe, E.D. Unlocking the Power of Waste Cooking Oils for Sustainable Energy Production and Circular Economy: A Review. ABUAD J. Eng. Res. Dev. 2024, 7, 41–55. [Google Scholar] [CrossRef]
- Fortune Business Insights. Used Cooking Oil Market Size, Share & Industry Analysis by Source (Food Services and Households), by Application (Industrial Usage [Biofuels, Cosmetics, and Others] and Animal Feed), and Regional Forecast, 2025–2032. Available online: https://www.fortunebusinessinsights.com/used-cooking-oil-market-103665 (accessed on 1 September 2025).
- Phagare, M. Europe Used Cooking Oil Market Report 2025. Cognitive Market Research. Available online: https://www.cognitivemarketresearch.com/regional-analysis/europe-used-cooking-oil-market-report?utm_source=chatgpt.com (accessed on 21 April 2025).
- Council of the European Communities. Directive 75/439/EEC on the Disposal of Waste Oils. Available online: http://data.europa.eu/eli/dir/1975/439/oj (accessed on 1 June 2025).
- The European Parliament and the Council of the European Union. Directive 2008/98/EC on Waste (Waste Framework Directive). Available online: http://data.europa.eu/eli/dir/2008/98/oj (accessed on 11 August 2025).
- Azme, S.N.K.; Yusoff, N.S.I.M.; Chin, L.Y.; Mohd, Y.; Hamid, R.D.; Jalil, M.N.; Zaki, H.M.; Saleh, S.H.; Ahmat, N.; Manan, M.A.F.A.; et al. Recycling Waste Cooking Oil into Soap: Knowledge Transfer through Community Service Learning. Clean. Waste Syst. 2023, 4, 100084. [Google Scholar] [CrossRef]
- Ruiz, B.; Flotats, X. Citrus Essential Oils and Their Influence on the Anaerobic Digestion Process: An Overview. Waste Manag. 2014, 34, 2063–2079. [Google Scholar] [CrossRef]
- Zayed, L.; Gablo, N.; Kalcakova, L.; Dordevic, S.; Kushkevych, I.; Dordevic, D.; Tremlova, B. Utilizing Used Cooking Oil and Organic Waste: A Sustainable Approach to Soap Production. Processes 2024, 12, 1279. [Google Scholar] [CrossRef]
- Félix, S.; Araújo, J.; Pires, A.M.; Sousa, A.C. Soap Production: A Green Prospective. Waste Manag. 2017, 66, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, X.; Paul, E.; Mauret, M.; Baptiste, P.; Capdeville, B. Kinetic Characterization of Saponified Domestic Lipid Residues Aerobic Biodegradation. Water Res. 1998, 32, 3031–3038. [Google Scholar] [CrossRef]
- Stănescu, V.-G.; Popescu, V.; Vasilache, V.; Popescu, G.; Rîmbu, C.M.; Popescu, A. Cleaner Processes for Making Laundry Soap from Vegetable Oils and an Essential Oil. Appl. Sci. 2025, 15, 3821. [Google Scholar] [CrossRef]
- Alves, J.O.; Franco, M.T.S.; Silva, P.P.; Malpass, G.R.P.; Okura, M.H.; Granato, A.C. Development of antimicrobial soaps using essential oil of Schinus terebinthifolius and Piper nigrum. Res. Soc. Dev. 2020, 9, 10328. [Google Scholar] [CrossRef]
- Miri, B.Y. Essential oils: Chemical composition and diverse biological activities: A comprehensive review. Nat. Prod. Commun. 2025, 20, 1. [Google Scholar] [CrossRef]
- Bostan, R.; Glevitzky, M.; Varvara, S.; Dumitrel, G.-A.; Rusu, G.I.; Popa, M.; Glevitzky, I.; Vică, M.L. Utilization of Natural Adsorbents in the Purification of Used Sunflower and Palm Cooking Oils. Appl. Sci. 2024, 14, 4417. [Google Scholar] [CrossRef]
- Aïder, M.; Martel, A.-A.; Ferracci, J.; de Halleux, D. Purification of Whole Brown Flaxseed Meal from Coloring Pigments by Treatment in Hydrogen Peroxide Solutions: Impact on Meal Color. Food Bioprocess Technol. 2012, 5, 3051–3065. [Google Scholar] [CrossRef]
- Antonić, B.; Dordević, D.; Jančíková, S.; Tremlova, B.; Kushkevych, I. Physicochemical Characterization of Home-Made Soap from Waste-Used Frying Oils. Processes 2020, 8, 1219. [Google Scholar] [CrossRef]
- ISO 3960:2017; Animal and Vegetable Fats and Oils—Determination of Peroxide Value—Iodometric (Visual) Endpoint Determination. SR (Romanian Standard). Romanian Standards Association: Bucharest, Romania, 2017.
- AOAC International Official Method. Iodine absorption number of oils and fats 1998.
- AOAC International Official Method. Determination of Acid Value 1995.
- STAS 3005-1:2013; ASRO. Vegetable Oils—Methods of Analysis—Part 1: Determination of Free Fatty Acids (FFA) by Titration with KOH Solution. Romanian Standards Association: Bucharest, Romania, 2013.
- AOCS Cd 2d-25; Kinematic Viscosity of Oils and Fats. American Oil Chemists’ Society: Urbana, IL, USA, 2009.
- 145/3-67; Vegetable Oils and Fats—Determination of Relative Density. Romanian Standards Association: Bucharest, Romania, 1967.
- AOAC 921.08Index of Refraction of Oils and Fats—AOAC Official Method; AOAC: San Diego, CA, USA, 1921.
- Opruța, T.; Tița, O. Studies on the Use of Essential Oils in Processing Food Products. J. Agroaliment. Process. Technol. 2022, 28, 397–399. [Google Scholar]
- AOAC International Official Method. 981.12—pH of Soaps and Detergents; AOAC International: Rockville, MD, USA, 2000. [Google Scholar]
- D4009-92(2023); Standard Guide for Foam Stability of Hand Dishwashing Detergents. ASTM International: West Conshohocken, PA, USA, 2023.
- Krüss Scientific. Ross-Miles Method—Foam Height and Stability of Surfactant Solutions; Krüss Scientific: Hamburg, Germany, 2023; Available online: https://www.kruss-scientific.com/en-US/know-how/glossary/ross-miles-method (accessed on 14 May 2025).
- AOAC International Official Method. 930.23—Total Fat in Foods; AOAC International: Rockville, MD, USA, 2000. [Google Scholar]
- CLSI M100; Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standard Institute: Wayne, PA, USA, 2020. Available online: https://clsi.org/shop/standards/m100/ (accessed on 17 September 2025).
- Commission Regulation (EEC) No 2568/91 of 11 July 1991 on the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods of Analysis. Off. J. Eur. Communities 1991, L248, 1–83. Available online: http://data.europa.eu/eli/reg/1991/2568/oj (accessed on 1 June 2025).
- Park, J.M.; Koh, J.H.; Kim, J.M. Determining the Reuse of Frying Oil for Fried Sweet and Sour Pork according to Type of Oil and Frying Time. Food Sci. Anim. Resour. 2020, 40, 785–794. [Google Scholar] [CrossRef]
- Codex Stan 33-1981; Codex Alimentarius Commission. Standard for Olive Oils and Olive-Pomace Oils. Codex Alimentarius Commission: Rome, Italy, 1981.
- Akoh, C.C.; Min, D.B. Food Lipids: Chemistry, Nutrition, and Biotechnology, 2nd ed.; Marcel Dekker, Inc.: New York, USA, 2008. [Google Scholar]
- Frankel, E.N. Lipid Oxidation, 2nd ed.; The Oily Press: Bridgwater, UK, 2012. [Google Scholar]
- Choe, E.; Min, D.B. Chemistry of deep-fat frying oils. J. Food Sci. 2007, 72, R77–R86. [Google Scholar] [CrossRef]
- Shahidi, F. (Ed.) Handbook of Antioxidants for Food Preservation; Woodhead Publishing: Cambridge, UK, 2015. [Google Scholar]
- Laachari, F.; Maâtaoui, H.; El Bergadi, F.; Boukir, A.; Ibnsouda, S.K. Improvement of a lipolytic activity assay protocol to increase the efficiency of the lipases activity measurement and validation by infrared spectroscopy. Afr. J. Biotechnol. 2015, 14, 12345–12355. [Google Scholar]
- Bettenhausen, C. Oil Majors Back Out of Biofuel in Europe. CEN Glob. Enterp. 2024, 102, 9. [Google Scholar] [CrossRef]
- Virtue Market Research. Europe Used Cooking Oil Market; Virtue Market Research: [Place of Publication]. 2024. Available online: https://virtuemarketresearch.com/report/europe-used-cooking-oil-market (accessed on 1 October 2025).
- Grand View Research. Europe Used Cooking Oil Market Size & Outlook, 2024–2030. Available online: https://www.grandviewresearch.com/horizon/outlook/used-cooking-oil-market/europe (accessed on 14 October 2025).
- Mordor Intelligence. Europe Bioplastics Market Size & Share Analysis—Growth Trends & Forecasts (2025–2030). Available online: https://www.mordorintelligence.com/industry-reports/european-bioplastics-market-industry (accessed on 14 October 2025).
- Polymeer Project. Bioplastics Trends in 2024. Available online: https://polymeerproject.eu/bioplastics-trends-2024/ (accessed on 14 October 2025).
- Pitman, S. Cooking Oil Waste May Become Next Generation Biosurfactants. CosmeticsDesign.com. Available online: https://www.cosmeticsdesign.com/Article/2007/02/21/cooking-oil-waste-may-become-next-generation-biosurfactants/ (accessed on 14 October 2025).
- Octarya, Z.; Yenti, E.; Utami, L.; Yusbarina. Sustainable Solid Soap Production Using Recycled Cooking Oil with Ecoenzyme and Lemongrass Extract. Acta Biochim. Indones. 2025, 8, 191. [Google Scholar] [CrossRef]
- Oparanti, S.O.; Obebe, E.O.; Fofana, I.; Jafari, R. A State-of-the-Art Review on the Potential of Waste Cooking Oil as a Sustainable Insulating Liquid for Green Transformers. Appl. Sci. 2025, 15, 7631. [Google Scholar] [CrossRef]
- Longobardi, F.; Contillo, F.; Catucci, L.; Tommasi, L.; Caponio, F.; Paradiso, V.M. Analysis of Peroxide Value in Olive Oils with an Easy and Green Method. Food Control 2021, 130, 108295. [Google Scholar] [CrossRef]
- Popa, M.; Glevitzky, I.; Dumitrel, G.-A.; Glevitzky, M.; Popa, D. Study on Peroxide Values for Different Oils and Factors Affecting the Quality of Sunflower Oil. Land Reclam. Earth Obs. Surv. Environ. Eng. 2017, VI, 137–140. [Google Scholar]
- Salek, R.N.; Burešová, I.; Kráčmar, S.; Lorencová, E.; Zálešáková, L.; Dabash, V. Evaluation of Selected Physicochemical Parameters of Extra Virgin Olive Oil Commercialized in the Czech Market and Stored over a Period of 5 Months. Potravin. Slovak J. Food Sci. 2017, 11, 664–672. [Google Scholar] [CrossRef]
- Kumar, A.; Bhayana, S.; Singh, P.K.; Tripathi, A.D.; Paul, V.; Balodi, V.; Agarwal, A. Valorization of used cooking oil: Challenges, current developments, life cycle assessment and future prospects. Discov. Sustain. 2025, 6, 119. [Google Scholar] [CrossRef]
- Judijanto, L. From waste to renewable source: A review of used cooking oil’s role in sustainable energy systems. Rev. Acadêmica Online 2025, 11, e1562. [Google Scholar] [CrossRef]
- Ma, F.; Hanna, M.A. Biodiesel production: A review. Bioresour. Technol. 1999, 70, 1–15. [Google Scholar] [CrossRef]
- Sharma, Y.C.; Singh, B.; Upadhyay, S.N. Advancements in development and characterization of biodiesel: A review. Fuel 2008, 87, 2355–2373. [Google Scholar] [CrossRef]
- Anil, N.; Rao, P.K.; Sarkar, A.; Kubavat, J.; Vadivel, S.; Manwar, N.R.; Paul, B. Advancements in sustainable biodiesel production: A comprehensive review of bio-waste derived catalysts. Energy Convers. Manag. 2024, 318, 118884. [Google Scholar] [CrossRef]
- Beghetto, V. Waste Cooking Oils into High-Value Products: Where Is the Industry Going? Polymers 2025, 17, 887. [Google Scholar] [CrossRef] [PubMed]
- Chung, Z.L.; Tan, Y.H.; Chan, Y.S.; Kansedo, J.; Mubarak, N.M.; Ghasemi, M.; Abdullah, M.O. Life cycle assessment of waste cooking oil for biodiesel production using waste chicken eggshell derived CaO as catalyst via transesterification. Biocatal. Agric. Biotechnol. 2019, 21, 101317. [Google Scholar] [CrossRef]
- Ahadito, B.R.; Afriani, S.R. Soap Production from Waste Cooking Oil: A Review. Indones. J. Fundam. Appl. Chem. 2023, 9, 96. [Google Scholar] [CrossRef]
- Hendi, E.S.; Rusdi, R.; Nur Alam, B.; Nurbaeti, S. Purification of Used Cooking Oil by Alkali Neutralization and Bleaching of Bayah Natural Zeolite. J. Bahan Alam Terbarukan 2021, 10, 36–42. [Google Scholar] [CrossRef]
- Hailemariam, T. Production of Acid-Activated Bleaching Earth from Bentonite Clay for Edible Oil Bleaching. Int. J. Sci. Environ. 2025, 5, 70–79. [Google Scholar] [CrossRef]
- Miyagi, A.; Nakajima, M. Regeneration of Used Frying Oils Using Adsorption Processing. J. Am. Oil Chem. Soc. 2003, 80, 91–96. [Google Scholar] [CrossRef]
- Nikolopoulos, I.; Kogkos, G.; Tsavatopoulou, V.D.; Kordouli, E.; Bourikas, K.; Kordulis, C.; Lycourghiotis, A. Nickel—Alumina Catalysts for the Transformation of Vegetable Oils into Green Diesel: The Role of Preparation Method, Activation Temperature, and Reaction Conditions. Nanomaterials 2023, 13, 616. [Google Scholar] [CrossRef]
- Haryanto, B.; Nasution, I.T.; Polem, A.F.; Tambun, R.; Alexander, V. Natural Adsorbent of Corncob (Zea mays L.) Powder Capability in Purification of Used Cooking Oil with Shaking Operation Based on Turbidity. Results Eng. 2023, 19, 101233. [Google Scholar] [CrossRef]
- Daniel, A.B.; Zahir, E.; Asghar, M.A. On the Practicability of a New Bio-Sorbent: Lasani Sawdust and Coconut Coir for Cleanup of Oil Spilled on Water. Petrol. Sci. Technol. 2019, 37, 1143–1154. [Google Scholar] [CrossRef]
- Adou, A.I.; Brelle, L.; Marote, P.; Sylvestre, M.; Cebriàn-Torrejòn, G.; Nomede-Martyr, N. Physicochemical Properties of Coconut and Waste Cooking Oils for Biofuel Production and Lubrication. Fuels 2025, 6, 57. [Google Scholar] [CrossRef]
- Gharby, S. Refining Vegetable Oils: Chemical and Physical Refining. Sci. World J. 2022, 2022, 6627013. [Google Scholar] [CrossRef]
- Wahyudi, A.; Sitrous, B.; Hidayat, F. Kinetic Analysis of Saponification Reaction in Eco-Friendly Soap Production Based on Waste Cooking Oil. Hydrog. J. Kependidikan Kim. 2025, 13, 713–723. Available online: https://e-journal3.undikma.ac.id/index.php/hydrogen/article/view/14828 (accessed on 1 October 2025).
- Foo, W.H.; Koay, S.S.N.; Tang, D.Y.Y.; Chia, W.Y.; Chew, K.W.; Show, P.L. Safety Control of Waste Cooking Oil: Transforming Hazard into Multifarious Products with Available Pre-Treatment Processes. Food Mater. Res. 2022, 2, 1. [Google Scholar] [CrossRef]
- Mustakim, M.; Taufik, R.; Trismawati, T. The Utilization of Waste Cooking Oil as a Material of Soap. J. Degrad. Res. 2020, 4, 114. [Google Scholar] [CrossRef]
- Cruz, A.P.M.; Nishimura, F.G.; Santos, V.C.O.d.; Steling, E.G.; Von Zeska Kress, M.R.; Marins, M.; Fachin, A.L. Essential Oil-Based Soap with Clove and Oregano: A Promising Antifungal and Antibacterial Alternative against Multidrug-Resistant Microorganisms. Molecules 2024, 29, 4682. [Google Scholar] [CrossRef]
- Walasek-Janusz, M.; Grzegorczyk, A.; Malm, A.; Nurzyńska-Wierdak, R.; Zalewski, D. Chemical Composition, and Antioxidant and Antimicrobial Activity of Oregano Essential Oil. Molecules 2024, 29, 435. [Google Scholar] [CrossRef] [PubMed]
- Laghmouchi, Y.; Belmehdi, O.; Senhaji, N.S.; Abrini, J. Chemical Composition and Antibacterial Activity of Origanum compactum Benth. Essential Oils from Different Areas at Northern Morocco. S. Afr. J. Bot. 2018, 115, 120–125. [Google Scholar] [CrossRef]
- Nostro, A.; Papalia, T. Antimicrobial Activity of Carvacrol: Current Progress and Future Prospectives. Recent Pat. Anti-Infect. Drug Discov. 2012, 7, 28–35. [Google Scholar] [CrossRef]
- Balahbib, A.; El Omari, N.; Hachlafi, N.E.; Lakhdar, F.; El Menyiy, N.; Salhi, N.; Naceiri Mrabti, H.; Bakrim, S.; Zengin, G.; Bouyahya, A. Health Beneficial and Pharmacological Properties of p-Cymene. Food Chem. Toxicol. 2021, 153, 112259. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.W.; Kim, M.J.; Chung, B.Y.; Bang, D.Y.; Lim, S.K.; Choi, S.M.; Lim, D.S.; Cho, M.C.; Yoon, K.; Kim, H.S.; et al. Safety Evaluation and Risk Assessment of d-Limonene. J. Toxicol. Environ. Health Part B 2013, 16, 17–38. [Google Scholar] [CrossRef] [PubMed]
- Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and Antifungal Activities of Thymol: A Brief Review of the Literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Özbek, H.; Yılmaz, B.S. Anti-inflammatory and Hypoglycemic Activities of Alpha-pinene. Acta Pharm. Sci. 2017, 55, 4. [Google Scholar] [CrossRef]
- Salehi, B.; Upadhyay, S.; Orhan, I.E.; Jugran, A.K.; Jayaweera, S.L.D.; Dias, D.A.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; et al. Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef]
- Imelouane, B.; Amhamdi, H.; Wathelet, J.P.; Ankit, M.; Khedid, K.; El Bachiri, A. Chemical Composition and Antimicrobial Activity of Essential Oil of Thyme (Thymus vulgaris) from Eastern Morocco. Int. J. Agric. Biol. 2009, 11, 205–208. [Google Scholar]
- Lin, H.; Li, Z.; Sun, Y.; Zhang, Y.; Wang, S.; Zhang, Q.; Cai, T.; Xiang, W.; Zeng, C.; Tang, J. D-Limonene: Promising and Sustainable Natural Bioactive Compound. Appl. Sci. 2024, 14, 4605. [Google Scholar] [CrossRef]
- Espina, L.; Gelaw, T.K.; de Lamo-Castellví, S.; Pagán, R.; García-Gonzalo, D. Mechanism of Bacterial Inactivation by (+)-Limonene and Its Potential Use in Food Preservation Combined Processes. PLoS ONE 2013, 8, e56769. [Google Scholar] [CrossRef]
- Nova, J.F.; Smrity, S.Z.; Hasan, M.; Tariquzzaman, M.; Hossain, M.A.A.; Islam, M.T.; Islam, M.R.; Akter, S.; Rahi, M.S.; Joy, M.T.R.; et al. Comprehensive Evaluation of Physico-Chemical, Antioxidant, and Antimicrobial Properties in Commercial Soaps: A Study on Bar Soaps and Liquid Hand Wash. Heliyon 2025, 11, e41614. [Google Scholar] [CrossRef]
- Butron, W.; Gaikwad, J. An In Vitro Analysis of the Efficacy of Selected Bar Soaps as Antibacterial Agents. Bios 2009, 80, 66–75. [Google Scholar] [CrossRef]
- Obi, C.N. Antibacterial Activities of Some Medicated Soaps on Selected Human Pathogens. Am. J. Microbiol. Res. 2014, 2, 178–181. [Google Scholar] [CrossRef]
- Aliyu, M.S.; Tijjani, M.B.; Doko, M.H.I.; Garba, I.; Ibrahim, M.M.; Abdulkadir, S.M.; Abba, D.; Zango, U.U. Antimicrobial Activity of Sabulun Salo, a Local Traditional Medicated Soap. Niger. J. Basic Appl. Sci. 2012, 20, 35–38. [Google Scholar]
- Da Rocha-Filho, P.A.; Maruno, M.; Ferrari, M.; Topan, J.F. Liquid Crystal Formation from Sunflower Oil: Long Term Stability Studies. Molecules 2016, 21, 680. [Google Scholar] [CrossRef]
- Qu, E. The Ratio of Linoleic to Oleic Acid in Sunflower Oil, and Its Effects on Bacterial Growth. J. Student Res. 2022, 10, 4. [Google Scholar] [CrossRef]
- Bucciantini, M.; Leri, M.; Nardiello, P.; Casamenti, F.; Stefani, M. Olive Polyphenols: Antioxidant and Anti-Inflammatory Properties. Antioxidants 2021, 10, 1044. [Google Scholar] [CrossRef] [PubMed]
- Monterrubio-López, G.P.; Mendieta-Pérez, C.C.; Santiago-Carrillo, M.; Monterrubio-López, R. Antimicrobial Effect of Olive and Sunflower Oils Determined by Microbial Challenge. J. Basic Biomed. Res. 2023, 7, 1–7. [Google Scholar] [CrossRef]
- Pote, N.N. Evaluation of Physical Properties of Liquid Soap Preparations from Virgin Coconut Oil (VCO) and Coconut Oil (CO). Strada J. Pharm. 2019, 1, 1–8. Available online: https://www.thesjp.org/index.php/SJP/article/view/119 (accessed on 2 October 2025).
- ISO 22716:2007; Cosmetics—Good Manufacturing Practices (GMP)—Guidelines on Good Manufacturing Practices. International Organization for Standardization: Geneva, Switzerland, 2007.
- European Commission. Regulation (EC) No 1223/2009 of the European Parliament and of the Council on Cosmetic Products; Official Journal of the European Union: Luxembourg, 2009. [Google Scholar]
- Sakamoto, K.; Lochhead, R.Y.; Maibach, H.I.; Yamashita, Y. (Eds.) Cosmetic Science and Technology: Theoretical Principles and Applications, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Draelos, Z.D. (Ed.) Cosmetic Dermatology: Products and Procedures, 3rd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2022. [Google Scholar]
- Loizides, M.I.; Loizidou, X.I.; Orthodoxou, D.L.; Petsa, D. Circular Bioeconomy in Action: Collection and Recycling of Domestic Used Cooking Oil through a Social, Reverse Logistics System. Recycling 2019, 4, 16. [Google Scholar] [CrossRef]









| Sample No. | Type of Vegetable Oil | Field of Activity | Intended Use |
|---|---|---|---|
| S1 | Sunflower | Fast food | Frying animal-derived foods (chicken meat) at 175–185 °C, 8–12 h (≈20–30 cycles) |
| S2 | Sunflower | Fast food | Frying plant-based foods (potatoes) at 175–180 °C, 8–12 h (≈30 cycles) |
| S3 | Sunflower | Canteen | Frying both animal- and plant-based foods (meatballs and vegetables) at 175–180 °C, 8–12 h (≈50 cycles) |
| S4 | Palm | Canteen | Frying both animal- and plant-based foods (pork schnitzel and vegetable croquettes) at 180–190 °C, 8 h (≈30 cycles) |
| S5 | Palm | Bakery | Frying plant-based foods (bakery/pastry products) at 180–190 °C, 8–10 h (≈50 cycles) |
| S6 | Sunflower | Lab. sample | Frying of animal- and plant-based foods (potatoes, mushrooms, chicken breast) at 200 °C, 0.5 h (≈7–10 cycles) |
| S7 | Olive | Restaurant | Frying of both animal- and plant-based foods (“a la pobre” potatoes) at 170–180 °C, 6–8 h (≈30–50 cycles) |
| Ingredients | SV *, mg NaOH/g | Soap | ||||
|---|---|---|---|---|---|---|
| SP1— Sunflower Oil | SP2— Palm Oil | SP3— Olive Oil | SP4—Sunflower Oil: Palm Oil (Ratio 1:3) | SP5—Olive Oil: Palm Oil (Ratio 1:3) | ||
| Refined and bleached sunflower oil | 189 | 200 g | 0 g | 0 g | 150 g | 150 g |
| Refined and bleached palm oil | 196 | 0 g | 200 g | 0 g | 50 g | 0 g |
| Refined and bleached extra virgin olive oil | 190 | 0 g | 0 g | 200 g | 0 g | 50 g |
| Oregano EO | - | 2 g | 2 g | 2 g | 2 g | 1 g |
| Thyme EO | - | 2 g | 2 g | 2 g | 2 g | 1 g |
| NaOH ** | - | 26.8 g | 28.2 g | 27 g | 27.15 g | 26.85 g |
| Distilled water | - | 60 mL | 60 mL | 60 mL | 60 mL | 60 mL |
| Time, Min | Temperature, °C | ||||
|---|---|---|---|---|---|
| 160 | 170 | 180 | 190 | 200 | |
| 0 | 1.18 ± 0.07 | ||||
| 5 | 3.25 ± 0.13 | 7.38 ± 0.48 | 8.76 ± 0.55 | 10.25 ± 0.99 | 14.12 ± 1.16 |
| 10 | 12.72 ± 1.70 | 13.25 ± 0.87 | 13.75 ± 1.13 | 16.80 ± 1.51 | 21.48 ± 2.02 |
| 15 | 13.15 ± 1.50 | 15.68 ± 0.94 | 19.24 ± 1.22 | 27.53 ± 2.95 | 33.31 ± 2.41 |
| 20 | 15.07 ± 0.77 | 16.93 ± 1.01 | 20.18 ± 1.84 | 32.97 ± 2.73 | 42.70 ± 2.87 |
| 25 | 18.79 ± 1.03 | 21.07 ± 1.12 | 36.50 ± 2.46 | 40.44 ± 1.97 | 56.13 ± 3.10 |
| 30 | 18.38 ± 1.51 | 22.97 ± 1.13 | 39.98 ± 2.67 | 43.05 ± 1.97 | 59.61 ± 1.44 |
| Time, Min | Temperature, °C | ||||
|---|---|---|---|---|---|
| 160 | 170 | 180 | 190 | 200 | |
| 0 | 0.79 ± 0.04 | ||||
| 5 | 4.20 ± 0.58 | 4.88 ± 0.08 | 6.76 ± 0.05 | 8.53 ± 0.09 | 10.42 ± 0.16 |
| 10 | 5.27 ± 0.72 | 5.59 ± 1.07 | 6.95 ± 0.13 | 9.80 ± 1.15 | 13.14 ± 1.22 |
| 15 | 6.43 ± 0.55 | 5.86 ± 0.04 | 7.62 ± 0.22 | 10.35 ± 0.59 | 15.31 ± 1.44 |
| 20 | 8.15 ± 0.70 | 6.93 ± 0.19 | 12.08 ± 1.01 | 15.29 ± 1.73 | 18.72 ± 1.78 |
| 25 | 8.84 ± 0.98 | 10.07 ± 1.11 | 12.96 ± 1.46 | 17.38 ± 1.97 | 26.13 ± 2.43 |
| 30 | 10.11 ± 0.86 | 12.07 ± 1.33 | 13.59 ± 1.82 | 18.96 ± 2.14 | 28.70 ± 1.67 |
| Time, Min | Temperature, °C | ||||
|---|---|---|---|---|---|
| 160 | 170 | 180 | 190 | 200 | |
| 0 | 119.47 ± 0.20 | ||||
| 5 | 117.97 ± 0.23 | 117.48 ± 0.38 | 116.74 ± 0.25 | 116.62 ± 0.29 | 116.52 ± 0.26 |
| 10 | 116.46 ± 0.22 | 115.51 ± 0.37 | 114.42 ± 0.23 | 113.08 ± 0.25 | 113.14 ± 0.20 |
| 15 | 114.95 ± 0.34 | 113.46 ± 0.34 | 112.03 ± 0.22 | 111.35 ± 0.29 | 110.13 ± 0.34 |
| 20 | 113.07 ± 0.32 | 111.63 ± 0.26 | 109.85 ± 0.30 | 108.92 ± 0.37 | 107.27 ± 0.22 |
| 25 | 112.00 ± 0.38 | 109.17 ± 0.22 | 107.50 ± 0.40 | 105.84 ± 0.23 | 104.31 ± 0.33 |
| 30 | 110.38 ± 0.22 | 107.79 ± 0.31 | 105.87 ± 0.28 | 103.91 ± 0.24 | 102.70 ± 0.25 |
| Time, Min | Temperature, °C | ||||
|---|---|---|---|---|---|
| 160 | 170 | 180 | 190 | 200 | |
| 0 | 84.86 ± 0.17 | ||||
| 5 | 83.20 ± 0.24 | 82.68 ± 0.38 | 81.71 ± 0.22 | 80.33 ± 0.30 | 79.26 ± 0.18 |
| 10 | 82.37 ± 0.20 | 81.12 ± 0.23 | 79.54 ± 0.13 | 77.88 ± 0.15 | 75.41 ± 0.26 |
| 15 | 81.42 ± 0.25 | 79.66 ± 0.14 | 78.02 ± 0.26 | 74.83 ± 0.30 | 73.62 ± 0.22 |
| 20 | 80.57 ± 0.23 | 78.20 ± 0.29 | 76.86 ± 0.17 | 72.07 ± 0.32 | 71.16 ± 0.38 |
| 25 | 79.69 ± 0.28 | 77.07 ± 0.11 | 74.50 ± 0.34 | 71.32 ± 0.28 | 70.98 ± 0.24 |
| 30 | 78.58 ± 0.19 | 76.27 ± 0.23 | 73.70 ± 0.27 | 70.19 ± 0.31 | 69.85 ± 0.20 |
| Parameter | Sample | Equations of Statistical Mathematical Models |
|---|---|---|
| PV | Sunflower oil | yPV = 240.6 − 2.665·x1 − 4.887·x2 + 0.007·x12 − 0.010·x22 + 0.035·x1·x2 |
| Extra virgin olive oil | yPV = 208.8 − 2.354·x1 − 1.854·x2 + 0.007·x12 − 0.005·x22 + 0.014·x1·x2 | |
| IV | Sunflower oil | yIV = 154.94 − 0.386·x1 + 0.680·x2 + 0.001·x12- + 0.002·x22 − 0.006·x1·x2 |
| Extra virgin olive oil | yIV = 101.6 − 0.130 ·x1+ 0.728·x2 + 0.0002·x12 + 0.008·x22 −0.007·x1·x2 |
| Concordance Indicators | PV | IV | ||
|---|---|---|---|---|
| Sunflower Oil | Extra Virgin Olive Oil | Sunflower Oil | Extra Virgin Olive Oil | |
| Adequacy variance, σ2 | 6.55 | 8.03 | 0.83 | 0.69 |
| Standard deviation, σ | 2.56 | 2.83 | 0.29 | 0.82 |
| Model precision indicator, R2 | 0.977 | 0.951 | 0.997 | 0.973 |
| Correlation coefficient, R | 0.988 | 0.975 | 0.998 | 0.986 |
| Type of Fresh Oil | AV, mgKOH/g | FFA, % | PV, mEq O2/kg | IV, g I2/100 g | TPC, % | Moisture Content, % | Viscosity, mm2/s | Density, g/cm3 | RI at 25 °C, nD |
|---|---|---|---|---|---|---|---|---|---|
| Sunflower | 0.16 ± 0.02 | 0.05 | 1.18 ± 0.07 | 119.47 ± 1.86 | 4.3 ± 0.5 | 0.10 ± 0.02 | 33.48 ± 0.04 | 0.88 ± 0.02 | 1.472 ± 0.01 |
| Palm | 0.36 ± 0.07 | 0.09 | 1.42 ± 0.16 | 51.44 ± 0.93 | 4.1 ± 0.0 | 0.10 ± 0.01 | 34.17± 0.03 | 0.89 ± 0.04 | 1.451 ± 0.00 |
| Extra virgin olive | 0.28 ± 0.03 | 0.3 | 0.79 ± 0.04 | 84.86 ± 1.50 | 2.2 ± 0.3 | 0.08 ± 0.01 | 33.50 ± 0.03 | 0.85 ± 0.01 | 1.469 ± 0.01 |
| Sample No. | AV, mg KOH/g | FFA, % | PV, mEq O2/kg | IV, g I2/100 g | TPC, % | Moisture Content, % | Viscosity, mm2/s | Density, g/cm3 | RI at 25 °C, nD |
|---|---|---|---|---|---|---|---|---|---|
| S1 | 3.58 ± 0.13 | 1.80 | 41.62 ± 0.26 | 103.50 ± 2.31 | 40.0 ± 0.0 | 1.30 ± 0.20 | 43.88 ± 0.07 | 0.92 ± 0.08 | 1.477 ± 0.01 |
| S2 | 4.20 ± 0.20 | 2.11 | 43.27 ± 0.33 | 105.02 ± 2.25 | >40.0 | 1.29 ± 0.25 | 42.76 ± 0.11 | 0.93 ± 0.05 | 1.475 ± 0.001 |
| S3 | 4.12 ± 0.19 | 2.07 | 50.45 ± 0.57 | 90.81 ± 1.64 | 39.5 ± 0.2 | 1.83 ± 0.33 | 44.98 ± 0.09 | 0.91 ± 0.03 | 1.478 ± 0.002 |
| S4 | 3.09 ± 0.11 | 1.55 | 171.89 ± 1.80 | 40.54 ± 1.01 | >40 | 1.74 ± 0.28 | 42.41 ± 0.08 | 0.90 ± 0.02 | 1.456 ± 0.000 |
| S5 | 2.56 ± 0.07 | 1.28 | 53.70 ± 0.49 | 44.19 ± 0.55 | 39.2 ± 0.1 | 1.02 ± 0.19 | 43.44 ± 0.04 | 0.94 ± 0.04 | 1.457 ± 0.004 |
| S6 | 3.87 ± 0.12 | 1.95 | 59.61 ± 1.44 | 95.99 ± 2.63 | 38.4 ± 0.5 | 1.09 ± 0.12 | 41.33 ± 0.06 | 0.91 ± 0.05 | 1.476 ± 0.002 |
| S7 | 5.45 ± 0.10 | 2.75 | 14.03 ± 0.21 | 75.53 ± 1.58 | 23.1 ± 0.2 | 1.22 ± 0.14 | 41.04 ± 0.03 | 0.92 ± 0.07 | 1.474 ± 0.005 |
| Sample No. | AV, mg KOH/g | FFA, % | PV, mEq O2/kg | IV, g I2/100 g | TPC, % | Moisture Content, % | Viscosity, mm2/s | Density, g/cm3 | RI at 25 °C, nD |
|---|---|---|---|---|---|---|---|---|---|
| S1 | 3.16 ± 0.03 | 1.59 | 8.51 ± 0.29 | 106.27 ± 1.30 | 39.12 ± 0.12 | 1.38 ± 0.15 | 36.21 ± 0.05 | 0.88 ± 0.06 | 1.471 ± 0.04 |
| S2 | 3.95 ± 0.11 | 1.99 | 10.18 ± 0.57 | 103.00 ± 2.06 | 39.40 ± 0.13 | 1.30 ± 0.28 | 35.83 ± 0.02 | 0.89 ± 0.02 | 1.473 ± 0.03 |
| S3 | 3.84 ± 0.06 | 1.93 | 6.32 ± 0.40 | 91.93 ± 2.42 | 38.69 ± 0.10 | 2.00 ± 0.21 | 37.55 ± 0.04 | 0.88 ± 0.08 | 1.472 ± 0.01 |
| S4 | 3.09 ± 0.02 | 1.55 | 140.61 ± 3.08 | 42.68 ± 2.09 | 39.27 ± 0.18 | 1.99 ± 0.16 | 36.43 ± 0.08 | 0.89 ± 0.06 | 1.450 ± 0.01 |
| S5 | 2.56 ± 0.07 | 1.29 | 9.85 ± 0.96 | 45.30 ± 2.15 | 37.83 ± 0.15 | 1.14 ± 0.14 | 37.52 ± 0.03 | 0.90 ± 0.04 | 1.451 ± 0.01 |
| S6 | 3.63 ± 0.09 | 1.83 | 14.02 ± 0.81 | 96.13 ± 2.28 | 37.91 ± 0.08 | 1.17 ± 0.10 | 34.72 ± 0.07 | 0.90 ± 0.05 | 1.472 ± 0.02 |
| S7 | 3.82 ± 0.08 | 1.92 | 4.22 ± 0.22 | 77.23 ± 1.93 | 22.75 ± 0.02 | 1.20 ± 0.09 | 34.35 ± 0.09 | 0.88 ± 0.03 | 1.470 ± 0.01 |
| Soap | pH | Foam Stability, cm | MIIE, % | Consistency | Hardness | ||
|---|---|---|---|---|---|---|---|
| Fresh | After 6 Weeks | Fresh | After 6 Weeks | ||||
| SP1—Sunflower | 9.71 ± 0.03 | 23.0 ± 1.0 | 0.30 ± 0.02 | Soft | Semi-hard | 1/5 | 3/5 |
| SP2—Olive | 9.06 ± 0.06 | 24.0 ± 2.0 | 0.20 ± 0.01 | Soft | Semi-hard | 1/5 | 3/5 |
| SP3—Palm | 10.15 ± 0.02 | 26.0 ± 1.5 | 0.40 ± 0.02 | Hard | Very hard | 5/5 | 5/5 |
| SP4—Sunflower/Palm (ratio 1:3) | 9.74 ± 0.05 | 25.0 ± 2.0 | 0.70 ± 0.03 | Semi-hard | Hard | 3/5 | 4/5 |
| SP5—Olive/Palm (ratio 1:3) | 9.80 ± 0.08 | 27.0 ± 2.5 | 0.50 ± 0.05 | Semi-hard | Hard | 3/5 | 4/5 |
| No. | Concentration | Sample Inhibition Diameter Area (mm) | |||||
|---|---|---|---|---|---|---|---|
| SP1—Soap from Sunflower Oil | SP2—Soap from Palm Oil | SP3—Soap from Olive Oil | SP4—Soap from Sunflower: Palm Oil (Ratio 1:3) | SP5—Soap from Olive: Palm Oil (Ratio 1:3) | Commercial Soap (Safeguard) | ||
| 1 | 500 mg/mL | 6.0 * ± 0.15 | 10.8 * ± 0.15 | 6.9 * ± 0.35 | 8.8 * ± 0.25 | 8.0 * ± 0.20 | 19.0 * ± 0.05 |
| 2 | 250 mg/mL | 5.0 * ± 0.20 | 9.0 * ± 0.20 | 5.0 * ± 0.15 | 6.9 * ± 0.20 | 6.8 * ± 0.15 | 17.1 * ± 0.05 |
| 3 | 125 mg/mL | 4.0 * ± 0.20 | 7.0 * ± 0.15 | 4.9 * ± 0.15 | 4.8 * ± 0.15 | 5.9 * ± 0.15 | 14.0 * ± 0.05 |
| No. | Concentration | Sample Inhibition Diameter Area (mm) | |||||
|---|---|---|---|---|---|---|---|
| SP1—Soap from Sunflower Oil | SP2—Soap from Palm Oil | SP3—Soap from Olive Oil | SP4—Soap from Sunflower: Palm Oil (Ratio 1:3) | SP5—Soap from Olive: Palm Oil (Ratio 1:3) | Commercial Soap (Safeguard) | ||
| 1 | 500 mg/mL | 6.0 * ± 0.15 | 7.6 * ± 0.05 | 6.0 * ± 0.05 | 7.1 * ± 0.05 | 7.0 * ± 0.15 | 10.1 * ± 0.35 |
| 2 | 250 mg/mL | 4.0 *± 0.15 | 6.1 * ± 0.10 | 5.0 *± 0.10 | 6.1 * ± 0.10 | 6.0 * ± 0.15 | 8.1 * ± 0.05 |
| 3 | 125 mg/mL | 3.0 * ± 0.10 | 6.0 * ± 0.05 | 5.1 * ± 0.10 | 5.9 * ± 0.20 | 5.1 * ± 0.10 | 7.0 * ± 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glevitzky, M.; Corcheş, M.-T.; Şerban, S.G.; Strugariu, M.-L.; Kiss, I.; Vică, M.L. Sustainable Recycling of Used Cooking Oils Through the Production of Biodegradable Antimicrobial Soaps. Appl. Sci. 2025, 15, 11472. https://doi.org/10.3390/app152111472
Glevitzky M, Corcheş M-T, Şerban SG, Strugariu M-L, Kiss I, Vică ML. Sustainable Recycling of Used Cooking Oils Through the Production of Biodegradable Antimicrobial Soaps. Applied Sciences. 2025; 15(21):11472. https://doi.org/10.3390/app152111472
Chicago/Turabian StyleGlevitzky, Mirel, Mihai-Teopent Corcheş, Sorina Gabriela Şerban, Maria-Laura Strugariu, Imre Kiss, and Mihaela Laura Vică. 2025. "Sustainable Recycling of Used Cooking Oils Through the Production of Biodegradable Antimicrobial Soaps" Applied Sciences 15, no. 21: 11472. https://doi.org/10.3390/app152111472
APA StyleGlevitzky, M., Corcheş, M.-T., Şerban, S. G., Strugariu, M.-L., Kiss, I., & Vică, M. L. (2025). Sustainable Recycling of Used Cooking Oils Through the Production of Biodegradable Antimicrobial Soaps. Applied Sciences, 15(21), 11472. https://doi.org/10.3390/app152111472

