Seepage Response of Fractured Sandstone to the True Triaxial Gas–Solid Coupling Effect
Abstract
1. Introduction
2. Experimental Setup
2.1. Material Preparation
2.2. True Triaxial Gas–Solid Coupling Rock Mass Seepage Test System
2.3. Experimental Scheme
3. Experimental Results and Discussion
3.1. Characteristics of Stress–Strain
3.2. The Influence of Pore Pressure on Permeability
3.3. Influence of the Fracture on Permeability
3.4. Influence of In Situ Stress on Permeability
3.5. Relationship of Permeability and Axial Strain
3.6. Establishment of Stress-Dependent Permeability Theoretical Modeling
4. Conclusions
- (1)
- The morphology of fractures in low-permeability sandstone significantly influences the evolution of both permeability and strain. Among different fracture sizes, small fractures exhibit the greatest sensitivity to increases in the maximum principal stress, followed by medium and large fractures. In contrast, the most pronounced principal strain response to increasing principal stress occurs in large fractures, with medium and small fractures showing successively lower responses. Overall, fracture conductivity generally decreases, with minor variations observed specifically in small fractures.
- (2)
- Hydrodynamic pressure influences the fracture conductivity, and an exponential correlation was observed. The permeability of sandstone is negatively correlated to hydrodynamic pressure; the maximum permeability of 9 × 10−16 m2 presented at 0.3 MPa, and minimum permeability of 0.1 × 10−16 m2 presented at 1.8 MPa. The decrease in amplitude increased with the increase in fracture size. The gas conductivity decreased with the occurrence of turbulence flow due to the interaction of dynamic flow and limited connected channel.
- (3)
- In situ stress significantly influences the evolution of both principal strain and pore pressure-dependent permeability. Permeability decreases with increasing minimum and intermediate principal stresses. This decreasing trend in response to principal stress is pronounced at low pore pressures, while only a slight permeability response is observed at higher pore pressures ranging from 0.6 to 1.8 MPa in situ.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dang, F.Q.; Li, S.Y.; Dong, H.; Wang, Z.J.; Zhu, J.Z. Experimental study on the oil recovery characteristics of CO2 energetic fracturing in ultralow-permeability sandstone reservoirs utilizing nuclear magnetic resonance. Fuel 2024, 366, 131370. [Google Scholar] [CrossRef]
- Tang, M.; Zhang, T.; Ma, Y.K.; Hao, D.Y.; Yang, X.; Li, Y.F. Experimental study on fracture effect on the multiphase flow in ultra-low permeability sandstone based on LF-NMR. Geoenergy Sci. Eng. 2023, 222, 211399. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, M.; Ma, Y.K.; Zhu, G.P.; Zhang, Q.H.; Wu, J.; Xie, Z.Z. Experimental study on CO2/Water flooding mechanism and oil recovery in ultralow—Permeability sandstone with online LF-NMR. Energy 2022, 252, 123948. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, M.; Yuan, L.; Zhu, G.P.; Zhang, C.; Liu, Y.; Li, Y.F.; Wang, W.; Yang, X. Experimental study on stress-dependent multiphase flow in ultra-low permeability sandstone during CO2 flooding based on LF-NMR. Energy 2023, 278, 127874. [Google Scholar] [CrossRef]
- Liu, J.Q.; Lyu, X.Z.; Liu, Y.; Zhang, P.P. Energy evolution and macro-micro failure mechanisms of frozen weakly cemented sandstone under uniaxial cyclic loading and unloading. Cold Reg. Sci. Technol. 2023, 214, 103947. [Google Scholar] [CrossRef]
- Vasyliev, L.; Malich, M.; Vasyliev, D.; Katan, V.; Rizo, Z. Improving a technique to calculate strength of cylindrical rock samples in terms of uniaxial compression. Min. Miner. Deposits 2023, 17, 43–50. [Google Scholar] [CrossRef]
- Abbas, H.A.; Mohamed, Z.; Kudus, S.A. Deformation behaviour, crack initiation and crack damage of weathered composite sandstone-shale by using the ultrasonic wave and the acoustic emission under uniaxial compressive stress. Int. J. Rock. Mech. Min. Sci. 2023, 170, 105497. [Google Scholar] [CrossRef]
- Jiang, X.Y.; Wu, D.; Zhao, Z.X.; Yang, Y.; Tian, J.W.; Wang, F.L. Experimental and numerical study on the damage evolution and acoustic emission multi-parameter responses of single flaw sandstone under uniaxial compression. Theor. Appl. Fract. Mech. 2024, 133, 104535. [Google Scholar] [CrossRef]
- Ishibashi, T.; Asanuma, H.; Mukuhira, Y.; Watanabe, N. Laboratory hydraulic shearing of granitic fractures with surface roughness under stress states of EGS: Permeability changes and energy balance. Int. J. Rock. Mech. Min. Sci. 2023, 170, 105512. [Google Scholar] [CrossRef]
- Ishibashi, T.; Yamaya, Y.; Asanuma, H. Experimental insights into coupled hydraulic, mechanical, and electrical behaviors of granite fractures: Implications for indirect estimation of crustal permeability changes. Int. J. Rock. Mech. Min. Sci. 2025, 188, 106060. [Google Scholar] [CrossRef]
- Yu, B.C.; Zhao, H.G.; Tian, J.B.; Liu, C.; Song, Z.L.; Liu, Y.B.; Li, M.H. Modeling study of sandstone permeability under true triaxial stress based on backpropagation neural network, genetic programming, and multiple regression analysis. J. Nat. Gas. Sci. Eng. 2021, 86, 103742. [Google Scholar] [CrossRef]
- Niu, Z.H.; Zhu, Z.D.; Que, X.C.; Xie, X.H.; Jin, K. Experimental study on damage evolution process, seepage characteristics, and energy response of columnar jointed basalt under true triaxial cyclic loading. Geoenergy Sci. Eng. 2024, 237, 212774. [Google Scholar] [CrossRef]
- Lu, J.; Yin, G.Z.; Deng, B.Z.; Zhang, W.Z.; Li, M.H.; Chai, X.W.; Liu, C.; Liu, Y.B. Permeability characteristics of layered composite coal-rock under true triaxial stress conditions. J. Nat. Gas. Sci. Eng. 2019, 66, 60–76. [Google Scholar] [CrossRef]
- Liu, C.; Yin, G.Z.; Li, M.H.; Deng, B.Z.; Song, Z.L.; Liu, Y.B.; Yin, S.Y. Shale permeability model considering bedding effect under true triaxial stress conditions. J. Nat. Gas. Sci. Eng. 2019, 68, 102908. [Google Scholar] [CrossRef]
- Duan, X.L.; Wang, W.; Liu, S.F.; Cao, Y.J.; Zheng, Z.; Zhu, Q.Z. Experimental investigation on mechanical behavior, energy evolution and gas permeability of anisotropic phyllite subjected to triaxial compression and cyclic loading. Geomech. Energy Environ. 2023, 35, 100483. [Google Scholar] [CrossRef]
- Liu, J.C.; Jia, W.S.; Duan, H.F.; Li, X.; Xia, K.W. Experimental study on the deformation and failure characteristics of cement stone under true triaxial stress state. Constr. Build. Mater. 2024, 449, 138397. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Long, Y.D.; Zhang, T.; Zhou, X.P. A true triaxial experiment investigation of the mechanical and deformation failure behaviors of flawed granite after exposure to high-temperature treatment. Eng. Fract. Mech. 2024, 306, 110273. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Liu, Z.B.; Liu, F.J.; Shao, J.F.; Li, G.L. Anisotropic strength, deformation and failure of gneiss granite under high stress and temperature coupled true triaxial compression. J. Rock. Mech. Geotech. Eng. 2024, 16, 860–876. [Google Scholar] [CrossRef]
- Meng, F.B.; Shi, L.; Hall, S.; Baud, P.; Wong, T.F. Onset of pore collapse and dilatancy in porous sandstone under true triaxial compression: Experimental observation and micromechanical modeling. Int. J. Rock. Mech. Min. Sci. 2025, 186, 105983. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Meng, X.R.; Zhao, G.M.; Liu, C.Y.; Liu, Z.X.; Wu, X.K. Energy dissipation and damage mechanism of rocks under true triaxial graded perturbations. Soil. Dyn. Earthq. Eng. 2025, 190, 109192. [Google Scholar] [CrossRef]
- Singh, C.; Gupta, P.K. Numerical analysis of failure mechanics of concrete under true dynamic triaxial loading using a four-phase meso-model. Constr. Build. Mater. 2024, 450, 138661. [Google Scholar] [CrossRef]
- Wibisono, D.Y.; Gutierrez, M.; Majumder, D. Experimental investigation of tunnel damage and spalling in brittle rock using a true-triaxial cell. Int. J. Rock. Mech. Min. Sci. 2024, 182, 105884. [Google Scholar] [CrossRef]
- Couture, C.; Besuelle, P. A true triaxial experimental study on porous Vosges sandstone: From strain localization precursors to failure using full-field measurements. Int. J. Rock. Mech. Min. Sci. 2022, 153, 105031. [Google Scholar] [CrossRef]
- Lin, H.F.; Ji, P.F.; Kong, X.G.; Li, S.G.; Long, H.; Xiao, T.; Li, B. Experimental study on the influence of gas pressure on CH4 adsorption-desorption-seepage and deformation characteristics of coal in the whole process under triaxial stress. Fuel 2023, 333, 126513. [Google Scholar] [CrossRef]
- Gan, L.; Liu, Y.; Xu, F.; Ma, H.Y.; Xu, W.C. Experimental investigation of the seepage characteristics of a single fracture in limestone with different roughness and seepage fluids. J. Hydrol. 2023, 622, 129699. [Google Scholar] [CrossRef]
- Zhang, S.H.; Wu, S.C.; Duan, K. Study on the deformation and strength characteristics of hard rock under true triaxial stress state using bonded-particle model. Comput. Geotechnol. 2019, 112, 1–16. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Liu, S.J.; Kou, M.M.; Wang, Z.Q. Mechanical and failure characteristics of fissured marble specimens under true triaxial compression: Insights from 3-D numerical simulations. Comput. Geotechnol. 2020, 127, 103785. [Google Scholar] [CrossRef]
- Gao, Y.H.; Feng, X.T. Study on damage evolution of intact and jointed marble subjected to cyclic true triaxial loading. Eng. Fract. Mech. 2019, 215, 224–234. [Google Scholar] [CrossRef]
- Wang, S.S.; Xu, W.Y.; Yan, L.; Feng, X.T.; Xie, W.C.; Chen, H.J. Experimental investigation and failure mechanism analysis for dacite under true triaxial unloading conditions. Eng. Geol. 2020, 264, 105407. [Google Scholar] [CrossRef]
- Liu, C.Y.; Pan, C.; Zhao, G.M.; Xu, W.S.; Meng, X.R.; Liu, W.J.; Cheng, X. Experimental study on the failure mechanism of roadway surrounding rock under true triaxial loading: Insights from acoustic emission (AE) characteristics. Measurement 2025, 246, 116727. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Meng, X.R.; Zhao, G.M.; Li, Y.M.; Xu, W.S.; Liu, C.Y.; Liu, Z.X.; Wu, X.K.; Qin, Z.H.; Wang, K. Damage evolution and acoustic emission characteristics of sandstone under different true triaxial cyclic loading and unloading modes. Eng. Fail. Anal. 2025, 167, 108947. [Google Scholar] [CrossRef]
- Li, B.L.; Shi, W.H.; Zhang, H.J.; Long, Y. Failure behaviors and acoustic emission characteristics of flawed granite of different grain sizes: Insights from true triaxial experiments with a free face. Theor. Appl. Fract. Mech. 2024, 131, 104394. [Google Scholar] [CrossRef]
- Zhou, Y.S.; Zhang, S.C.; Ma, X.F.; Zhang, X.H.; Zhang, S.P. Hydraulic fracture morphology and conductivity of continental shale under the true-triaxial stress conditions. Fuel 2023, 352, 129056. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, R.H.; Pan, P.Z.; Qi, J.H.; Su, G.S.; Zheng, H. Shear failure behaviors and degradation mechanical model of rock mass under true triaxial multi-level loading and unloading shear tests. Int. J. Min. Sci. Technol. 2024, 34, 1385–1408. [Google Scholar] [CrossRef]
- Huang, J.; Hu, Q.T.; Qin, C.Z.; Song, Z.L.; Wang, X.D. Pre-peak acoustic emission characteristics of tight sandstone failure under true triaxial stress. J. Nat. Gas. Sci. Eng. 2022, 102, 104576. [Google Scholar] [CrossRef]
- Gao, H.; Xie, H.P.; Zhang, Z.T.; Lu, J.; Zhang, D.M.; Zhang, R.; Wu, M.Y. True triaxial energy evolution characteristics and failure mechanism of deep rock subjected to mining-induced stress. Int. J. Rock. Mech. Min. Sci. 2024, 176, 105724. [Google Scholar] [CrossRef]
- Jiang, C.B.; Yang, Y.; Wei, W.H.; Duan, M.K.; Yu, T. A new stress-damage-flow coupling model and the damage characterization of raw coal under loading and unloading conditions. Int. J. Rock. Mech. Min. Sci. 2021, 138, 104601. [Google Scholar] [CrossRef]
- Fan, L.; Liu, S.M. Evaluation of permeability damage for stressed coal with cyclic loading: An experimental study. Int. J. Coal Geol. 2019, 216, 103338. [Google Scholar] [CrossRef]
- Yang, S.; Wen, G.C.; Yan, F.Z.; Li, H.L.; Liu, Y.B.; Wu, W.B. Swelling characteristics and permeability evolution of anthracite coal containing expansive clay under water-saturated conditions. Fuel 2020, 279, 118501. [Google Scholar] [CrossRef]
- Xue, Y.; Ranjith, P.G.; Gao, F.; Zhang, D.C.; Cheng, H.M.; Chong, Z.H.; Hou, P. Mechanical behaviour and permeability evolution of gas-containing coal from unloading confining pressure tests. J. Nat. Gas. Sci. Eng. 2017, 40, 336–346. [Google Scholar] [CrossRef]
- Jiang, T.W.; Yao, W.; Sun, X.W.; Qi, C.Y.; Li, X.; Xia, K.W.; Zhang, J.; Nasseri, M.H.B. Evolution of anisotropic permeability of fractured sandstones subjected to true-triaxial stresses during reservoir depletion. J. Petrol. Sci. Eng. 2021, 200, 108251. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, D.M.; Lu, J.; Yin, G.Z.; Wu, M.Y. Experimental study on infuence of intermediate principal stress on the permeability of sandstone. Transport. Porous Med. 2020, 135, 753–778. [Google Scholar] [CrossRef]













| Item | Technical Parameter |
|---|---|
| Maximum axial pressure (σ1) | 70 MPa |
| Maximum lateral pressure (σ2) | 35 MPa |
| Maximum lateral pressure (σ3) | 10 MPa |
| Maximum gas pressure | 6 MPa |
| Maximum axial displacement | 50 mm |
| Maximum lateral displacement (unilateral) | 30 mm |
| Sample size | 100 mm × 100 mm × 200 mm |
| Force value test accuracy | ±1% of indicated value |
| Force value control accuracy | ±0.5% of the indicated value |
| Displacement test accuracy | ±1% of indicated value |
| Axial and lateral loading control mode | Force control and displacement control |
| Front and rear loading control mode | Force control |
| Overall stiffness of plant | Greater than 10 GN/m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Zhang, T.; Yu, X.; Li, Y.; Yang, X. Seepage Response of Fractured Sandstone to the True Triaxial Gas–Solid Coupling Effect. Appl. Sci. 2025, 15, 11371. https://doi.org/10.3390/app152111371
Gao Y, Zhang T, Yu X, Li Y, Yang X. Seepage Response of Fractured Sandstone to the True Triaxial Gas–Solid Coupling Effect. Applied Sciences. 2025; 15(21):11371. https://doi.org/10.3390/app152111371
Chicago/Turabian StyleGao, Yangwen, Tong Zhang, Xiang Yu, Yanfang Li, and Xin Yang. 2025. "Seepage Response of Fractured Sandstone to the True Triaxial Gas–Solid Coupling Effect" Applied Sciences 15, no. 21: 11371. https://doi.org/10.3390/app152111371
APA StyleGao, Y., Zhang, T., Yu, X., Li, Y., & Yang, X. (2025). Seepage Response of Fractured Sandstone to the True Triaxial Gas–Solid Coupling Effect. Applied Sciences, 15(21), 11371. https://doi.org/10.3390/app152111371
