Vibration Characteristics of a Beam with Elastic Time-Varying Stiffness Boundaries
Abstract
1. Introduction
2. Structure Model and Calculation Method
2.1. Theory Model
2.2. Stability Analysis
3. Simulation Verification
4. Results and Discussion
4.1. Modal Frequencies and Modal Shapes
4.2. Resonance Suppression Performance of the Time-Varying Stiffness Beam
4.3. Effects of Time-Varying Speed, Time-Varying Range, and Average Stiffness Level
4.4. Effects of Different Stiffness Variation Forms
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, L.; Sun, Y.; Zeng, J.; Qu, S. Experimental and numerical investigation of fatigue failure for metro bogie cowcatchers due to modal vibration and stress induced by rail corrugation. Eng. Fail. Anal. 2022, 142, 106810. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Hou, S.; Zhang, Z.; Zang, J.; Ni, Z.Y.; Teng, Y.Y.; Chen, L.Q. Nonlinear vibration absorption of laminated composite beams in complex environment. Nonlinear Dyn. 2020, 99, 2605–2622. [Google Scholar] [CrossRef]
- Qian, F.; Zuo, L. Tuned nonlinear spring-inerter-damper vibration absorber for beam vibration reduction based on the exact nonlinear dynamics model. J. Sound Vib. 2021, 509, 116246. [Google Scholar] [CrossRef]
- Li, W.; Wang, Z. Symmetric Single-Sided Vibro-Impact Nonlinear Energy Sink for Shock Response Suppression of a Cantilever Beam: An Experimental Demonstration. In Proceedings of the International Conference on Vibration and Energy Harvesting Applications, Auckland, New Zealand, 26–29 June 2024; Springer Nature Singapore: Singapore, 2025. [Google Scholar] [CrossRef]
- Alsahlani, A.; Alsabery, A.I.; Al-Khateeb, A.E.; Eidan, A.; Alshukri, M.J. Vibration suppression of smart composite beam using model predictive controller. Open Eng. 2024, 14, 20240001. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, J.; Li, H.; Zhou, H.; Hu, K.; Zhang, X.; Tzou, H. Active vibration control of flexible structures with super-coiled actuators. AIAA J. 2024, 62, 1195–1204. [Google Scholar] [CrossRef]
- Mishra, V.N.; Gupta, A.; Sarangi, S.K. Numerical and experimental study of layered beams with vibration-damping coatings for improved vibration mitigation. Mech. Res. Commun. 2025, 148, 104476. [Google Scholar] [CrossRef]
- Terzioglu, F.; Rongong, J.A. Selection of granular damper parameters to achieve optimum vibration attenuation on vibrating structures. Mech. Syst. Signal Process. 2025, 229, 112512. [Google Scholar] [CrossRef]
- Sinapius, M. Adaptronics—Smart Structures and Materials; Springer Vieweg: Berlin, Germany, 2021; pp. 128–137. [Google Scholar]
- Lei, X.; Shen, L.; Chen, Z.; Niu, H.; Wei, C.; Zhang, X. Experimental analysis of additional aerodynamic effects caused by wind-driven rain on bridge main girder. J. Cent. South Univ. 2022, 29, 2743–2756. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.; Guo, Z.; Sheng, M.; Li, Y. Vibration characteristics of the time-dependent stiffness oscillator system based on finite difference method. In Proceedings of the International Conference on Acoustics, Fluid Mechanics and Engineering, Hangzhou, China, 8–11 November 2024; IOP Publishing: Bristol, UK, 2025. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, W.; Wang, Z.; Lou, X.; Görges, D. Robust boundary control approaches to the stabilization of the Euler–Bernoulli beam under external disturbances. J. Vib. Control 2023, 29, 4841–4856. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Pan, G. A time-varying boundary method for multimodal vibration suppression of beam. J. Cent. South Univ. 2023, 30, 4122–4137. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Pan, G. Analysis of Resonance Suppression Performance of a Time-Varying Isolation Platform. Int. J. Acoust. Vib. 2024, 29, 13–20. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Pan, G. A time-domain piecewise calculation method of a time-varying isolation platform. Mech. Syst. Signal Process. 2025, 228, 112416. [Google Scholar] [CrossRef]
- Abramyan, A.K.; Vakulenko, S.A. Oscillations of a beam with a time-varying mass. Nonlinear Dyn. 2011, 63, 135–147. [Google Scholar] [CrossRef]
- He, W.; Nie, S.; Meng, T.; Liu, Y. Modeling and vibration control for a moving beam with application in a drilling riser. IEEE Trans. Control Syst. Technol. 2016, 25, 1036–1043. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, D.; Xu, G. Stabilization of a Timoshenko beam system with a tip mass under unknown non-uniformly bounded disturbances. IMA J. Math. Control Inf. 2020, 37, 241–259. [Google Scholar] [CrossRef]
- Moslemi, A.; Khadem, S.E.; Khazaee, M.; Davarpanah, A. Nonlinear vibration and dynamic stability analysis of an axially moving beam with a nonlinear energy sink. Nonlinear Dyn. 2021, 104, 1955–1972. [Google Scholar] [CrossRef]
- Huang, J.L.; Zhou, W.J.; Zhu, W.D. Quasi-periodic motions of high-dimensional nonlinear models of a translating beam with a stationary load subsystem under harmonic boundary excitation. J. Sound Vib. 2019, 462, 114870. [Google Scholar] [CrossRef]
- Pourzeynali, S.; Zhu, X.; Zadeh, A.G.; Rashidi, M.; Samali, B. Comprehensive study of moving load identification on bridge structures using the explicit form of Newmark-β method: Numerical and experimental studies. Remote Sens. 2021, 13, 2291. [Google Scholar] [CrossRef]
- Omar, A.; Sitli, Y.; Elmhaia, O.; Rammane, M.; Mesmoudi, S.; Hilali, Y.; Bourihane, O. Impact of polymeric composites on static and dynamic behaviors of Timoshenko beams using spectral and Newmark-methods. J. Vib. Eng. Technol. 2024, 12, 2095–2120. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, B.; Wang, T.; Su, T.; Chen, H. Dynamic analysis of multilayer-reinforced concrete frame structures based on NewMark-β method. Rev. Adv. Mater. Sci. 2021, 60, 567–577. [Google Scholar] [CrossRef]
- Yu, J. Study on the Compliance Control in Robot-Environment Interaction Using the Electromagnetic Variable Stiffness Principle; Shanghai Jiao Tong University: Shanghai, China, 2019; pp. 48–82. [Google Scholar]
- Rakowski, J. The interpretation of the shear locking in beam elements. Comput. Struct. 1990, 37, 769–776. [Google Scholar] [CrossRef]
- Mukherjee, S.; Prathap, G. Analysis of shear locking in Timoshenko beam elements using the function space approach. Commun. Numer. Methods Eng. 2001, 17, 385–393. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Taylor, R.L.; Too, J.M. Reduced integration technique in general analysis of plates and shells. Int. J. Numer. Methods Eng. 1971, 3, 275–290. [Google Scholar] [CrossRef]
- Hughes, T.J.R.; Cohen, M.; Haroun, M. Reduced and selective integration techniques in the finite element analysis of plates. Nucl. Eng. Des. 1978, 46, 203–222. [Google Scholar] [CrossRef]
- Prathap, G.; Bhashyam, G.R. Reduced integration and the shear-flexible beam element. Int. J. Numer. Methods Eng. 1982, 18, 195–210. [Google Scholar] [CrossRef]
- Reddy, J.N. On locking-free shear deformable beam finite elements. Comput. Methods Appl. Mech. Eng. 1997, 149, 113–132. [Google Scholar] [CrossRef]
- Fakher, M.; Hosseini-Hashemi, S. Vibration of two-phase local/nonlocal Timoshenko nanobeams with an efficient shear-locking-free finite-element model and exact solution. Eng. Comput. 2022, 38, 231–245. [Google Scholar] [CrossRef]
- Iandiorio, C.; Salvini, P. Elastic-plastic analysis with pre-integrated beam finite element based on state diagrams: Elastic-perfectly plastic flow. Eur. J. Mech. A Solids 2023, 97, 104837. [Google Scholar] [CrossRef]
- Bai, R.; Naceur, H.; Zhao, J.; Yi, J.; Ma, J.; Pu, H.; Luo, J. Improved numerical integration for locking treatment in the Peridynamic Timoshenko beam model. Eng. Comput. 2023, 40, 2225–2247. [Google Scholar] [CrossRef]
- Thomson, W. On the elasticity and viscosity of metals. Proc. R. Soc. Lond. A Math. Phys. Sci. 1865, 14, 289–297. [Google Scholar] [CrossRef]
- Voigt, W. Ieber innere Reibung fester korper, insbesondere der Metalle. Ann. Der Phys. 1892, 283, 671–693. [Google Scholar] [CrossRef]
- Maxwell, J.C. On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. A 1867, 157, 49–88. [Google Scholar] [CrossRef]
- Wiechert, E. Gesetze der elastischen Nachwirkung für steadye Temperatur. Ann. Der Phys. 1893, 286, 335–348. [Google Scholar] [CrossRef]
- Cremer, L.; Heckl, M.; Petersson, B.A.T. Structure-Borne Sound: Structural Vibrations and Sound Radiation at Audio Frequencies; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Lv, B.L.; Li, W.Y.; Dai, J.; Zhou, H.; Guo, F.; Gao, Z. Vibration analysis of beams with arbitrary elastic boundary conditions. Appl. Mech. Mater. 2011, 66, 1325–1329. [Google Scholar] [CrossRef]


























| Ref. [30] | Present | |
|---|---|---|
| Mode 1 | 1.0000 | 1.0000 |
| Mode 2 | 2.0000 | 2.0000 |
| Mode 3 | 3.0000 | 2.9999 |
| Mode 4 | 4.0000 | 3.9997 |
| First mode (Hz) | 6.24 | 6.19 | 6.18 | 6.18 | 6.18 |
| Second mode (Hz) | 17.75 | 17.49 | 17.48 | 17.48 | 17.48 |
| Third mode (Hz) | 29.74 | 29.26 | 29.25 | 29.24 | 29.24 |
| Fourth mode (Hz) | 53.40 | 50.95 | 50.87 | 50.85 | 50.85 |
| Range (Hz) | Total Level Decay (dB) | Peak Attenuation (dB) | |
|---|---|---|---|
| First mode | 4–7 | 8.9 | 11.1 |
| Second mode | 16–23 | 19.3 | 22.3 |
| Third mode | 23–34 | 19.1 | 29.5 |
| Fourth mode | 43–55 | 6.4 | 11.7 |
| Range (Hz) | Total Level Decay (dB) | Peak Attenuation (dB) | |
|---|---|---|---|
| First mode | 4–7 | 0.2 | 2.3 |
| Second mode | 13–23 | 1.7 | 4.2 |
| Third mode | 23–36 | 0.3 | 11.8 |
| Average Stiffness Level (N/m) | First Mode (Hz) | Second Mode (Hz) | Third Mode (Hz) | Fourth Mode (Hz) |
|---|---|---|---|---|
| 1000 | 3.0–5.6 | 5.6–13.8 | 17.3–24.2 | 44.6–47.7 |
| 1500 | 4.5–5.9 | 9.5–15.3 | 19.8–26.0 | 45.6–48.7 |
| 2000 | 5.2–6.0 | 12.0–16.5 | 22.1–27.7 | 46.7–49.8 |
| First mode (Hz) | 5.4 | 6.5 |
| Second mode (Hz) | 12.9 | 20.0 |
| Third mode (Hz) | 23.2 | 33.8 |
| Fourth Mode (Hz) | 47.1 | 54.5 |
| Fifth Mode (Hz) | 88.1 | 91.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Zhang, Y.; Sheng, M.; Liu, L.; Li, Y. Vibration Characteristics of a Beam with Elastic Time-Varying Stiffness Boundaries. Appl. Sci. 2025, 15, 11365. https://doi.org/10.3390/app152111365
Guo Z, Zhang Y, Sheng M, Liu L, Li Y. Vibration Characteristics of a Beam with Elastic Time-Varying Stiffness Boundaries. Applied Sciences. 2025; 15(21):11365. https://doi.org/10.3390/app152111365
Chicago/Turabian StyleGuo, Zhiwei, Yu Zhang, Meiping Sheng, Leilei Liu, and Yinling Li. 2025. "Vibration Characteristics of a Beam with Elastic Time-Varying Stiffness Boundaries" Applied Sciences 15, no. 21: 11365. https://doi.org/10.3390/app152111365
APA StyleGuo, Z., Zhang, Y., Sheng, M., Liu, L., & Li, Y. (2025). Vibration Characteristics of a Beam with Elastic Time-Varying Stiffness Boundaries. Applied Sciences, 15(21), 11365. https://doi.org/10.3390/app152111365

