Systematic Review of Acoustic Monitoring in Livestock Farming: Vocalization Patterns and Sound Source Analysis
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection
- Was noise and/or sound measured in facilities housing dairy cattle, beef cattle, laying hens, broiler chicken, or swine?
- Were the measurements conducted within animal production facilities, slaughterhouses, or controlled research environments?
- Was the methodology and the equipment used for sound measurement in animal production described in detail?
- Were quantitative criteria applied to assess sound within animal production systems?
2.3. Data Extraction and Data Processing
3. Results
3.1. General Overview of Studies
Paper | Summary of Objectives | Thematic Axis * |
---|---|---|
[27] | Analyze noise levels and gas concentrations in swine housing systems. | (II) |
[51] | Assess gas concentrations and sound pressure levels across three types of facilities for swine growing and finishing phases. | (II) |
[52] | Assess the impact of acute noise exposure on stress responses in broiler chicken. | (IV) |
[53] | Extract and classify acoustic features to develop a model for the identification of vocalizations in laying hens. | (III) |
[29] | Describe the acoustic features of cough sounds associated with pulmonary infection and compare them with coughing induced by citric acid inhalation. | (III) |
[28] | Investigate the feasibility of distinguishing cough sounds from background noise within a livestock facility. | (I) |
[54] | Investigate the relationship between animal vocalizations and body weight. | (I) |
[55] | Analyze and characterize chick vocalizations in relation to social behaviors and age progression. | (I) |
[56] | Identify and validate a model linking broiler growth rate with peak vocalization frequencies. | (I) |
[57] | Explore how vocalizations and phonatory behaviors of Holstein-Friesian cows during peripartum events (e.g., dystocia and calf separation) convey contextual and sensory information relevant to animal welfare assessment. | (I) |
[58] | Determine whether individual swine can be identified through scream analysis in audio recordings. | (I) |
[59] | Evaluate whether swine vocalizations are useful indicators of thermal adaptability. | (I) |
[60] | Measure noise levels in three slaughterhouses (bovine and swine) using a smartphone application. | (II) |
[61] | Update current knowledge regarding noise levels in swine farms in Germany. | (II) |
[62] | Propose a robust system for behavioral characterization of laying hens to enhance monitoring efficiency. | (I) |
[30] | Explore the effects of selected music genres on dairy cows milked by automated milking systems (AMS). | (IV) |
[63] | Evaluate the immediate physiological and behavioral responses of piglets subjected to ear notching, ear tagging, and intraperitoneal transponder injection. | (I) |
[64] | Investigate the relationship between vocal behavior and other behavioral traits in cattle. | (I) |
[65] | Analyze the relationship between sneeze frequency and various strains of influenza virus in domestic swine. | (I) |
[66] | Develop software to monitor piglet vocalizations based on stress-related sound patterns. | (I) |
[67] | Identify and analyze the vocal responses of sows and piglets following short-term separation and assess the potential of such calls to indicate levels of arousal. | (I) |
[68] | Identify changes in swine vocalizations during different stages of the castration process. | (I) |
[69] | Evaluate the impact of multiple daily feedings on body weight, backfat thickness, aggressiveness, and locomotor issues in sows. | (I) |
[70] | Determine whether the energy envelope dynamics of swine coughing sounds are associated with respiratory pathologies. | (I) |
[71] | Test the hypothesis that noise levels in swine housing vary with time of day and season. | (II) |
[72] | Evaluate the potential impact of sound measurements in swine facilities based on distance, time of day, building orientation, and season. | (II) |
[73] | Examine the effects of two injection methods and two local anesthetics on piglet escape behaviors, including vocalizations and resistance movements, as well as procedure duration. | (I) |
[74] | Investigate the effects of tartaric acid nebulization in swine finishing units. | (II) |
[75] | Characterize the types of sounds swine are exposed to during housing, transport, and slaughter stages. | (II) |
[76] | Assess the effectiveness of buprenorphine in mitigating pain during piglet castration using behavioral and vocalization indicators. | (I) |
[77] | Understand vocal behavior in cattle under different stress conditions. | (I) |
[78] | Conduct a situational analysis of noise levels in swine finishing farms and evaluate the adequacy of noise as a welfare indicator. | (II) |
[79] | Assess the feasibility of segmenting animal vocalizations using electronic acoustic analysis tools. | (I) |
[80] | Assess whether significant differences exist among acoustic characteristics of various vocal signals within a herd of crossbred cows. | (I) |
[81] | Determine the frequency ranges of six common sounds in commercial broiler houses, including fans, heaters, feeding systems, vocalizations, wing flapping, and dust bathing. | (III) |
[82] | Evaluate the effectiveness of low-cost, passive strategies for significant noise reduction. | (II) |
3.2. Animal Production Context
3.3. Sound Capture Technologies
Device Category | Representative Equipment (Brand/Model) | Typical Application | References |
---|---|---|---|
Early studio microphones | Sennheiser MKH416 Tu3; Brüel & Kjær 4165 | Direct vocalization recording, often connected to analog tape recorders | [75,79] |
Portable recorders (cassette/reel) | Uher 4200; Racal Store 4DS | Storage of vocalizations in early studies (1980s–1990s) | [75,77,79] |
Condenser microphones | Monacor ECM3005; Sennheiser ME67 | High-sensitivity recordings, often connected via laptop sound cards (e.g., Realtek AC97) | [28,29,57,70] |
Sound level meters (SLM) | Extech 407764; Voltcraft SL 300 | Background noise measurement in livestock housing | [69,71,72,82] |
Solid-state recorders | Marantz PMD 661 MK II | Modern portable storage of acoustic data | [56,57] |
Calibrators | Brüel & Kjær 4238; Norsonic AS 1251 | Checking equipment levels before data collection | [60,61,71,72,75,78,82] |
Video systems with external microphones | SOMO system (SoundTalks NV); other unspecified video + mic setups | Complement acoustic and visual data; automated detection | [56,62] |
Multi-equipment setups | Microphone + SLM; microphone + video | Combine multiple data sources to enhance environmental and acoustic characterization | [57,64,65,73,81,82] |
3.4. Variables and Parameters Assessed
4. Discussion
4.1. General Overview of Studies
4.2. Animal Production Context
4.3. Sound Capture Technologies
4.4. Variables and Parameters Assessed
4.5. Key Findings and Perspectives of the Articles
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs. World Population Prospects 2024: Summary of Results (UN DESA/POP/2024/TR/NO. 9); United Nations: New York, NY, USA, 2024; ISBN 978-92-1-003169-1.
- Ali, W.; Ali, M.; Ahmad, M.; Dilawar, S.; Firdous, A.; Afzal, A. Application of Modern Techniques in Animal Production Sector for Human and Animal Welfare. Turk. J. Agric.—Food Sci. Technol. 2020, 8, 457–463. [Google Scholar] [CrossRef]
- Dayoub, M.; Shnaigat, S.; Tarawneh, R.A.; Al-Yacoub, A.N.; Al-Barakeh, F.; Al-Najjar, K. Enhancing Animal Production through Smart Agriculture: Possibilities, Hurdles, Resolutions, and Advantages. Ruminants 2024, 4, 22–46. [Google Scholar] [CrossRef]
- Yu, Z.; Han, Y.; Cha, L.; Chen, S.; Wang, Z.; Zhang, Y. Design of an Intelligent Wearable Device for Real-Time Cattle Health Monitoring. Front. Robot. AI 2024, 11, 1441960. [Google Scholar] [CrossRef] [PubMed]
- Kanagamalliga, S.; Nath, S.S.; Usha Rani, D.I.; Lakshmi Prabha, J. Integration of loT for Precision Livestock Monitoring Through Geofencing. In Proceedings of the 5th International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 7–9 August 2024; pp. 437–442. [Google Scholar] [CrossRef]
- Cruz, V.; Rico, J.; Coelho, D.; Baptista, F. Innovative PLF Tool to Assess Growing-Finishing Pigs’ Welfare. Agronomy 2022, 12, 2159. [Google Scholar] [CrossRef]
- Baêta, F.; Souza, C. Ambiência Em Edificações Rurais 2 Edição; Universidade Federal de Viçosa: Viçosa, Brazil, 2012. [Google Scholar]
- Yaremchuk, K.; Dickson, L.; Burk’, K.; Shivapuja’, B.G. Noise Level Analysis of Commercially Available Toys. Int. J. Pediatr. Otorhinolaryngol. 1997, 41, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Olczak, K.; Penar, W.; Nowicki, J.; Magiera, A.; Klocek, C. The Role of Sound in Livestock Farming—Selected Aspects. Animals 2023, 13, 2307. [Google Scholar] [CrossRef] [PubMed]
- Kight, C.R.; Swaddle, J.P. How and Why Environmental Noise Impacts Animals: An Integrative, Mechanistic Review. Ecol. Lett. 2011, 14, 1052–1061. [Google Scholar] [CrossRef]
- Li, B.; Wang, Y.; Rong, L.; Zheng, W. Research Progress on Animal Environment and Welfare. Anim. Res. One Health 2023, 1, 78–91. [Google Scholar] [CrossRef]
- Rusu, A.; Rusu, A.; Byun, S. Noise Visualization for Animal Welfare Improvement. In Proceedings of the 28th International Conference Information Visualisation (IV), Coimbra, Portugal, 22–26 July 2024; pp. 64–69. [Google Scholar] [CrossRef]
- Weary, D.M.; Appleby, M.C.; Fraser, D. Responses of Piglets to Early Separation from the Sow. Appl. Anim. Behav. Sci. 1999, 63, 289–300. [Google Scholar] [CrossRef]
- Carrascal, V.J.C.; Pastrana Camacho, A.d.P.; López Ayala, V.; Velásquez, A.V.M.; Cajiao, P.M.N.; Córdoba, P.J.D. Animal Welfare Evaluation at Slaughterhouses for Pigs at the “Eje Cafetero” Region in Colombia. Meat Sci. 2021, 172, 108337. [Google Scholar] [CrossRef]
- Ferrari, S.; Costa, A.; Guarino, M. Heat Stress Assessment by Swine Related Vocalizations. Livest. Sci. 2013, 151, 29–34. [Google Scholar] [CrossRef]
- McGrath, N.; Dunlop, R.; Dwyer, C.; Burman, O.; Phillips, C.J.C. Hens Vary Their Vocal Repertoire and Structure When Anticipating Different Types of Reward. Anim. Behav. 2017, 130, 79–96. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, T.; Cuan, K.; Fang, C. An Intelligent Method for Detecting Poultry Eating Behaviour Based on Vocalization Signals. Comput. Electron. Agric. 2021, 180, 105884. [Google Scholar] [CrossRef]
- Roch, M.A.; Baumann-Pickering, S.; Gillespie, D.; Kanes, J.; Kim, K.; Klinck, H.; Mouy, X.; Sirovic, A. Navigating the Bioacoustic Landscape: Standardization and Interoperability of Acoustic Data Products. J. Acoust. Soc. Am. 2024, 155, A95. [Google Scholar] [CrossRef]
- Oestreich, W.K.; Oliver, R.Y.; Chapman, M.S.; Go, M.; McKenna, M.F. Listening to Animal Behavior to Understand Changing Ecosystems. Trends Ecol. Evol. 2024, 39, 961–973. [Google Scholar] [CrossRef] [PubMed]
- Coutant, M.; Villain, A.S.; Briefer, E.F. A Scoping Review of the Use of Bioacoustics to Assess Various Components of Farm Animal Welfare. Appl. Anim. Behav. Sci. 2024, 275, 106286. [Google Scholar] [CrossRef]
- Reza, M.N.; Ali, M.R.; Haque, M.A.; Jin, H.; Kyoung, H.; Choi, Y.K.; Kim, G.; Chung, S.-O. A Review of Sound-Based Pig Monitoring for Enhanced Precision Production. J. Anim. Sci. Technol. 2025, 67, 277–302. [Google Scholar] [CrossRef]
- Tullo, E.; Finzi, A.; Guarino, M. Review: Environmental Impact of Livestock Farming and Precision Livestock Farming as a Mitigation Strategy. Sci. Total Environ. 2019, 650, 2751–2760. [Google Scholar] [CrossRef]
- Berckmans, D. Precision Livestock Farming Technologies for Welfare Management in Intensive Livestock Systems. Rev. Sci. Tech. OIE 2014, 33, 189–196. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025; Available online: https://www.r-project.org/ (accessed on 9 July 2025).
- Posit team. RStudio: Integrated Development Environment for R. Posit Software; PBC: Boston, MA, USA, 2023; Available online: https://posit.co/ (accessed on 9 July 2025).
- Andrade, R.R.; Campos, A.T.; Cecchin, D.; Sousa, F.A.; Amaral, P.I.S. Acoustic environment and gas production in different growing-finishing swine facilities. Eng. Agríc. 2016, 36, 953–961. [Google Scholar] [CrossRef]
- Ferrari, S.; Piccinini, R.; Silva, M.; Exadaktylos, V.; Berckmans, D.; Guarino, M. Cough Sound Description in Relation to Respiratory Diseases in Dairy Calves. Prev. Vet. Med. 2010, 96, 276–280. [Google Scholar] [CrossRef]
- Ferrari, S.; Silva, M.; Guarino, M.; Aerts, J.M.; Berckmans, D. Cough Sound Analysis to Identify Respiratory Infection in Pigs. Comput. Electron. Agric. 2008, 64, 318–325. [Google Scholar] [CrossRef]
- Lemcke, M.-C.; Ebinghaus, A.; Knierim, U. Impact of Music Played in an Automatic Milking System on Cows’ Milk Yield and Behavior—A Pilot Study. Dairy 2021, 2, 73–78. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Munn, Z.; Stone, J.C.; Aromataris, E.; Klugar, M.; Sears, K.; Leonardi-Bee, J.; Barker, T.H. Assessing the Risk of Bias of Quantitative Analytical Studies: Introducing the Vision for Critical Appraisal within JBI Systematic Reviews. JBI Evid. Synth. 2023, 21, 467–471. [Google Scholar] [CrossRef]
- Moola, S.; Munn, Z.; Tufanaru, C.; Aromataris, E.; Sears, K.; Sfetcu, R.; Currie, M.; Qureshi, R.; Mattis, P.; Lisy, K.; et al. Chapter 7: Systematic Reviews of Etiology and Risk. In JBI Manual for Evidence Synthesis; Aromataris, E., Munn, Z., Eds.; JBI: Adelaide, Australia, 2020; ISBN 978-0-6488488-0-6. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Wickham, H.; Bryan, J. Readxl: Read Excel Files. R Package Version 1.4.5. 2025. Available online: https://CRAN.R-project.org/package=readxl (accessed on 9 July 2025).
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. Dplyr: A Grammar of Data Manipulation. R Package Version 1.1.4. 2023. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 9 July 2025).
- Wickham, H.; Vaughan, D.; Girlich, M. Tidyr: Tidy Messy Data. R Package Version 1.3.1. 2024. Available online: https://CRAN.R-project.org/package=tidyr (accessed on 9 July 2025).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Wickham, H. Forcats: Tools for Working with Categorical Variables (Factors). R Package Version 1.0.0. 2023. Available online: https://CRAN.R-project.org/package=forcats (accessed on 9 July 2025).
- Ooms, J. Writexl: Export Data Frames to Excel “xlsx” Format. R Package Version 1.5.4. 2025. Available online: https://CRAN.R-project.org/package=writexl (accessed on 9 July 2025).
- Wickham, H.; Pedersen, T.L.; Seidel, D. Scales: Scale Functions for Visualization. R Package Version 1.4.0. 2025. Available online: https://CRAN.R-project.org/package=scales (accessed on 9 July 2025).
- Neuwirth, E. RColorBrewer: ColorBrewer Palettes. R Package Version 1.1-3. 2022. Available online: https://CRAN.R-project.org/package=RColorBrewer (accessed on 9 July 2025).
- Wickham, H. Stringr: Simple, Consistent Wrappers for Common String Operations. R Package Version 1.5.0. 2023. Available online: https://CRAN.R-project.org/package=stringr (accessed on 9 July 2025).
- Hijmans, R.J. Terra: Spatial Data Analysis. R Package Version 1.8-60. 2025. Available online: https://CRAN.R-project.org/package=terra (accessed on 9 July 2025).
- Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. R J. 2018, 10, 439. [Google Scholar] [CrossRef]
- Slowikowski, K. Ggrepel: Automatically Position Non-Overlapping Text Labels with “Ggplot2”. R Package Version 0.9.6. 2024. Available online: https://CRAN.R-project.org/package=ggrepel (accessed on 9 July 2025).
- Garnier, S.; Ross, N.; Rudis, B.; Sciaini, M.; Camargo, A.P.; Scherer, C. Viridis(Lite)—Colorblind-Friendly Color Maps for R. R Package Version 0.4.2. 2023. Available online: https://CRAN.R-project.org/package=viridisLite (accessed on 9 July 2025).
- Krassowski, M.; Arts, M.; Lagger, C. ComplexUpset: Create Complex UpSet Plots Using ‘ggplot2’. R Package Version 1.3.3. 2021. Available online: https://CRAN.R-project.org/package=ComplexUpset (accessed on 9 July 2025).
- Csárdi, G.; Nepusz, T.; Müller, K.; Horvát, S.; Traag, V.; Zanini, F.; Noom, D. Igraph for R: Network Analysis and Visualization. R Package Version 2.1.4. 2025. Available online: https://CRAN.R-project.org/package=igraph (accessed on 9 July 2025).
- Pedersen, T.L. Ggraph: An Implementation of Grammar of Graphics for Graphs and Networks. R Package Version 2.2.2. 2024. Available online: https://CRAN.R-project.org/package=ggraph (accessed on 9 July 2025).
- Cecchin, D.; Campos, A.T.; Cruz, V.F.d.; Sousa, F.A.; Amaral, P.I.S.; Yanagi Junior, T. Air Quality in Swine Growing and Finishing Facilities with Different Building Typologies. Rev. Bras. Eng. Agríc. E Ambient. 2017, 21, 339–343. [Google Scholar] [CrossRef]
- Chloupek, P.; Voslářová, E.; Chloupek, J.; Bedáňová, I.; Pištěková, V.; Večerek, V. Stress in Broiler Chickens Due to Acute Noise Exposure. Acta Vet. Brno 2009, 78, 93–98. [Google Scholar] [CrossRef]
- Du, X.; Teng, G.; Wang, C.; Carpentier, L.; Norton, T. A Tristimulus-Formant Model for Automatic Recognition of Call Types of Laying Hens. Comput. Electron. Agric. 2021, 187, 106221. [Google Scholar] [CrossRef]
- Fontana, I.; Tullo, E.; Butterworth, A.; Guarino, M. An Innovative Approach to Predict the Growth in Intensive Poultry Farming. Comput. Electron. Agric. 2015, 119, 178–183. [Google Scholar] [CrossRef]
- Fontana, I.; Tullo, E.; Scrase, A.; Butterworth, A. Vocalisation Sound Pattern Identification in Young Broiler Chickens. Animal 2016, 10, 1567–1574. [Google Scholar] [CrossRef]
- Fontana, I.; Tullo, E.; Carpentier, L.; Berckmans, D.; Butterworth, A.; Vranken, E.; Norton, T.; Berckmans, D.; Guarino, M. Sound Analysis to Model Weight of Broiler Chickens. Poult. Sci. 2017, 96, 3938–3943. [Google Scholar] [CrossRef] [PubMed]
- Green, A.C.; Clark, C.E.F.; Lomax, S.; Favaro, L.; Reby, D. Context-Related Variation in the Peripartum Vocalisations and Phonatory Behaviours of Holstein-Friesian Dairy Cows. Appl. Anim. Behav. Sci. 2020, 231, 105089. [Google Scholar] [CrossRef]
- Heseker, P.; Bergmann, T.; Scheumann, M.; Traulsen, I.; Kemper, N.; Probst, J. Detecting Tail Biters by Monitoring Pig Screams in Weaning Pigs. Sci. Rep. 2024, 14, 4523. [Google Scholar] [CrossRef]
- Hillmann, E.; Mayer, C.; Schön, P.-C.; Puppe, B.; Schrader, L. Vocalisation of Domestic Pigs (Sus Scrofa Domestica) as an Indicator for Their Adaptation towards Ambient Temperatures. Appl. Anim. Behav. Sci. 2004, 89, 195–206. [Google Scholar] [CrossRef]
- Iulietto, M.F.; Sechi, P.; Mansi Gaudenzi, C.; Grispoldi, L.; Ceccarelli, M.; Barbera, S.; Cenci-Goga, B.T. Noise Assessment in Slaughterhouses by Means of a Smartphone App. Ital. J. Food Saf. 2018, 7, 79–82. [Google Scholar] [CrossRef]
- Kroll, L.; Herbrandt, S.; Kemper, N.; Fels, M. Determination of the Sound Level during Different Management Measures in Piglet Rearing Related to Animal Welfare and Human Health and Safety. Livest. Sci. 2024, 280, 105410. [Google Scholar] [CrossRef]
- Laleye, F.A.A.; Mousse, M.A. Attention-Based Recurrent Neural Network for Automatic Behavior Laying Hen Recognition. Multimed. Tools Appl. 2024, 83, 62443–62458. [Google Scholar] [CrossRef]
- Leslie, E.; Hernández-Jover, M.; Newman, R.; Holyoake, P. Assessment of Acute Pain Experienced by Piglets from Ear Tagging, Ear Notching and Intraperitoneal Injectable Transponders. Appl. Anim. Behav. Sci. 2010, 127, 86–95. [Google Scholar] [CrossRef]
- Meen, G.H.; Schellekens, M.A.; Slegers, M.H.M.; Leenders, N.L.G.; van Erp-van der Kooij, E.; Noldus, L.P.J.J. Sound Analysis in Dairy Cattle Vocalisation as a Potential Welfare Monitor. Comput. Electron. Agric. 2015, 118, 111–115. [Google Scholar] [CrossRef]
- Mito, M.; Aoki, T.; Mizutani, K.; Zempo, K.; Wakatsuki, N.; Maeda, Y.; Takemae, N.; Tsunekuni, R.; Saito, T. Frequency Analysis of the Sneeze Caused by Swine Influenza Virus Strains: Automatic Sneeze around-the-Clock Detection Using a Support Vector Machine. Comput. Electron. Agric. 2020, 179, 105789. [Google Scholar] [CrossRef]
- Moura, D.J.; Silva, W.T.; Naas, I.A.; Tolón, Y.A.; Lima, K.A.O.; Vale, M.M. Real Time Computer Stress Monitoring of Piglets Using Vocalization Analysis. Comput. Electron. Agric. 2008, 64, 11–18. [Google Scholar] [CrossRef]
- Olson, M.J.; Creamer, M.; Horback, K.M. Identification of Specific Call Types Produced by Pre-Weaning Gilts in Response to Isolation. Appl. Anim. Behav. Sci. 2021, 234, 105203. [Google Scholar] [CrossRef]
- Puppe, B.; Schön, P.C.; Tuchscherer, A.; Manteuffel, G. Castration-Induced Vocalisation in Domestic Piglets, Sus Scrofa: Complex and Specific Alterations of the Vocal Quality. Appl. Anim. Behav. Sci. 2005, 95, 67–78. [Google Scholar] [CrossRef]
- Schneider, J.D.; Tokach, M.D.; Dritz, S.S.; Nelssen, J.L.; DeRouchey, J.M.; Goodband, R.D. Effects of Feeding Schedule on Body Condition, Aggressiveness, and Reproductive Failure in Group-Housed Sows1,2. J. Anim. Sci. 2007, 85, 3462–3469. [Google Scholar] [CrossRef]
- Silva, M.; Exadaktylos, V.; Ferrari, S.; Guarino, M.; Aerts, J.-M.; Berckmans, D. The Influence of Respiratory Disease on the Energy Envelope Dynamics of Pig Cough Sounds. Comput. Electron. Agric. 2009, 69, 80–85. [Google Scholar] [CrossRef]
- Sistkova, M.; Dolan, A.; Broucek, J.; Bartos, P. Time of Day and Season Affect the Level of Noise Made by Pigs Kept on Slatted Floors. Arch. Anim. Breed. 2015, 58, 185–191. [Google Scholar] [CrossRef]
- Sistkova, M.; Broucek, J.; Bartos, P. Influence of Selected Factors on Sound Levels Inside and Outside of Pig Barns. Appl. Eng. Agric. 2016, 32, 401–407. [Google Scholar] [CrossRef]
- Skade, L.; Kristensen, C.S.; Nielsen, M.B.F.; Diness, L.H. Effect of Two Methods and Two Anaesthetics for Local Anaesthesia of Piglets during Castration. Acta Vet. Scand. 2021, 63, 1. [Google Scholar] [CrossRef]
- Stein, H.; Schulz, J.; Kemper, N.; Tichy, A.; Krauss, I.; Knecht, C.; Hennig-Pauka, I. Fogging Low Concentrated Organic Acid in a Fattening Pig Unit—Effect on Animal Health and Microclimate. Ann. Agric. Environ. Med. 2016, 23, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Talling, J.C.; Lines, J.A.; Wathes, C.M.; Waran, N.K. The Acoustic Environment of the Domestic Pig. J. Agric. Eng. Res. 1998, 71, 1–12. [Google Scholar] [CrossRef]
- Viscardi, A.V.; Turner, P.V. Efficacy of Buprenorphine for Management of Surgical Castration Pain in Piglets. BMC Vet. Res. 2018, 14, 318. [Google Scholar] [CrossRef]
- Watts, J.M.; Stookey, J.M. The Propensity of Cattle to Vocalise during Handling and Isolation Is Affected by Phenotype. Appl. Anim. Behav. Sci. 2001, 74, 81–95. [Google Scholar] [CrossRef]
- Wegner, B.; Spiekermeier, I.; Nienhoff, H.; Große-Kleimann, J.; Rohn, K.; Meyer, H.; Plate, H.; Gerhardy, H.; Kreienbrock, L.; Beilage, E.G.; et al. Status Quo Analysis of Noise Levels in Pig Fattening Units in Germany. Livest. Sci. 2019, 230, 103847. [Google Scholar] [CrossRef]
- Xin, H.; Deshazer, J.A.; Leger, D.W.; Asae, A.M. Pig Vocalizations Under Selected Husbandry Practices; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1989. [Google Scholar]
- Yajuvendra, S.; Lathwal, S.S.; Rajput, N.; Raja, T.V.; Gupta, A.K.; Mohanty, T.K.; Ruhil, A.P.; Chakravarty, A.K.; Sharma, P.C.; Sharma, V.; et al. Effective and Accurate Discrimination of Individual Dairy Cattle through Acoustic Sensing. Appl. Anim. Behav. Sci. 2013, 146, 11–18. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, Y.; Qi, H.; Tabler, G.T. Characterizing Sounds of Different Sources in a Commercial Broiler House. Animals 2021, 11, 916. [Google Scholar] [CrossRef]
- Young, M.T.; French, A.L.; Clymer, J.W. An Effective, Economical Method of Reducing Environmental Noise in the Vivarium. J. Am. Assoc. Lab. Anim. Sci. JAALAS 2011, 50, 513. [Google Scholar]
- Erasmus, L.M.; van Marle-Köster, E.; Masenge, A.; Ganswindt, A. Exploring the Effect of Auditory Stimuli on Activity Levels, Milk Yield and Faecal Glucocorticoid Metabolite Concentrations in Holstein Cows. Domest. Anim. Endocrinol. 2023, 82, 106767. [Google Scholar] [CrossRef]
- Sampaio, C.A.d.P.; Nääs, I.d.A.; Salgado, D.D.; Queirós, M.P.G. Avaliação Do Nível de Ruído Em Instalações Para Suínos. Rev. Bras. Eng. Agríc. E Ambient. 2007, 11, 436–440. [Google Scholar] [CrossRef]
- Pelletier, C. Impact of Anthropogenic Noise on the Welfare of Zoo-Housed Animals; University of British Columbia: Vancouver, BC, Canada, 2019. [Google Scholar]
- Arnold, N.A.; Ng, K.T.; Jongman, E.C.; Hemsworth, P.H. Avoidance of Tape-Recorded Milking Facility Noise by Dairy Heifers in a Y Maze Choice Task. Appl. Anim. Behav. Sci. 2008, 109, 201–210. [Google Scholar] [CrossRef]
- Stowell, D. Computational Bioacoustics with Deep Learning: A Review and Roadmap. PeerJ 2022, 10, e13152. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Sato, K.; Gautam, B.P. A Methodological Literature Review of Acoustic Wildlife Monitoring Using Artificial Intelligence Tools and Techniques. Sustainability 2023, 15, 7128. [Google Scholar] [CrossRef]
- Jiang, B.; Tang, W.; Cui, L.; Deng, X. Precision Livestock Farming Research: A Global Scientometric Review. Animals 2023, 13, 2096. [Google Scholar] [CrossRef]
- Willson, D.W.; Baier, F.S.; Grandin, T. An Observational Field Study on the Effects of Changes in Shadow Contrasts and Noise on Cattle Movement in a Small Abattoir. Meat Sci. 2021, 179, 108539. [Google Scholar] [CrossRef]
- Schön, P.C.; Puppe, B.; Manteuffel, G. Automated Recording of Stress Vocalisations as a Tool to Document Impaired Welfare in Pigs. Anim. Welf. 2004, 13, 105–110. [Google Scholar] [CrossRef]
- Voogt, A.M.; Schrijver, R.S.; Temürhan, M.; Bongers, J.H.; Sijm, D.T.H.M. Opportunities for Regulatory Authorities to Assess Animal-Based Measures at the Slaughterhouse Using Sensor Technology and Artificial Intelligence: A Review. Animal 2023, 13, 3028. [Google Scholar] [CrossRef]
- Uetake, K.; Humik, J.F.; Johnson, L. Effect of Music on Voluntary Approach of Dairy Cows to an Automatic Milking System. Appl. Anim. Behav. Sci. 1997, 53, 175–182. [Google Scholar] [CrossRef]
- Eugênia, M.; Canozzi, A.; Mederos, A.; Manteca, X.; Turner, S.; Mcmanus, C.; Zago, D.; Otávio, J.; Barcellos, J. A Meta-Analysis of Cortisol Concentration, Vocalization, and Average Daily Gain Associated with Castration in Beef Cattle. Res. Vet. Sci. 2017, 114, 430–443. [Google Scholar] [CrossRef]
- Losada-Espinosa, N.; Estévez-Moreno, L.X.; Bautista-Fernández, M.; Galindo, F.; Salem, A.Z.M.; Miranda-De La Lama, G.C. NC-ND License Cattle Welfare Assessment at the Slaughterhouse Level: Integrated Risk Profiles Based on the Animal’s Origin, Pre-Slaughter Logistics, and Iceberg Indicators. Prev. Vet. Med. 2021, 197, 105513. [Google Scholar] [CrossRef] [PubMed]
- Angrecka, S.; Solecka, U.; Vieira, F.M.C.; Herbut, P.; Deniz, M.; Adamczyk, K.; Godyń, D. Noise as a Factor of Environmental Stress for Cattle—A Review. Ann. Anim. Sci. 2023, 23, 717–723. [Google Scholar] [CrossRef]
- Aydin, A.; Berckmans, D. Using Sound Technology to Automatically Detect the Short-Term Feeding Behaviours of Broiler Chickens. Comput. Electron. Agric. 2016, 121, 25–31. [Google Scholar] [CrossRef]
- Du, X.; Carpentier, L.; Teng, G.; Liu, M.; Wang, C.; Norton, T. Assessment of Laying Hens’ Thermal Comfort Using Sound Technology. Sensors 2020, 20, 473. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, M.; Liu, J.; Wang, J.; Wu, Q.; Wang, G. Research on White Feather Broiler Health Monitoring Method Based on Sound Detection and Transfer Learning. Comput. Electron. Agric. 2023, 214, 108319. [Google Scholar] [CrossRef]
- Huang, J.; Wang, W.; Zhang, T. Method for Detecting Avian Influenza Disease of Chickens Based on Sound Analysis. Biosyst. Eng. 2019, 180, 16–24. [Google Scholar] [CrossRef]
- Mahdavian, A.; Minaei, S.; Marchetto, P.M.; Almasganj, F.; Rahimi, S.; Yang, C. Acoustic Features of Vocalization Signal in Poultry Health Monitoring. Appl. Acoust. 2021, 175, 107756. [Google Scholar] [CrossRef]
Acronym | Palabras Clave |
---|---|
Population | (((cattle OR cow* OR calves OR calf OR heifer*) AND (dairy OR lactating OR milking OR beef)) OR (chicken* OR “laying hen*” OR broiler* OR poultry) OR (pig* OR swine* OR sow* OR piglet* OR pork* OR “domestic pig*”)) |
Intervention | (facility OR facilities OR installation* OR farm* OR livestock OR “animal husbandry” OR “Precision Livestock Farming” OR “precision animal production” OR confinement* OR handling OR parlor* OR slaughter* OR nursing) |
Comparison | ((noise OR sound* OR acoustic* OR vocal* OR audio*) AND (sensor* OR sensing OR measurement OR quantification OR monitoring)) |
Outcome | (“acoustic characteristics” OR dB OR decibel* OR Hz OR frequency OR “sound intensity” OR “sound level*” OR “sound pressure” OR “sound analysis”) |
Acoustic Category | Direct Examples | Purpose in the Studies |
---|---|---|
Sound-pressure level (SPL) | LAeq, Lmax, L10–L90 percentiles, dB (Lin), dB(A), dB(C), etc. | Quantify overall noise load. |
Duration/time | Call duration, inter-call interval. | Analyze emission rhythms and temporal patterns. |
Vocalization type/emission | Alarm, contact, estrus sounds, tractor noise. | Link the sound to its function or technical source. |
Waveform/acoustic contour | Amplitude variation in the time domain, temporal envelope, number of pulses. | Segment signals; detect artefacts. |
Overall acoustic profile | Spectro-temporal characteristics: timbre, entropy, roughness, global power spectrum. | Summarize the global sonic signature of a habitat or species. |
Frequency | Fundamental f0, formants, main resonance f*. | Used in the detection of sounds and stressful situations or animal health |
Category | What It Groups | Typical Examples Found in the Papers |
---|---|---|
Environmental conditions | Physical factors of the housing environment. | Relative humidity, air velocity, CO2 or NH3 concentration, wet bulb temperature, dust, etc. |
Animal behavior | Observable actions or postures that signal welfare or stress. | Wing flapping in poultry, tail biting in piglets, pain related vocalizations, lying/standing time, cubicle occupancy. |
Weight/development | Growth and body condition metrics. | Live weight, average daily gain, feed conversion ratio, heart girth circumference, body condition score. |
Stress/physiology/health | Biochemical or physiological indicators of the internal state. | Salivary or serum cortisol, heart rate, respiration rate, plasma lactate, rectal temperature, lesion scoring. |
Phenotype/classification | Genetic or morphological traits that differentiate groups. | Breed, genetic line. |
Management/routine | Human imposed housing or experimental practices. | Number of milkings per day, feeding regime, fan/sprinkler cycles. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos Niño, J.N.; Sousa, F.C.d.; Oliveira, C.E.A.; Coelho, A.L.d.F.; Hernandez, R.O.; Barbari, M. Systematic Review of Acoustic Monitoring in Livestock Farming: Vocalization Patterns and Sound Source Analysis. Appl. Sci. 2025, 15, 9910. https://doi.org/10.3390/app15189910
Ramos Niño JN, Sousa FCd, Oliveira CEA, Coelho ALdF, Hernandez RO, Barbari M. Systematic Review of Acoustic Monitoring in Livestock Farming: Vocalization Patterns and Sound Source Analysis. Applied Sciences. 2025; 15(18):9910. https://doi.org/10.3390/app15189910
Chicago/Turabian StyleRamos Niño, Jhoan Nicolas, Fernanda Campos de Sousa, Carlos Eduardo Alves Oliveira, André Luiz de Freitas Coelho, Robinson Osorio Hernandez, and Matteo Barbari. 2025. "Systematic Review of Acoustic Monitoring in Livestock Farming: Vocalization Patterns and Sound Source Analysis" Applied Sciences 15, no. 18: 9910. https://doi.org/10.3390/app15189910
APA StyleRamos Niño, J. N., Sousa, F. C. d., Oliveira, C. E. A., Coelho, A. L. d. F., Hernandez, R. O., & Barbari, M. (2025). Systematic Review of Acoustic Monitoring in Livestock Farming: Vocalization Patterns and Sound Source Analysis. Applied Sciences, 15(18), 9910. https://doi.org/10.3390/app15189910