Detection of Cholesteatoma Residues in Surgical Videos Using Artificial Intelligence
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Data and Video Processing
2.2. Video Acquisition Systems
2.3. Video Length and Frame Count for Each Case
2.4. Dataset for Training and Validation
2.5. Neural Network
2.6. Training
2.7. Evaluation
2.8. Continuity Analysis Method
2.9. Overall Positive-Rate Analysis Method
2.10. Time-Window Positive-Rate Analysis Method
3. Results
3.1. Single-Image-Unit-Based Prediction
3.2. Results of Continuity Analysis
3.3. Results of Overall Positive-Rate Analysis
3.4. Results of Time-Window Positive-Rate Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghosh Moulic, A.; Gaurkar, S.S.; Deshmukh, P.T. Artificial Intelligence in Otology, Rhinology, and Laryngology: A Narrative Review of Its Current and Evolving Picture. Cureus 2024, 16, e66036. [Google Scholar] [CrossRef]
- King, A.; Fowler, G.E.; Macefield, R.C.; Walker, H.; Thomas, C.; Markar, S.; Higgins, E.; Blazeby, J.M.; Blencowe, N.S. Use of Artificial Intelligence in the Analysis of Digital Videos of Invasive Surgical Procedures: Scoping Review. BJS Open 2025, 9, zraf073. [Google Scholar] [CrossRef] [PubMed]
- Bidwell, J.; Gyawali, D.; Morse, J.; Ganeshan, V.; Nguyen, T.; McCoul, E.D. Real-Time Augmentation of Diagnostic Nasal Endoscopy Video Using AI-Enabled Edge Computing. Int. Forum Allergy Rhinol. 2025, 15, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Koyama, H.; Kashio, A.; Yamasoba, T. Application of Artificial Intelligence in Otology: Past, Present, and Future. J. Clin. Med. 2024, 13, 7577. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.C.; Lim, V.; Jyung, R.W. Use of Artificial Intelligence for the Diagnosis of Cholesteatoma. Laryngoscope Investig. Otolaryngol. 2023, 8, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Miwa, T.; Minoda, R.; Yamaguchi, T.; Kita, S.-I.; Osaka, K.; Takeda, H.; Kanemaru, S.-I.; Omori, K. Application of Artificial Intelligence Using a Convolutional Neural Network for Detecting Cholesteatoma in Endoscopic Enhanced Images. Auris Nasus Larynx 2022, 49, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Habib, A.-R.; Xu, Y.; Bock, K.; Mohanty, S.; Sederholm, T.; Weeks, W.B.; Dodhia, R.; Ferres, J.L.; Perry, C.; Sacks, R.; et al. Evaluating the Generalizability of Deep Learning Image Classification Algorithms to Detect Middle Ear Disease Using Otoscopy. Sci. Rep. 2023, 13, 5368. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Sone, K.; Noda, K.; Yoshida, K.; Toyohara, Y.; Kato, K.; Inoue, F.; Kukita, A.; Taguchi, A.; Nishida, H.; et al. Automated System for Diagnosing Endometrial Cancer by Adopting Deep-Learning Technology in Hysteroscopy. PLoS ONE 2021, 16, e0248526. [Google Scholar] [CrossRef]
- Messmann, H.; Bisschops, R.; Antonelli, G.; Libânio, D.; Sinonquel, P.; Abdelrahim, M.; Ahmad, O.F.; Areia, M.; Bergman, J.J.G.H.M.; Bhandari, P.; et al. Expected Value of Artificial Intelligence in Gastrointestinal Endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement. Endoscopy 2022, 54, 1211–1231. [Google Scholar] [CrossRef] [PubMed]
- James, A.L.; Tono, T.; Cohen, M.S.; Iyer, A.; Cooke, L.; Morita, Y.; Matsuda, K.; Yamamoto, Y.; Sakagami, M.; Yung, M. International Collaborative Assessment of the Validity of the EAONO-JOS Cholesteatoma Staging System. Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol. 2019, 40, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto-Ikehara, M.; Mishiro, Y.; Kitahara, T.; Sakagami, M. The 10-Year Disease-Free Rate of Attic Cholesteatoma Based on a New Staging System. J. Int. Adv. Otol. 2011, 7, 289–292. [Google Scholar]
- Kwon, O.J.; Sung, J.M.; Jung, H.K.; Kim, C.W. Postoperative Mastoid Aeration Following Canal Wall Up Mastoidectomy According to Preoperative Middle Ear Disease: Analysis of Temporal Bone Computed Tomography Scans. J. Audiol. Otol. 2017, 21, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Saito, Y.; Imaoka, H.; Saiko, M.; Yamada, S.; Kondo, H.; Takamaru, H.; Sakamoto, T.; Sese, J.; Kuchiba, A.; et al. Development of a Real-Time Endoscopic Image Diagnosis Support System Using Deep Learning Technology in Colonoscopy. Sci. Rep. 2019, 9, 14465. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-H.C.; Liu, Y.; Peng, L. How to Develop Machine Learning Models for Healthcare. Nat. Mater. 2019, 18, 410–414. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zheng, J.; Yu, J.-F.; Lin, S.-Y.; Yan, S.-Y.; Zhang, L.-Y.; Wang, S.-S.; Cai, S.-J.; Abdelhamid Ahmed, A.H.; Lin, L.-Q.; et al. Development of Artificial Intelligence for Parathyroid Recognition During Endoscopic Thyroid Surgery. Laryngoscope 2022, 132, 2516–2523. [Google Scholar] [CrossRef]
- Kitaguchi, D.; Harai, Y.; Kosugi, N.; Hayashi, K.; Kojima, S.; Ishikawa, Y.; Yamada, A.; Hasegawa, H.; Takeshita, N.; Ito, M. Artificial Intelligence for the Recognition of Key Anatomical Structures in Laparoscopic Colorectal Surgery. Br. J. Surg. 2023, 110, 1355–1358. [Google Scholar] [CrossRef] [PubMed]
- Byrne, M.F.; Chapados, N.; Soudan, F.; Oertel, C.; Linares Pérez, M.; Kelly, R.; Iqbal, N.; Chandelier, F.; Rex, D.K. Real-Time Differentiation of Adenomatous and Hyperplastic Diminutive Colorectal Polyps during Analysis of Unaltered Videos of Standard Colonoscopy Using a Deep Learning Model. Gut 2019, 68, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Miotto, R.; Wang, F.; Wang, S.; Jiang, X.; Dudley, J.T. Deep Learning for Healthcare: Review, Opportunities and Challenges. Brief. Bioinform. 2018, 19, 1236–1246. [Google Scholar] [CrossRef] [PubMed]
Cases | Median | Max (Year) | Min (Year) | Male | Female | |
---|---|---|---|---|---|---|
Cholesteatoma ES | 27 | 39 | 55 | 4 | 17 | 10 |
Cholesteatoma MS | 50 | 38.5 | 76 | 8 | 37 | 13 |
Non-cholesteatoma ES | 30 | 38.5 | 57 | 4 | 20 | 10 |
Non-cholesteatoma MS | 37 | 39 | 76 | 8 | 23 | 14 |
(A) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Group | Cholesteatoma ES | Non-Cholesteatoma ES | Cholesteatoma MS | Non-Cholesteatoma MS | Total | |||||
Patient | Images | Patient | Images | Patient | Images | Patient | Images | Patient | Images | |
A | 5 | 17,351 | 5 | 16,044 | 8 | 13,354 | 6 | 17,498 | 24 | 64,247 |
B | 5 | 17,256 | 5 | 15,563 | 8 | 9911 | 6 | 9509 | 24 | 52,239 |
C | 4 | 19,920 | 5 | 12,544 | 8 | 7035 | 6 | 9533 | 23 | 49,032 |
D | 4 | 17,861 | 5 | 11,291 | 9 | 6277 | 6 | 8695 | 24 | 44,124 |
E | 4 | 18,835 | 5 | 11,443 | 8 | 6188 | 6 | 7992 | 23 | 44,458 |
F | 5 | 17,330 | 5 | 11,220 | 9 | 6283 | 7 | 7596 | 26 | 42,429 |
Total | 27 | 108,553 | 30 | 78,105 | 50 | 49,048 | 37 | 60,823 | 144 | 296,529 |
(B) | ||||||||||
Group | Cholesteatoma ES | Non-Cholesteatoma ES | Cholesteatoma MS | Non-Cholesteatoma MS | Total | |||||
Patient | Images | Patient | Images | Patient | Images | Patient | Images | Patient | Images | |
A | 5 | 17,351 | 5 | 16,044 | 8 | 11,745 | 6 | 16,044 | 24 | 61,184 |
B | 5 | 17,256 | 5 | 15,563 | 8 | 10,609 | 6 | 15,755 | 24 | 59,183 |
C | 4 | 19,920 | 5 | 12,544 | 8 | 9873 | 6 | 14,805 | 23 | 57,142 |
D | 4 | 17,861 | 5 | 11,291 | 9 | 10,035 | 6 | 12,129 | 24 | 51,316 |
E | 4 | 18,835 | 5 | 11,443 | 9 | 9987 | 6 | 11,354 | 24 | 51,619 |
F | 5 | 17,330 | 5 | 11,220 | 8 | 9751 | 7 | 9848 | 25 | 48,149 |
Total | 27 | 108,553 | 30 | 78,105 | 50 | 62,000 | 37 | 79,935 | 144 | 328,593 |
(A) | ||||||
---|---|---|---|---|---|---|
Training | Validation | |||||
CV Set | Groups | Patients | Images | Group | Patients | Images |
CV Set-1 | ABCDE | 118 | 254,100 | F | 26 | 42,429 |
CV Set-2 | BCDEF | 120 | 232,282 | A | 24 | 64,247 |
CV Set-3 | CDEFA | 120 | 244,290 | B | 24 | 52,239 |
CV Set-4 | DEFAB | 121 | 247,497 | C | 23 | 49,032 |
CV Set-5 | EFABC | 120 | 252,405 | D | 24 | 44,124 |
CV Set-6 | FABCD | 121 | 252,071 | E | 23 | 44,458 |
(B) | ||||||
Training | Validation | |||||
CV Set | Groups | Patients | Images | Group | Patients | Images |
CV Set-1 | ABCDE | 119 | 280,444 | F | 25 | 48,149 |
CV Set-2 | BCDEF | 120 | 267,409 | A | 24 | 61,184 |
CV Set-3 | CDEFA | 120 | 269,410 | B | 24 | 59,183 |
CV Set-4 | DEFAB | 121 | 271,451 | C | 23 | 57,142 |
CV Set-5 | EFABC | 120 | 277,277 | D | 24 | 51,316 |
CV Set-6 | FABCD | 120 | 276,974 | E | 24 | 51,619 |
(A) | ||||||||
---|---|---|---|---|---|---|---|---|
Media | Endoscope | Microscope | ||||||
Validation Data | Original Size | 125% Zoomed | Original Size | 125% Zoomed | ||||
Ensemble | Ensemble | Single | Ensemble | Single | Ensemble | Single | Ensemble | Single |
Sensitivity | 73.08% | 68.25% | 68.63% | 65.76% | 55.65% | 42.05% | 60.68% | 46.90% |
Specificity | 74.89% | 74.06% | 75.33% | 72.19% | 69.48% | 80.45% | 68.14% | 81.46% |
Average | 73.99% | 71.15% | 71.98% | 68.97% | 62.57% | 61.25% | 64.41% | 64.18% |
(B) | ||||||||
Media | Endoscope | Microscope | ||||||
Validation Data | Original Size | 125% Zoomed | Original Size | 125% Zoomed | ||||
Ensemble | Ensemble | Single | Ensemble | Single | Ensemble | Single | Ensemble | Single |
Sensitivity | 74.01% | 70.47% | 71.87% | 68.98% | 80.26% | 74.71% | 87.29% | 78.05% |
Specificity | 77.01% | 74.67% | 76.82% | 73.36% | 85.65% | 77.21% | 82.83% | 80.24% |
Average | 75.51% | 72.57% | 74.35% | 71.17% | 82.96% | 75.96% | 85.06% | 79.15% |
(C) | ||||||||
Media | Endoscope | Microscope | ||||||
Validation Data | Original Size | 125% Zoomed | Original Size | 125% Zoomed | ||||
Ensemble | Ensemble | Single | Ensemble | Single | Ensemble | Single | Ensemble | Single |
Before editing | 73.99% | 71.15% | 71.98% | 68.97% | 62.57% | 61.25% | 64.41% | 64.18% |
After editing | 75.51% | 72.57% | 74.35% | 71.17% | 82.96% | 75.96% | 85.06% | 79.15% |
Difference | 1.52% | 1.42% | 2.37% | 2.20% | 20.39% | 14.71% | 20.65% | 14.97% |
(A) | ||||||||
---|---|---|---|---|---|---|---|---|
Media | Endoscope | Microscope | ||||||
Validation Data | Original Size | 125% Zoomed | Original Size | 125% Zoomed | ||||
Ensemble | Ensemble | Single | Ensemble | Single | Ensemble | Single | Ensemble | Single |
Sensitivity | 48.15% | 59.88% | 50.31% | 54.48% | 76.00% | 67.42% | 83.17% | 74.58% |
Specificity | 96.39% | 82.92% | 91.39% | 86.11% | 76.91% | 77.03% | 70.05% | 75.56% |
Average | 72.27% | 71.40% | 70.85% | 70.29% | 76.46% | 72.22% | 76.61% | 75.07% |
(B) | ||||||||
Media | Endoscope | Microscope | ||||||
Validation Data | Original Size | 125% Zoomed | Original Size | 125% Zoomed | ||||
Ensemble | Ensemble | Single | Ensemble | Single | Ensemble | Single | Ensemble | Single |
Sensitivity | 53.40% | 66.36% | 48.15% | 57.41% | 83.83% | 79.42% | 91.08% | 85.92% |
Specificity | 91.94% | 76.94% | 93.47% | 84.17% | 82.88% | 76.80% | 73.31% | 75.56% |
Average | 72.67% | 71.65% | 70.81% | 70.79% | 83.36% | 78.11% | 82.20% | 80.74% |
(C) | ||||||||
Media | Endoscope | Microscope | ||||||
Validation Data | Original Size | 125% Zoomed | Original Size | 125% Zoomed | ||||
Ensemble | Ensemble | Single | Ensemble | Single | Ensemble | Single | Ensemble | Single |
Before editing | 72.27% | 71.40% | 70.85% | 70.29% | 76.46% | 72.22% | 76.61% | 75.07% |
After editing | 72.67% | 71.65% | 70.81% | 70.79% | 83.36% | 78.11% | 82.20% | 80.74% |
Difference | 0.40% | 0.25% | −0.04% | 0.50% | 6.90% | 5.89% | 5.59% | 5.67% |
(A) | ||||||||
---|---|---|---|---|---|---|---|---|
Media | Endoscope | Microscope | ||||||
Validation Data | Original Size | 125% Zoomed | Original Size | 125% Zoomed | ||||
Ensemble | Ensemble | Single | Ensemble | Single | Ensemble | Single | Ensemble | Single |
Sensitivity | 77.31% | 77.62% | 74.54% | 74.85% | 79.08% | 69.17% | 87.92% | 74.92% |
Specificity | 84.72% | 80.56% | 79.86% | 77.36% | 78.15% | 79.95% | 75.68% | 79.39% |
Average | 81.02% | 79.09% | 77.20% | 76.10% | 78.62% | 74.56% | 81.80% | 77.15% |
(B) | ||||||||
Media | Endoscope | Microscope | ||||||
Validation Data | Original Size | 125% Zoomed | Original Size | 125% Zoomed | ||||
Ensemble | Ensemble | Single | Ensemble | Single | Ensemble | Single | Ensemble | Single |
Sensitivity | 81.48% | 80.09% | 77.93% | 76.23% | 79.00% | 79.58% | 94.00% | 83.83% |
Specificity | 86.94% | 86.25% | 89.72% | 84.31% | 90.88% | 81.64% | 79.73% | 83.00% |
Average | 84.21% | 83.17% | 83.83% | 80.27% | 84.94% | 80.61% | 86.86% | 83.41% |
(C) | ||||||||
Media | Endoscope | Microscope | ||||||
Validation Data | Original Size | 125% Zoomed | Original Size | 125% Zoomed | ||||
Ensemble | Ensemble | Single | Ensemble | Single | Ensemble | Single | Ensemble | Single |
Before editing | 81.02% | 79.09% | 77.20% | 76.10% | 78.62% | 74.56% | 81.80% | 77.15% |
After editing | 84.21% | 83.17% | 83.83% | 80.27% | 84.94% | 80.61% | 86.86% | 83.41% |
Difference | 3.19% | 4.08% | 6.63% | 4.17% | 6.32% | 6.05% | 5.06% | 6.26% |
(A) | ||||||||
---|---|---|---|---|---|---|---|---|
Endoscope | Microscope | |||||||
Original Size | 125% Zoomed | Original Size | 125% Zoomed | |||||
Time Frame | Ensemble | Single | Ensemble | Single | Ensemble | Single | Ensemble | Single |
1 s | 69.63% | 66.88% | 70.04% | 67.41% | 73.95% | 72.40% | 76.76% | 74.36% |
2 s | 72.65% | 71.04% | 74.74% | 69.41% | 76.51% | 73.00% | 79.14% | 75.07% |
3 s | 72.66% | 71.34% | 73.93% | 70.37% | 79.34% | 73.35% | 77.90% | 75.40% |
5 s | 72.64% | 71.71% | 71.67% | 69.93% | 77.92% | 73.63% | 78.24% | 75.52% |
7.5 s | 73.43% | 72.94% | 71.37% | 69.37% | 79.19% | 73.63% | 78.30% | 76.03% |
10 s | 73.73% | 73.36% | 70.93% | 70.41% | 79.09% | 73.68% | 80.08% | 76.24% |
15 s | 73.70% | 74.78% | 71.93% | 71.37% | 77.75% | 74.21% | 80.97% | 76.64% |
20 s | 77.79% | 77.33% | 74.48% | 74.33% | 78.17% | 74.43% | 80.97% | 77.15% |
25 s | 78.77% | 78.12% | 74.52% | 74.96% | 78.26% | 74.45% | 82.32% | 77.33% |
30 s | 79.47% | 78.91% | 75.11% | 74.70% | 78.41% | 74.77% | 82.32% | 77.27% |
(B) | ||||||||
Endoscope | Microscope | |||||||
Original Size | 125% Zoomed | Original Size | 125% Zoomed | |||||
Time Frame | Ensemble | Single | Ensemble | Single | Ensemble | Single | Ensemble | Single |
1 s | 70.04% | 68.10% | 69.19% | 67.82% | 78.69% | 74.83% | 80.15% | 78.20% |
2 s | 74.27% | 72.58% | 74.48% | 71.81% | 82.26% | 77.02% | 82.40% | 79.98% |
3 s | 74.26% | 73.64% | 74.51% | 72.34% | 81.73% | 76.83% | 82.42% | 80.23% |
5 s | 75.72% | 73.95% | 75.74% | 72.92% | 81.36% | 77.13% | 82.49% | 80.24% |
7.5 s | 75.95% | 74.40% | 76.06% | 73.21% | 81.13% | 77.56% | 82.47% | 79.89% |
10 s | 75.93% | 75.17% | 75.28% | 73.40% | 82.77% | 78.35% | 84.23% | 80.20% |
15 s | 80.30% | 77.58% | 77.09% | 75.10% | 83.37% | 78.97% | 83.20% | 80.65% |
20 s | 81.95% | 80.56% | 79.12% | 77.00% | 83.97% | 78.88% | 83.47% | 81.19% |
25 s | 84.68% | 81.50% | 80.23% | 77.72% | 84.93% | 79.15% | 84.64% | 81.65% |
30 s | 84.38% | 82.15% | 81.34% | 78.51% | 85.70% | 79.55% | 85.31% | 82.12% |
(C) | ||||||||
Endoscope | Microscope | |||||||
Original Size | 125% Zoomed | Original Size | 125% Zoomed | |||||
Time Frame | Ensemble | Single | Ensemble | Single | Ensemble | Single | Ensemble | Single |
1 s | 0.41% | 1.22% | −0.85% | 0.41% | 4.74% | 2.43% | 3.39% | 3.84% |
2 s | 1.62% | 1.54% | −0.26% | 2.40% | 5.75% | 4.02% | 3.26% | 4.91% |
3 s | 1.60% | 2.30% | 0.58% | 1.97% | 2.39% | 3.48% | 4.52% | 4.83% |
5 s | 3.08% | 2.24% | 4.07% | 2.99% | 3.44% | 3.50% | 4.25% | 4.72% |
7.5 s | 2.52% | 1.46% | 4.69% | 3.84% | 1.94% | 3.93% | 4.17% | 3.86% |
10 s | 2.20% | 1.81% | 4.35% | 2.99% | 3.68% | 4.67% | 4.15% | 3.96% |
15 s | 6.60% | 2.80% | 5.16% | 3.73% | 5.62% | 4.76% | 2.23% | 4.01% |
20 s | 4.16% | 3.23% | 4.64% | 2.67% | 5.80% | 4.45% | 2.50% | 4.04% |
25 s | 5.91% | 3.38% | 5.71% | 2.76% | 6.67% | 4.70% | 2.32% | 4.32% |
30 s | 4.91% | 3.24% | 6.23% | 3.81% | 7.29% | 4.78% | 2.99% | 4.85% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyazawa, W.; Takahashi, M.; Noda, K.; Yoshida, K.; Yamamoto, K.; Yamamoto, Y.; Kojima, H. Detection of Cholesteatoma Residues in Surgical Videos Using Artificial Intelligence. Appl. Sci. 2025, 15, 11248. https://doi.org/10.3390/app152011248
Miyazawa W, Takahashi M, Noda K, Yoshida K, Yamamoto K, Yamamoto Y, Kojima H. Detection of Cholesteatoma Residues in Surgical Videos Using Artificial Intelligence. Applied Sciences. 2025; 15(20):11248. https://doi.org/10.3390/app152011248
Chicago/Turabian StyleMiyazawa, Wataru, Masahiro Takahashi, Katsuhiko Noda, Kaname Yoshida, Kazuhisa Yamamoto, Yutaka Yamamoto, and Hiromi Kojima. 2025. "Detection of Cholesteatoma Residues in Surgical Videos Using Artificial Intelligence" Applied Sciences 15, no. 20: 11248. https://doi.org/10.3390/app152011248
APA StyleMiyazawa, W., Takahashi, M., Noda, K., Yoshida, K., Yamamoto, K., Yamamoto, Y., & Kojima, H. (2025). Detection of Cholesteatoma Residues in Surgical Videos Using Artificial Intelligence. Applied Sciences, 15(20), 11248. https://doi.org/10.3390/app152011248