Effect of Selected Parameters on Imaging Quality in Doppler Tomography
Abstract
1. Introduction
2. Measuring Geometries
3. Measurement Data Acquisition and Processing
4. Image Reconstruction
5. Doppler Signal Simulation
6. Overlapping Algorithm
7. Studies on the Influence of Selected Parameters on the Quality of the Image
7.1. Influence of the Number of Rotation Angles
7.2. Influence of the α Parameter in the Overlapping Algorithm
7.3. Influence of Rotation Frequency of the Probe (Or Test Object)
7.4. Influence of Water Temperature
8. Discussion
9. Conclusions
10. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liang, H.D.; Halliwell, M.; Johnson, S.; Wells, P.N.T. Incoherent imaging using continuous wave ultrasound. A preliminary study using bovine intervertebral disc. Eur. J. Ultrasound 2003, 16, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Świetlik, T.; Opieliński, K.J. Analysis for improvement of doppler tomography imaging of objects scattering continuous ultrasonic waves. Arch. Acoust. 2020, 45, 329–339. [Google Scholar] [CrossRef]
- Tsui, C.S.L.; Liang, H.-D.; Halliwell, M.; Shere, M.; Braybrooke, J.P.; Whipp, E.; Wells, P.N.T. Coherent Ultrasonic Doppler Tomography. Ultrasound Med. Biol. 2011, 37, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Kak, A.C.; Slaney, M. Principles of Computerized Tomographic Imaging; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2001; p. 327. [Google Scholar]
- Nagai, K.; Greenleaf, J.F. Ultrasonic imaging using the Doppler effect caused by a moving transducer. Opti. Eng. 1990, 29, 1249–1254. [Google Scholar] [CrossRef]
- Liang, H.D.; Halliwell, M.; Wells, P.N.T. Continuous wave ultrasonic tomography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2001, 48, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Kirkhorn, J. Introduction to IQ-demodulation of RF-data. IFBT NTNU 1999, 15, 13. [Google Scholar]
- Tatsuro, B. Complex Digital Filter Designs for Audio Processing in Doppler Ultrasound System. In Applications of Digital Signal Processing; Cuadrado-Laborde, C., Ed.; InTech: Rijeka, Croatia, 2011; pp. 211–236. [Google Scholar]
- Zhang, Y.; Li, S.; Wang, Y.; Sun, Y.; Huang, T.; Xiang, W.; Li, C. Iterative optimization algorithm with structural prior for artifacts removal of photoacoustic imaging. Photoacoustics 2025, 44, 100742. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Xu, Z.; Dentinger, A.; Kewalramani, S.; Jo, J.; Xu, G.; Chamberland, D.; Abdulaziz, N.; Gandikota, G.; Mills, D.; et al. Longitudinal volumetric assessment of inflammatory arthritis via photoacoustic imaging and Doppler ultrasound imaging. Photoacoustics 2023, 31, 100514. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.D.; Tsui, C.S.L.; Halliwell, M.; Wells, P.N.T. Continuous wave ultrasonic Doppler tomography. Interface Focus 2011, 1, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Opieliński, K.J.; Gudra, T. Ultrasonic Transmission Tomography. In Industrial and Biological Tomography—Theoretical Basis and Applications; Sikora, J., Wójtowicz, S., Eds.; Electrotechnical Institute: Warsaw, Poland, 2010. [Google Scholar]
- Lewitt, R.M. Reconstruction algorithms: Transform methods. Proc. IEEE 1983, 71, 390–408. [Google Scholar] [CrossRef]
- Dobrucki, A.B.; Opieliński, K.J. Adaptation of image reconstruction algorithm for purposes of ultrasound transmission tomography (UTT). Arch. Acoust. 2000, 25, 395–422. [Google Scholar]
- Świetlik, T.; Opieliński, K.J. Analysis of the possibility of Doppler tomography imaging in circular geometry. In Information Technologies in Medicine, Advances in Intelligent Systems and Computing; Piętka, E.A., Ed.; Springer International Publishing: Cham, Switzerland, 2019; Volume 762, pp. 52–63. [Google Scholar]
- Censor, Y. Finite series-expansion reconstruction methods. Proc. IEEE 1983, 71, 409–419. [Google Scholar] [CrossRef]
- Fiori, G.; Fuiano, F.; Scorza, A.; Schmid, M.; Galo, J.; Conforto, S.; Sciuto, S.A. Doppler Flow Phantom Stability Assessment through STFT Technique in Medical PW Doppler: A preliminary study. In Proceedings of the 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT Conference, Rome, Italy, 7–9 June 2021. [Google Scholar]
- Gonçalves, I.B.; Leiria, A.; Moura, M.M.M. STFT or CWT for the detection of Doppler ultrasound embolic signals. Int. J. Numer. Methods Biomed. Eng. 2013, 29, 964–976. [Google Scholar] [CrossRef] [PubMed]
- Rabiner, L.R.; Schafer, R.W. Digital Processing of Speech Signals; Prentice Hall: Englewood Cliffs, NJ, USA, 1978. [Google Scholar]
- Rabiner, L.R.; Schafer, R.W. Introduction to Digital Speech Processing; Now Publishers Inc.: Boston, MA, USA; Delft, The Netherlands, 2007. [Google Scholar]
- Marczak, W. Woda jako wzorzec w pomiarach prędkości propagacji ultradźwięków w cieczach. In Akustyka Molekularna i Kwantowa 17; Oddział Górnośląski PTA: Kraków, Poland, 1996. (In Polish) [Google Scholar]
- Świetlik, T. Reconstruction of the image of structure well reflecting the ultrasound wave by using Doppler tomography method. In Acoustics, Acoustoelectronics and Electrical Engineering; Witos, F., Ed.; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2021; pp. 345–364. [Google Scholar]
- Opielinski, K.J.; Gudra, T. Multi-parameter ultrasound transmission tomography of biological media. Ultrasonics 2006, 44, e295–e302. [Google Scholar] [CrossRef] [PubMed]
Index i | Coefficient ki [(m/s)/°Ci] |
---|---|
0 | 1402.382 |
1 | 5.038813 |
2 | −5.799136·10−2 |
3 | 3.287156·10−4 |
4 | −1.398845·10−6 |
5 | 2.787860·10−9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świetlik, T.; Opieliński, K.J. Effect of Selected Parameters on Imaging Quality in Doppler Tomography. Appl. Sci. 2025, 15, 11214. https://doi.org/10.3390/app152011214
Świetlik T, Opieliński KJ. Effect of Selected Parameters on Imaging Quality in Doppler Tomography. Applied Sciences. 2025; 15(20):11214. https://doi.org/10.3390/app152011214
Chicago/Turabian StyleŚwietlik, Tomasz, and Krzysztof J. Opieliński. 2025. "Effect of Selected Parameters on Imaging Quality in Doppler Tomography" Applied Sciences 15, no. 20: 11214. https://doi.org/10.3390/app152011214
APA StyleŚwietlik, T., & Opieliński, K. J. (2025). Effect of Selected Parameters on Imaging Quality in Doppler Tomography. Applied Sciences, 15(20), 11214. https://doi.org/10.3390/app152011214