Efficient and Secure GANs: A Survey on Privacy-Preserving and Resource-Aware Models
Abstract
1. Introduction
2. Background
3. Related Work and Problem Statement
3.1. Data Scarcity
3.2. Energy Consumption
3.3. Data Privacy and Security Vulnerabilities
4. Methodology and Materials
5. Data Limitations
5.1. Solution Strategies
5.2. Critical Analysis
6. Energy Consumption—Computational Cost
6.1. Problem-Solving Approaches
6.2. Comparative Assessment
7. Privacy and Security
7.1. Addressing Approaches
7.2. Analytical Evaluation
8. Conclusions and Limitations
9. Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ADRC | Active Disturbance Rejection Control |
| ADA | Adaptive Discriminator Augmentation |
| AdaFm | Adaptive Filter Modulation |
| AR | Augmented Reality |
| CGAN | Conditional GAN |
| CNN(s) | Convolutional Neural Network(s) |
| CPGAN | Compressive Privacy GAN |
| CRF | Conditional Random Field |
| DCGAN | Deep Convolutional GAN |
| DeLiGAN | Diverse and Limited data GAN |
| DL | Deep Learning |
| DDoS | Distributed Denial of Service |
| DPGAN | Differentially Private GAN |
| DynaGAN | Dynamic GAN |
| EEG | Electroencephalogram |
| FreGAN | Frequency-aware GAN |
| FPGA | Field-Programmable Gate Array |
| FSL | Few-Shot Learning |
| FusedProp | Fused Propagation |
| GAN(s) | Generative Adversarial Network(s) |
| GP-GAN | Gaussian-Poisson GAN |
| GS | GAN Slimming |
| (Inv)FusedProp | (Inverted) Fused Propagation |
| IS | Inception Score |
| LSUN | Large Scale Scene Understanding |
| MAML | Model-Agnostic Meta-Learning |
| MANN | Memory-Augmented Neural Network |
| MEGAN | Maximum Entropy GAN |
| MI | Model Inversion |
| MIA | Membership Inference Attacks |
| MIMGAN | Information Minimization GAN |
| ML | Machine Learning |
| MNIST | Modified National Institute of Standards and Technology |
| MUA | Models Under Attack |
| (N)IDS | (Network) Intrusion Detection System |
| PI-GAN | Plant Identification GAN |
| PII | Personally Identifiable Information |
| PrivGAN | Privacy-preserving GAN |
| RWM-CGAN | Residual Weight Masking Conditional GAN |
| RMSE | Root Mean Square Error |
| SLR | Systematic Literature Review |
| SFDRC | State Filtered Disturbance Rejection Control |
| SynGAN | Synthetic Adversarial GAN |
| TDP | Thermal Design Power |
| VAE | Variational Autoencoders |
| WGAN | Wasserstein GAN |
| WGAN-GP | Wasserstein GAN with Gradient Penalty |
References
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Available online: https://mitpress.mit.edu/9780262035613/deep-learning/ (accessed on 2 May 2025).
- Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A.A. Generative adversarial networks: An overview. IEEE Signal Process. Mag. 2018, 35, 53–65. [Google Scholar] [CrossRef]
- Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive growing of GANs for improved quality, stability, and variation. arXiv 2017, arXiv:1710.10196. [Google Scholar] [CrossRef]
- Brock, A.; Donahue, J.; Simonyan, K. Large scale GAN training for high fidelity natural image synthesis. arXiv 2019, arXiv:1809.11096. [Google Scholar] [CrossRef]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv 2015, arXiv:1511.06434. [Google Scholar] [CrossRef]
- Karras, T.; Laine, S.; Aila, T. A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4401–4410. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, W.; Wang, J.; Yu, Y. SeqGAN: Sequence generative adversarial nets with policy gradient. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar] [CrossRef]
- Yi, X.; Walia, E.; Babyn, P. Generative adversarial network in medical imaging: A review. Med. Image Anal. 2019, 58, 101552. [Google Scholar] [CrossRef]
- Eckerli, F.; Osterrieder, J. Generative adversarial networks in finance: An overview. arXiv 2021, arXiv:2106.06364. [Google Scholar] [CrossRef]
- Luleci, F.; Catbas, F.N.; Avci, O. A literature review: Generative adversarial networks for civil structural health monitoring. Front. Built Environ. 2022, 8, 1027379. [Google Scholar] [CrossRef]
- Alqahtani, H.; Kavakli-Thorne, M.; Kumar, G. Applications of generative adversarial networks (GANs): An updated review. Arch. Comput. Methods Eng. 2021, 28, 525–552. [Google Scholar] [CrossRef]
- Saxena, D.; Cao, J. Generative adversarial networks (GANs): Challenges, solutions, and future directions. ACM Comput. Surv. 2022, 54, 63. [Google Scholar] [CrossRef]
- Mujeeb, S.; Javaid, N. Deep Learning Based Carbon Emissions Forecasting and Renewable Energy’s Impact Quantification. IET Renew. Power Gener. 2023, 17, 873–884. [Google Scholar] [CrossRef]
- Henderson, P.; Hu, J.; Romoff, J.; Brunskill, E.; Jurafsky, D.; Pineau, J. Towards the systematic reporting of the energy and carbon footprints of machine learning. J. Mach. Learn. Res. 2020, 21, 1–43. Available online: https://www.jmlr.org/papers/v21/20-312.html (accessed on 9 June 2025).
- Strubell, E.; Ganesh, A.; McCallum, A. Energy and policy considerations for deep learning in NLP. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 3645–3650. [Google Scholar] [CrossRef]
- Schwartz, R.; Dodge, J.; Smith, N.A.; Etzioni, O. Green AI. Commun. ACM 2020, 63, 54–63. [Google Scholar] [CrossRef]
- Li, T.; Clifton, C. Differentially private imaging via latent space manipulation. arXiv 2021, arXiv:2103.05472. [Google Scholar] [CrossRef]
- Cai, Z.; Xiong, Z.; Xu, H.; Wang, P.; Li, W.; Pan, Y. Generative adversarial networks: A survey toward private and secure applications. ACM Comput. Surv. 2022, 54, 132. [Google Scholar] [CrossRef]
- Padariya, D.; Wagner, I.; Taherkhani, A.; Boiten, E. Privacy-Preserving Generative Models: A Comprehensive Survey. arXiv 2025, arXiv:2502.03668. [Google Scholar] [CrossRef]
- Gurumurthy, S.; Sarvadevabhatla, R.K.; Babu, R.V. DeLiGAN: Generative adversarial networks for diverse and limited data. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4941–4949. [Google Scholar] [CrossRef]
- Yadav, P.; Sihag, G.; Vijay, V. Rebalancing the scales: A systematic mapping study of generative adversarial networks (GANs) in addressing data imbalance. arXiv 2025, arXiv:2502.16535. [Google Scholar] [CrossRef]
- Lin, Z.; Sekar, V.; Fanti, G. On the privacy properties of GAN-generated samples. In Proceedings of the International Conference on Artificial Intelligence and Statistics, Online, 13–15 April 2021; pp. 1522–1530. [Google Scholar] [CrossRef]
- Alshantti, A.; Rasheed, A.; Westad, F. Privacy re-identification attacks on tabular GANs. Secur. Priv. 2025, 8, e469. [Google Scholar] [CrossRef]
- Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784. [Google Scholar] [CrossRef]
- Denton, E.L.; Chintala, S.; Fergus, R. Deep Generative Image Models Using a Laplacian Pyramid of Adversarial Networks. arXiv 2015, arXiv:1506.05751. [Google Scholar] [CrossRef]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the International Conference on Machine Learning (ICML), Sydney, NSW, Australia, 6–11 August 2017; Available online: https://proceedings.mlr.press/v70/arjovsky17a.html (accessed on 30 May 2025).
- Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved techniques for training GANs. In Advances in Neural Information Processing Systems; American Institute of Physics: College Park, MD, USA, 2016; Volume 29, Available online: https://proceedings.neurips.cc/paper/2016/hash/8a3363abe792db2d8761d6403605aeb7-Abstract.html (accessed on 21 May 2025).
- Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In Advances in Neural Information Processing Systems; American Institute of Physics: College Park, MD, USA, 2017; Volume 30, Available online: https://proceedings.neurips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html (accessed on 16 July 2025).
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017. [Google Scholar] [CrossRef]
- Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.; Aila, T. Analyzing and improving the image quality of StyleGAN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020. [Google Scholar] [CrossRef]
- Karras, T.; Aittala, M.; Laine, S.; Härkönen, E.; Hellsten, J.; Lehtinen, J.; Aila, T. Alias-free generative adversarial networks. arXiv 2021, arXiv:2106.12423. [Google Scholar] [CrossRef]
- Yang, G. State Filtered Disturbance Rejection Control. Nonlinear Dyn. 2025, 113, 6739–6755. [Google Scholar] [CrossRef]
- Yang, G.; Yao, J. Multilayer Neurocontrol of High-Order Uncertain Nonlinear Systems with Active Disturbance Rejection. Int. J. Robust Nonlinear Control 2024, 34, 2972–2987. [Google Scholar] [CrossRef]
- Shiri, M.; Bruno, A.; Loiacono, D. Memory-Efficient 3D High-Resolution Medical Image Synthesis Using CRF-Guided GANs. In Proceedings of the International Conference on Pattern Recognition (ICPR), Kolkata, India, 2–5 December 2024; Springer Nature: Cham, Switzerland, 2025; pp. 184–194. [Google Scholar] [CrossRef]
- Rahman, Z.U.; Asaari, M.S.M.; Ibrahim, H.; Abidin, I.S.Z.; Ishak, M.K. Generative adversarial networks (GANs) for image augmentation in farming: A review. IEEE Access 2024, 12, 179912–179943. [Google Scholar] [CrossRef]
- Olaniyi, E.; Chen, D.; Lu, Y.; Huang, Y. Generative adversarial networks (GANs) for image augmentation in agriculture: A systematic review. Comput. Electron. Agric. 2022, 200, 107208. [Google Scholar] [CrossRef]
- Donahue, C.; McAuley, J.; Puckette, M. Adversarial audio synthesis. arXiv 2018, arXiv:1802.04208. [Google Scholar] [CrossRef]
- Fahimi, F.; Zhang, Z.; Goh, W.B.; Ang, K.K.; Guan, C. Towards EEG generation using GANs for BCI applications. In Proceedings of the IEEE EMBS International Conference on Biomedical & Health Informatics, Chicago, IL, USA, 19–22 May 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Amin, S.S.; Ragha, L. Alphanumeric character recognition on tiny dataset. In Proceedings of the International Conference on Computer Networks, Big data and IoT (ICCBI), Madurai, India, 15–16 December 2020; Springer: Cham, Switzerland, 2020; Volume 49. [Google Scholar] [CrossRef]
- Iyer, S.; Hou, T.T. GAT-GAN: A graph-attention-based time-series generative adversarial network. arXiv 2023, arXiv:2306.01999. [Google Scholar] [CrossRef]
- Yoon, J.; Jarrett, D.; Van der Schaar, M. Time-series generative adversarial networks. In Advances in Neural Information Processing Systems; American Institute of Physics: College Park, MD, USA, 2019; Volume 32, Available online: https://papers.nips.cc/paper/8789-time-series-generative-adversarial-networks.pdf (accessed on 24 July 2025).
- Wang, J.; Ju, B.; Qian, X.; Ye, M.; Huo, W. Graph-based generative adversarial networks for molecular generation with noise diffusion. In Proceedings of the 14th International Conference on Bioscience, Biochemistry and Bioinformatics, Kyoto, Japan, 12–15 January 2024. [Google Scholar] [CrossRef]
- Choi, J.; Lee, J.; Yoon, C.; Park, J.H.; Hwang, G.; Kang, M. Do not escape from the manifold: Discovering the local coordinates on the latent space of GANs. arXiv 2021, arXiv:2106.06959. [Google Scholar] [CrossRef]
- Bhagoji, A.N.; He, W.; Li, B.; Song, D. Exploring the space of black-box attacks on deep neural networks. arXiv 2017, arXiv:1712.09491. [Google Scholar] [CrossRef]
- Zhang, K. On mode collapse in generative adversarial networks. In Artificial Neural Networks and Machine Learning—ICANN 2021, Proceedings of the International Conference on Artificial Neural Networks, Online, 14–17 September 2021; Farkaš, I., Ed.; Springer: Cham, Switzerland, 2021; Volume 12892. [Google Scholar] [CrossRef]
- Figueira, A.; Vaz, B. Survey on synthetic data generation, evaluation methods and GANs. Mathematics 2022, 10, 2733. [Google Scholar] [CrossRef]
- Karras, T.; Aittala, M.; Hellsten, J.; Laine, S.; Lehtinen, J.; Aila, T. Training generative adversarial networks with limited data. arXiv 2020, arXiv:2006.06676. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, Q.; Kwok, J.T.; Ni, L.M. Generalizing from a few examples: A survey on few-shot learning. ACM Comput. Surv. 2021, 53, 63. [Google Scholar] [CrossRef]
- Tanaka, F.H.K.; Aranha, C. Data augmentation using GANs. arXiv 2019, arXiv:1904.09135. [Google Scholar] [CrossRef]
- Zhao, M.; Cong, Y.; Carin, L. On leveraging pretrained GANs for generation with limited data. In Proceedings of the International Conference on Machine Learning, Vienna, Austria, 12–18 July 2020; pp. 11340–11351. Available online: https://proceedings.mlr.press/v119/zhao20a.html (accessed on 12 July 2025).
- Bai, C.-Y.; Lin, H.-T.; Raffel, C.; Kan, W.C.-W. On Training Sample Memorization: Lessons from Benchmarking Generative Modeling with a Large-scale Competition. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Online, 14–18 August 2021. [Google Scholar] [CrossRef]
- Feng, Q.; Guo, C.; Benitez-Quiroz, F.; Martinez, A.M. When do GANs replicate? On the choice of dataset size. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021. [Google Scholar] [CrossRef]
- Li, Y.; Chao, X. Semi-supervised few-shot learning approach for plant diseases recognition. Plant Methods 2021, 17, 68. [Google Scholar] [CrossRef]
- Middel, L.; Palm, C.; Erdt, M. Synthesis of medical images using GANs. In Uncertainty for Safe Utilization of Machine Learning in Medical Imaging and Clinical Image-Based Procedures, Proceedings of the First International Workshop, UNSURE 2019, and 8th International Workshop, CLIP 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, 17 October 2019; Springer International Publishing: Cham, Switzerland, 2019; pp. 125–134. [Google Scholar] [CrossRef]
- Xu, F.; Dan, Y.; Yan, K.; Ma, Y.; Wang, M. Low-resource language discrimination toward Chinese dialects with transfer learning and data augmentation. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 2022, 21, 27. [Google Scholar] [CrossRef]
- Carrasco, X.A.; Elnagar, A.; Lataifeh, M. A generative adversarial network for data augmentation: The case of Arabic regional dialects. Procedia Comput. Sci. 2021, 189, 92–99. [Google Scholar] [CrossRef]
- Chen, Z.; Ramachandra, B.; Vatsavai, R.R. Consistency regularization with generative adversarial networks for semi-supervised learning. arXiv 2020, arXiv:2007.03844. [Google Scholar] [CrossRef]
- Zhao, Z.; Singh, S.; Lee, H.; Zhang, Z.; Odena, A.; Zhang, H. Improved consistency regularization for GANs. In Proceedings of the AAAI Conference on Artificial Intelligence, Online, 2–9 February 2021. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; Odena, A.; Lee, H. Consistency regularization for generative adversarial networks. arXiv 2019, arXiv:1910.12027. [Google Scholar] [CrossRef]
- Bansal, A.; Sharma, R.; Kathuria, M. A Systematic Review on Data Scarcity Problem in Deep Learning: Solution and Applications. ACM Comput. Surv. 2022, 54, 208. [Google Scholar] [CrossRef]
- Abdalla, H.; Kumar, Y.; Marchena, J.; Guzman, S.; Awlla, A.; Gheisari, M.; Cheraghy, M. The Future of Artificial Intelligence in the Face of Data Scarcity. Comput. Mater. Contin. 2025, 84, 1073–1099. [Google Scholar] [CrossRef]
- Narayanan, H.; Ghanta, S. A Study of Data Augmentation Techniques to Overcome Data Scarcity in Wound Classification Using Deep Learning. arXiv 2024, arXiv:2411.02456. [Google Scholar] [CrossRef]
- Li, Z.; Usman, M.; Tao, R.; Xia, P.; Wang, C.; Chen, H.; Li, B. A Systematic Survey of Regularization and Normalization in GANs. ACM Comput. Surv. 2023, 55, 232. [Google Scholar] [CrossRef]
- Fayaz, S.; Alasmary, W.; Javed, A.R.; Band, S.S.; Abdel-Basset, M.; Baz, M.; Ghoneim, A. Advancements in Data Augmentation and Transfer Learning: A Comprehensive Survey to Address Data Scarcity Challenges. Recent Adv. Comput. Sci. Commun. 2024, 17, 14–35. [Google Scholar] [CrossRef]
- Kim, S.; Kang, S.; Han, D.; Kim, S.; Kim, S.; Yoo, H.-J. An Energy-Efficient GAN Accelerator with On-Chip Training for Domain-Specific Optimization. IEEE J. Solid-State Circuits 2021, 56, 2968–2980. [Google Scholar] [CrossRef]
- Bhattacharya, G. From DNNs to GANs: Review of Efficient Hardware Architectures for Deep Learning. arXiv 2021, arXiv:2107.00092. [Google Scholar] [CrossRef]
- Douwes, C.; Esling, P.; Briot, J.-P. Energy consumption of deep generative audio models. arXiv 2021, arXiv:2107.02621. [Google Scholar] [CrossRef]
- Chi, P.; Li, S.; Xu, C.; Zhang, T.; Zhao, J.; Liu, Y.; Wang, Y.; Xie, Y. PRIME: A novel processing-in-memory architecture for neural network computation in ReRAM-based main memory. SIGARCH Comput. Archit. News 2016, 44, 27–39. [Google Scholar] [CrossRef]
- Liu, F.; Liu, C.; Bi, F. A memristor based unsupervised neuromorphic system towards fast and energy-efficient GAN. arXiv 2018, arXiv:1806.01775. [Google Scholar] [CrossRef]
- Li, M.; Lin, J.; Ding, Y.; Liu, Z.; Zhu, J.Y.; Han, S. GAN compression: Efficient architectures for interactive conditional GANs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 5284–5294. [Google Scholar] [CrossRef]
- Tantawy, D.; Zahran, M.; Wassal, A. A survey on GAN acceleration using memory compression techniques. J. Eng. Appl. Sci. 2021, 68, 47. [Google Scholar] [CrossRef]
- Polizzi, Z.; Tsai, C.-Y. FusedProp: Towards efficient training of generative adversarial networks. arXiv 2020, arXiv:2004.03335. [Google Scholar] [CrossRef]
- Satyam, S.; Nikam, H.; Sahay, S. Energy-efficient implementation of generative adversarial networks on passive RRAM crossbar arrays. arXiv 2021, arXiv:2111.14484. [Google Scholar] [CrossRef]
- Corda, S.; Veenboer, B.; Tolley, E. PMT: Power measurement toolkit. In Proceedings of the 2022 IEEE/ACM International Workshop on HPC User Support Tools (HUST), Dallas, TX, USA, 13–18 November 2022; pp. 44–47. [Google Scholar] [CrossRef]
- Lacoste, A.; Luccioni, A.; Schmidt, V.; Dandres, T. Quantifying the carbon emissions of machine learning. arXiv 2019, arXiv:1910.09700. [Google Scholar] [CrossRef]
- De Vries, A. The growing energy footprint of artificial intelligence. Joule 2023, 7, 2191–2194. [Google Scholar] [CrossRef]
- Patterson, D.; Gonzalez, J.; Hölzle, U.; Le, Q.; Liang, C.; Munguia, L.M.; Rothchild, D.; So, D.; Texier, M.; Dean, J. The carbon footprint of machine learning training will plateau, then shrink. Computer 2022, 55, 18–28. [Google Scholar] [CrossRef]
- Jayakodi, N.K.; Doppa, J.R.; Pande, P.P. SETGAN: Scale and energy trade-off GANs for image applications on mobile platforms. In Proceedings of the 2020 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Diego, CA, USA, 2–5 November 2020; pp. 1–9. [Google Scholar] [CrossRef]
- Kumar, A.; Anand, K.; Mandloi, S.; Mishra, A.; Thakur, A.; Kasera, N.; AP, P. CoroNetGAN: Controlled pruning of GANs via hypernetworks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–3 October 2023; pp. 1262–1271. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, Z.; Li, J.; Gu, Z.; Liang, Z. Property inference attacks against GANs. arXiv 2021, arXiv:2111.07608. [Google Scholar] [CrossRef]
- Hu, H.; Salcic, Z.; Sun, L.; Dobbie, G.; Yu, P.S.; Zhang, X. Membership Inference Attacks on Machine Learning: A Survey. ACM Comput. Surv. 2022, 54, 235. [Google Scholar] [CrossRef]
- Ekramifard, A.; Amintoosi, H.; Hosseini Seno, S.A. Detection of membership inference attacks on GAN models. ISeCure 2025, 17, 43. [Google Scholar] [CrossRef]
- Shafik, W. Generative adversarial networks: Security, privacy, and ethical considerations. In Generative Artificial Intelligence (AI) Approaches for Industrial Applications; Springer: Cham, Switzerland, 2025; pp. 93–117. [Google Scholar] [CrossRef]
- Liu, Y.; Acharya, U.R.; Tan, J.H. Preserving Privacy in Healthcare: A Systematic Review of Deep Learning Approaches for Synthetic Data Generation. Comput. Methods Programs Biomed. 2025, 260, 108571. [Google Scholar] [CrossRef] [PubMed]
- Fredrikson, M.; Jha, S.; Ristenpart, T. Model inversion attacks that exploit confidence information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–16 October 2015; pp. 1322–1333. [Google Scholar] [CrossRef]
- Yang, W.; Wang, S.; Wu, D.; Cai, T.; Zhu, Y.; Wei, S.; Zhang, Y.; Yang, X.; Tang, Z.; Li, Y. Deep learning model inversion attacks and defenses: A comprehensive survey. Artif. Intell. Rev. 2025, 58, 242. [Google Scholar] [CrossRef]
- Li, Z.; Yang, M.; Liu, Y.; Wang, J.; Hu, H.; Yi, W.; Xu, X. GAN you see me? Enhanced data reconstruction attacks against split inference. In Advances in Neural Information Processing Systems; American Institute of Physics: College Park, MD, USA, 2023; Volume 36, pp. 54554–54566. Available online: https://proceedings.neurips.cc/paper_files/paper/2023/file/ab003a4f85ecb1b7b1514ff539dc7395-Paper-Conference.pdf (accessed on 18 August 2025).
- Shieh, C.-S.; Nguyen, T.-T.; Lin, W.-W.; Huang, Y.-L.; Horng, M.-F.; Lee, T.-F.; Miu, D. Detection of adversarial DDoS attacks using generative adversarial networks with dual discriminators. Symmetry 2022, 14, 66. [Google Scholar] [CrossRef]
- Dunmore, A.; Jang-Jaccard, J.; Sabrina, F.; Kwak, J. A Comprehensive Survey of Generative Adversarial Networks (GANs) in Cybersecurity Intrusion Detection. IEEE Access 2023, 11, 76071–76094. [Google Scholar] [CrossRef]
- Cui, F.; Ye, Q.; Kibenge-MacLeod, P. A Wasserstein GAN-based framework for adversarial attacks against intrusion detection systems. In Proceedings of the ICC 2023-IEEE International Conference on Communications, Rome, Italy, 28 May–1 June 2023; pp. 3187–3192. [Google Scholar] [CrossRef]
- Xu, C.; Ren, J.; Zhang, D.; Zhang, Y.; Qin, Z.; Ren, K. GANobfuscator: Mitigating Information Leakage Under GAN via Differential Privacy. IEEE Trans. Inf. Forensics Secur. 2019, 14, 2358–2371. [Google Scholar] [CrossRef]
- Hu, R.; Li, X.; Zhang, Y.; Chen, W.; Wang, L. CB-GAN: Generate Sensitive Data with a Convolutional Bidirectional Generative Adversarial Networks. In Proceedings of the International Conference on Database Systems for Advanced Applications (DASFAA), Tianjin, China, 17–20 April 2023; Springer Nature: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- PRISMA. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement. Available online: https://www.prisma-statement.org/ (accessed on 5 October 2025).
- Brereton, P.; Kitchenham, B.A.; Budgen, D.; Turner, M.; Khalil, M. Lessons from applying the systematic literature review process within the software engineering domain. J. Syst. Softw. 2007, 80, 571–583. [Google Scholar] [CrossRef]
- Tseng, H.Y.; Jiang, L.; Liu, C.; Yang, M.H.; Yang, W. Regularizing generative adversarial networks under limited data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Online, 19–25 June 2021. [Google Scholar] [CrossRef]
- Tsalera, E.; Papadakis, A.; Pagiatakis, G.; Samarakou, M. Impact evaluation of sound dataset augmentation and synthetic generation upon classification accuracy. J. Sens. Actuator Netw. 2025, 14, 91. [Google Scholar] [CrossRef]
- Zhang, Z.; Hua, Y.; Sun, G.; Wang, H.; McLoone, S. Improving the Leaking of Augmentations in Data-Efficient GANs via Adaptive Negative Data Augmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2–7 January 2024; pp. 5412–5421. [Google Scholar]
- Abdollahzadeh, A.; Xiao, Y.; Wang, Y.; Huang, T.; Patel, V.M.; Metaxas, D. A Survey on Generative Modeling with Limited Data, Few Shots, and Zero Shot. arXiv 2023, arXiv:2307.14397. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Kanai, S.; Kumagai, A.; Chijiwa, D.; Kashima, H. Transfer learning with pre-trained conditional generative models. arXiv 2022, arXiv:2204.12833. [Google Scholar] [CrossRef]
- Song, Y.; Wang, T.; Cai, P.; Mondal, S.K.; Sahoo, J.P. A comprehensive survey of few-shot learning: Evolution, applications, challenges, and opportunities. ACM Comput. Surv. 2023, 55, 271. [Google Scholar] [CrossRef]
- Cobbinah, M.; Nunoo-Mensah, H.; Ebenezer Adjei, P.; Adoma Acheampong, F.; Acquah, I.; Tutu Tchao, E.; Selasi Agbemenu, A.; John Kponyo, J.; Abaidoo, E. Diversity in stable GANs: A systematic review of mode collapse mitigation strategies. Eng. Rep. 2025, 7, e70209. [Google Scholar] [CrossRef]
- Bora, A.; Price, E.; Dimakis, A.G. AmbientGAN: Generative models from lossy measurements. In Proceedings of the International Conference on Learning Representations (ICLR), Vancouver, BC, Canada, 30 April–3 May 2018; Available online: https://openreview.net/forum?id=Hy7fDog0b (accessed on 17 September 2025).
- Ni, Y.; Koniusz, P. NICE: Noise-modulated consistency regularization for data-efficient GANs. In Advances in Neural Information Processing Systems; American Institute of Physics: College Park, MD, USA, 2023; Volume 36, pp. 13773–13801. Available online: https://proceedings.neurips.cc/paper_files/paper/2023/file/2c8047bf3ed8ef6905351608d641f02f-Paper-Conference.pdf (accessed on 27 July 2025).
- Yang, M.; Wang, Z.; Chi, Z.; Li, D.; Du, W. Adversarial semantic augmentation for training generative adversarial networks under limited data. arXiv 2025, arXiv:2502.00800. [Google Scholar] [CrossRef]
- Liang, W.; Liu, Z.; Liu, C. Dawson: A domain adaptive few-shot generation framework. arXiv 2020, arXiv:2001.00576. [Google Scholar] [CrossRef]
- Phaphuangwittayakul, A.; Guo, Y.; Ying, F. Fast adaptive meta-learning for few-shot image generation. IEEE Trans. Multimed. 2022, 24, 2205–2217. [Google Scholar] [CrossRef]
- Gu, B.; Zhai, J. Few-shot image generation based on meta-learning and generative adversarial network. Signal Process. Image Commun. 2025, 137, 117307. [Google Scholar] [CrossRef]
- Hospedales, T.; Antoniou, A.; Micaelli, P.; Storkey, A. Meta-learning in neural networks: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 5149–5169. [Google Scholar] [CrossRef]
- Elaraby, N.; Barakat, S.; Rezk, A. A conditional GAN-based approach for enhancing transfer learning performance in few-shot HCR tasks. Sci. Rep. 2022, 12, 16271. [Google Scholar] [CrossRef]
- Parnami, A.; Lee, M. Learning from few examples: A summary of approaches to few-shot learning. arXiv 2022, arXiv:2203.04291. [Google Scholar] [CrossRef]
- Li, X.; Yang, X.; Ma, Z.; Xue, J.H. Deep metric learning for few-shot image classification: A review of recent developments. Pattern Recognit. 2023, 138, 109381. [Google Scholar] [CrossRef]
- Jiang, W.; Huang, K.; Geng, J.; Deng, X. Multi-scale metric learning for few-shot learning. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 1091–1102. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, X.; Luo, L.; Yang, Y.; Zhang, S.; Xu, C. Local contrast learning for one-shot learning. Appl. Sci. 2024, 14, 5217. [Google Scholar] [CrossRef]
- Düzyel, O. A comparative study of GAN-generated handwriting images and MNIST images using t-SNE visualization. arXiv 2023, arXiv:2305.09786. [Google Scholar] [CrossRef]
- Sung, F.; Yang, Y.; Zhang, L.; Xiang, T.; Torr, P.H.; Hospedales, T.M. Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar] [CrossRef]
- Santoro, A.; Bartunov, S.; Botvinick, M.; Wierstra, D.; Lillicrap, T. Meta-learning with memory-augmented neural networks. In Proceedings of the International Conference on Machine Learning PMLR, New York, NY, USA, 19–24 June 2016; Available online: https://proceedings.mlr.press/v48/santoro16.html (accessed on 18 May 2025).
- Koch, G.; Zemel, R.; Salakhutdinov, R. Siamese neural networks for one-shot image recognition. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 1–6. Available online: https://api.semanticscholar.org/CorpusID:13874643 (accessed on 21 May 2025).
- Vinyals, O.; Blundell, C.; Lillicrap, T.; Wierstra, D. Matching networks for one-shot learning. arXiv 2016, arXiv:1606.04080. [Google Scholar] [CrossRef]
- Kaiser, O.; Nachum, O.; Roy, A.; Bengio, S. Learning to remember rare events. arXiv 2017, arXiv:1703.03129. [Google Scholar] [CrossRef]
- Edwards, H.; Storkey, A. Towards a neural statistician. arXiv 2016, arXiv:1606.02185. [Google Scholar] [CrossRef]
- Munkhdalai, T.; Yu, H. Meta networks. In Proceedings of the 34th International Conference on Machine Learning (ICML), Sydney, NSW, Australia, 6–11 August 2017; PMLR: Cambridge, MA, USA; Volume 70, pp. 2554–2563. Available online: https://proceedings.mlr.press/v70/munkhdalai17a.html (accessed on 30 May 2025).
- Snell, J.; Swersky, K.; Zemel, R.S. Prototypical networks for few-shot learning. arXiv 2017, arXiv:1703.05175. [Google Scholar] [CrossRef]
- Finn, C.; Abbeel, P.; Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. arXiv 2017, arXiv:1703.03400. [Google Scholar] [CrossRef]
- Ali-Gombe, A.; Elyan, E.; Savoye, Y.; Jayne, C. Few-shot classifier GAN. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Hu, J.; Qi, Z.; Wei, J.; Chen, J.; Bao, R.; Qiu, X. Few-shot learning with adaptive weight masking in conditional GANs. In Proceedings of the International Conference on Electronics and Devices, Computational Science (ICEDCS), Marseille, France, 23–25 September 2024; pp. 435–439. [Google Scholar] [CrossRef]
- Kim, S.; Kang, K.; Kim, G.; Baek, S.H.; Cho, S. DynaGAN: Dynamic few-shot adaptation of GANs to multiple domains. In Proceedings of the SIGGRAPH Asia 2022 Conference Papers, Daegu, Republic of Korea, 6–9 December 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Yang, M.; Wang, Z.; Chi, Z.; Zhang, Y. FreGAN: Exploiting frequency components for training GANs under limited data. arXiv 2022, arXiv:2210.05461. [Google Scholar] [CrossRef]
- Shrivastava, N.; Hanif, M.A.; Mittal, S.; Sarangi, S.R.; Shafique, M. A survey of hardware architectures for generative adversarial networks. J. Syst. Archit. 2021, 118, 102227. [Google Scholar] [CrossRef]
- Thomas, A. Memristor-based neural networks. J. Phys. D Appl. Phys. 2013, 46, 093001. [Google Scholar] [CrossRef]
- Sun, K.; Chen, J.; Yan, X. The future of memristors: Materials engineering and neural networks. Adv. Funct. Mater. 2021, 31, 2006773. [Google Scholar] [CrossRef]
- Aguinaldo, A.; Chiang, P.Y.; Gain, A.; Patil, A.; Pearson, K.; Feizi, S. Compressing GANs using knowledge distillation. arXiv 2019, arXiv:1902.00159. [Google Scholar] [CrossRef]
- Wang, H.; Gui, S.; Yang, H.; Liu, J.; Wang, Z. GAN slimming: All-in-one GAN compression by a unified optimization framework. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 24–27 August 2020; Springer: Cham, Switzerland, 2020; pp. 54–73. [Google Scholar] [CrossRef]
- Sun, H.; Zhu, T.; Zhang, Z.; Jin, D.; Xiong, P.; Zhou, W. Adversarial Attacks Against Deep Generative Models on Data: A Survey. IEEE Trans. Knowl. Data Eng. 2023, 35, 3367–3388. [Google Scholar] [CrossRef]
- Mukherjee, S.; Xu, Y.; Trivedi, A.; Ferres, J.L. privGAN: Protecting GANs from membership inference attacks at low cost. arXiv 2019, arXiv:2001.00071. [Google Scholar] [CrossRef]
- Shateri, M.; Messina, F.; Labeau, F.; Piantanida, P. Preserving privacy in GANs against membership inference attack. IEEE Trans. Inf. Forensics Secur. 2024, 19, 1728–1743. [Google Scholar] [CrossRef]
- Theodoridis, S.; Koutroumbas, K. Pattern Recognition; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Sangeetha, S.; Shriaarthy, E.; Rithvik Pranao, N.; Priya, J.S.; Yogeswari, L.; Gokul, S.; Nandha, S.S. Elevating privacy: A differential privacy infused approach to GAN for robust data synthesis for deep learning models. In Advanced Computing and Communications: Responsible AI, Proceedings of the 29th International Conference ADCOM, Bangalore, India, 18–20 December 2024; Springer: Cham, Switzerland, 2025; Volume 2461. [Google Scholar] [CrossRef]
- Liu, E.; Chu, Z.; Zhang, X. Wasserstein GAN for moving differential privacy protection. Sci. Rep. 2025, 15, 19634. [Google Scholar] [CrossRef]
- Tseng, B.-W.; Wu, P.-Y. Compressive privacy generative adversarial network. IEEE Trans. Inf. Forensics Secur. 2020, 15, 2499–2513. [Google Scholar] [CrossRef]
- Aldhaheri, S.; Alhuzali, A. SGAN-IDS: Self-attention-based generative adversarial network against intrusion detection systems. Sensors 2023, 23, 7796. [Google Scholar] [CrossRef] [PubMed]
- Charlier, J.; Lagrue, S.; Francois, J.; Engel, T. SynGAN: Towards Generating Synthetic Network Attacks Using GANs. arXiv 2019, arXiv:1908.09899. [Google Scholar] [CrossRef]









| Models | Fine Tune | 5-Way Acc. | 20-Way Acc. | ||
|---|---|---|---|---|---|
| 1-shot | 5-shot | 1-shot | 5-shot | ||
| MANN | N | 82.8% | 94.9% | - | - |
| Convolutional Siamese Nets | N | 96.7% | 98.4% | 88.1% | 96.5% |
| Convolutional Siamese Nets | Y | 97.3% | 98.4% | 88.1% | 97.0% |
| Matching Nets | N | 98.1% | 98.9% | 93.8% | 98.5% |
| Matching Nets | Y | 97.9% | 98.7% | 93.5% | 98.7% |
| Siamese Nets with Memory | N | 98.4% | 99.6% | 95.0% | 98.6% |
| Neural Statistician | N | 98.1% | 99.5% | 93.2% | 98.1% |
| Meta Nets | N | 99.0% | - | 97.0% | - |
| Prototypical Nets | N | 98.8% | 99.7% | 96.0% | 98.9% |
| MAML | Y | 98.7 ± 0.4% | 99.9% | 95.8 ± 0.3% | 98.9 ± 0.2% |
| RELATION NET | N | 99.6 ± 0.2% | 99.8% | 97.6 ± 0.2% | 99.1 ± 0.1% |
| ImageNet | LSUN/Bedroom | |||||||
|---|---|---|---|---|---|---|---|---|
| Time (h) | Speedup | Energy (ΚW/h) | Saving | Time (h) | Speedup | Energy (ΚW/h) | Saving | |
| Hardware-accelerated GAN | 6.3 | - | 0.51 | - | 47.2 | - | 3.8 | - |
| GPU | 17 | 2.7× | 3.1 | 6.1× | 130 | 2.8× | 23.4 | 6.1× |
| FPGA | 30 | 4.8× | 0.79 | 1.5× | 255 | 5.5× | 5.5 | 1.4× |
| Model | MIA (10% Accuracy) | GAN- Test Accuracy | Comments |
|---|---|---|---|
| GAN | 59.20% | 96.88% | Strong output quality, no privacy protection. |
| MEGAN | 12.08% | 94.16% | Reduced privacy risk with minimal accuracy loss. |
| MIMGAN | 13.01% | 92.97% | Similar performance to MEGAN |
| PrivGAN | 12.18% | 77.51% | Moderate privacy, limited output quality. |
| DPGAN | 10.07% | 59.67% | Strongest MIA protection, lowest model effectiveness. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apostolou, N.E.; Balourdou, E.V.; Mouratidou, M.; Tsalera, E.; Voyiatzis, I.; Papadakis, A.; Samarakou, M. Efficient and Secure GANs: A Survey on Privacy-Preserving and Resource-Aware Models. Appl. Sci. 2025, 15, 11207. https://doi.org/10.3390/app152011207
Apostolou NE, Balourdou EV, Mouratidou M, Tsalera E, Voyiatzis I, Papadakis A, Samarakou M. Efficient and Secure GANs: A Survey on Privacy-Preserving and Resource-Aware Models. Applied Sciences. 2025; 15(20):11207. https://doi.org/10.3390/app152011207
Chicago/Turabian StyleApostolou, Niovi Efthymia, Elpida Vasiliki Balourdou, Maria Mouratidou, Eleni Tsalera, Ioannis Voyiatzis, Andreas Papadakis, and Maria Samarakou. 2025. "Efficient and Secure GANs: A Survey on Privacy-Preserving and Resource-Aware Models" Applied Sciences 15, no. 20: 11207. https://doi.org/10.3390/app152011207
APA StyleApostolou, N. E., Balourdou, E. V., Mouratidou, M., Tsalera, E., Voyiatzis, I., Papadakis, A., & Samarakou, M. (2025). Efficient and Secure GANs: A Survey on Privacy-Preserving and Resource-Aware Models. Applied Sciences, 15(20), 11207. https://doi.org/10.3390/app152011207

