Valorization of Fine Recycled Concrete Aggregate By-Products from Construction Waste as a Sustainable Material for Granular Subbases: Mechanical and Environmental Assessments
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Experimental Plan
2.2.1. Description of Grain Size Distribution
2.2.2. Description of Atterberg Limits
2.2.3. Description of Proctor Compaction
2.2.4. Description of LA Abrasion
2.2.5. Description of CBR
2.3. Environmental Evaluation Through LCA
2.3.1. LCA’s First Phase: Goal and Scope Definition
2.3.2. LCA’s Second Phase: LCI
2.3.3. LCA’s Third Phase: LCIA
3. Results
3.1. Results of Grain Size Distribution
3.2. Results of Atterberg Limits
3.3. Results of Proctor Compaction
3.4. Results of LA Abrasion
3.5. Results of CBR
3.6. LCA’s Fourth Phase: Interpretation
4. Discussion
4.1. General Overview
4.2. Contributions to Literature
4.3. Study Limitations and Future Research Directions
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sakthibala, R.K.; Vasanthi, P.; Hariharasudhan, C.; Partheeban, P. A critical review on recycling and reuse of construction and demolition waste materials. Clean. Waste Syst. 2025, 12, 100375. [Google Scholar] [CrossRef]
- Murillo, C.; Calvache, D.; Gómez, C. Mechanical Behavior of Paving Stones Made from Construction and Demolition Waste (CDW). Buildings 2025, 15, 2986. [Google Scholar] [CrossRef]
- Lara, J.C.F.; El-Fadel, M.; Rauf, A.; Khalfan, M.M.A. Insights and Innovations in Construction and Demolition Waste Management: Strategic Framework for Circular Market Development. Resour. Conserv. Recycl. Adv. 2025, 28, 200288. [Google Scholar] [CrossRef]
- Weerakoon, T.G.; Zvirgzdins, J.; Lapuke, S.; Wimalasena, S.; Drukis, P. Integrating Circular Economy (CE) Principles into Construction Waste Management (CWM) Through Multiple Criteria. Sustainability 2025, 17, 7770. [Google Scholar] [CrossRef]
- Bu, C.; Liu, L.; Lu, X.; Zhu, D.; Sun, Y.; Yu, L.; OuYang, Y.; Cao, X.; Wei, Q. The Durability of Recycled Fine Aggregate Concrete: A Review. Materials 2022, 15, 1110. [Google Scholar] [CrossRef]
- Pedro, D.; de Brito, J.; Evangelista, L. Structural concrete with simultaneous incorporation of fine and coarse recycled concrete aggregates: Mechanical, durability and long-term properties. Constr. Build. Mater. 2017, 154, 294–309. [Google Scholar] [CrossRef]
- Prasittisopin, L.; Tuvayanond, W.; Kang, T.H.K.; Kaewunruen, S. Concrete Mix Design of Recycled Concrete Aggregate (RCA): Analysis of Review Papers, Characteristics, Research Trends, and Underexplored Topics. Resources 2025, 14, 21. [Google Scholar] [CrossRef]
- Danish, A.; Mosaberpanah, M.A. A review on recycled concrete aggregates (RCA) characteristics to promote RCA utilization in developing sustainable recycled aggregate concrete (RAC). Eur. J. Environ. Civ. Eng. 2021, 26, 6505–6539. [Google Scholar] [CrossRef]
- Nedeljković, M.; Visser, J.; Šavija, B.; Valcke, S.; Schlangen, E. Use of fine recycled concrete aggregates in concrete: A critical review. J. Build. Eng. 2021, 38, 102196. [Google Scholar] [CrossRef]
- Khanapur, N.V.; Tripathi, B.; Chandra, T. Incorporating Waelz slag to strengthen the properties of fine recycled aggregate concrete. J. Build. Eng. 2025, 104, 112235. [Google Scholar] [CrossRef]
- Wang, B.; Yan, L.; Fu, Q.; Kasal, B. A Comprehensive Review on Recycled Aggregate and Recycled Aggregate Concrete. Resour. Conserv. Recycl. 2021, 171, 105565. [Google Scholar] [CrossRef]
- Mikhailenko, P.; Kakar, M.R.; Piao, Z.; Bueno, M.; Poulikakos, L. Incorporation of recycled concrete aggregate (RCA) fractions in semi-dense asphalt (SDA) pavements: Volumetrics, durability and mechanical properties. Constr. Build. Mater. 2020, 264, 120166. [Google Scholar] [CrossRef]
- Fanijo, E.O.; Kolawole, J.T.; Babafemi, A.J.; Liu, J. A comprehensive review on the use of recycled concrete aggregate for pavement construction: Properties, performance, and sustainability. Clean. Mater. 2023, 9, 100199. [Google Scholar] [CrossRef]
- Neupane, R.P.; Devi, N.R.; Imjai, T.; Rajput, A.; Noguchi, T. Cutting-edge techniques and environmental insights in recycled concrete aggregate production: A comprehensive review. Resour. Conserv. Recycl. Adv. 2024, 25, 200241. [Google Scholar] [CrossRef]
- Alibeigibeni, A.; Stochino, F.; Zucca, M.; Gayarre, F.L. Enhancing Concrete Sustainability: A Critical Review of the Performance of Recycled Concrete Aggregates (RCAs) in Structural Concrete. Buildings 2025, 15, 1361. [Google Scholar] [CrossRef]
- Vargas, K.L.T.; Vargas, A.P.Q. Analysis of Construction and Demolition Waste (CDW) Management and Sustainability in Construction in Bogotá D.C. La Salle University. 2021. Available online: https://ciencia.lasalle.edu.co/items/27e81597-66ea-4e1a-bf42-ad7c04bdcda2/full (accessed on 1 October 2025).
- DNP. Disposición Final de Residuos Sólidos: Informe Nacional—2018; DNP: Bogotá, Colombia, 2019. [Google Scholar]
- Pavlu, T.; Pazderka, J.; Fořtová, K.; Řepka, J.; Mariaková, D.; Vlach, T. The Structural Use of Recycled Aggregate Concrete for Renovation of Massive External Walls of Czech Fortification. Buildings 2022, 12, 671. [Google Scholar] [CrossRef]
- Zhao, Z.; Courard, L.; Groslambert, S.; Jehin, T.; Leonard, A.; Xiao, J. Use of recycled concrete aggregates from precast block for the production of new building blocks: An industrial scale study. Resour. Conserv. Recycl. 2020, 157, 104786. [Google Scholar] [CrossRef]
- Bastidas-Martínez, J.G.; Rondón-Quintana, H.A.; Moreno-Anselmi, L.Á. Recycled Concrete Aggregate in Asphalt Mixtures: A Review. Recycling 2025, 10, 155. [Google Scholar] [CrossRef]
- Jitsangiam, P.; Nusit, K.; Nikraz, H.; Leng, Z.; Prommarin, J.; Chindaprasirt, P. Dense-Graded Hot Mix Asphalt with 100% Recycled Concrete Aggregate Based on Thermal-Mechanical Surface Treatment. J. Mater. Civ. Eng. 2021, 33, 04021156. [Google Scholar] [CrossRef]
- Salcedo-Fontalvo, J.E.; Vega-Araujo, D.L.; Ariza-Polo, L.; Padilla-Quiroz, J.; Castro-Cabeza, A. Influence of Recycled Concrete Aggregates on the California Bearing Ratio (CBR) of Granular Sub-bases. Arab. J. Sci. Eng. 2023, 48, 14095–14104. [Google Scholar] [CrossRef]
- Abriak, Y.; Maherzi, W.; Benzerzour, M.; Senouci, A.; Rivard, P. Valorization of Dredged Sediments and Recycled Concrete Aggregates in Road Subgrade Construction. Buildings 2023, 13, 646. [Google Scholar] [CrossRef]
- Toka, E.B.; Olgun, M. Mechanical and Economic Evaluation of Recycled Concrete Aggregate as Granular Road Base and Subbase Material. J. Mater. Civ. Eng. 2023, 35, 04023097. [Google Scholar] [CrossRef]
- Al-Mosawe, H.; Albayati, A.; Wang, Y.; Mashaan, N.S. An Experimental Study of Granular Material Using Recycled Concrete Waste for Pavement Roadbed Construction. Buildings 2022, 12, 1926. [Google Scholar] [CrossRef]
- Toka, E.B.; Olgun, M. Performance of granular road base and sub-base layers containing recycled concrete aggregate in different ratios. Int. J. Pavement Eng. 2021, 23, 3729–3742. [Google Scholar] [CrossRef]
- ASTM D6913/D6913M-17; Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. American Society for Testing and Materials (ASTM) International: West Conshohocken, PA, USA, 2017; pp. 1–34. [CrossRef]
- ASTM D4318-17; Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. American Society for Testing and Materials (ASTM) International: West Conshohocken, PA, USA, 2017; pp. 1–20. [CrossRef]
- ASTM. D698-12; Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). American Society for Testing and Materials (ASTM) International: West Conshohocken, PA, USA, 2012; pp. 1–13. [CrossRef]
- ASTM. C131/C131M-20; Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. American Society for Testing and Materials (ASTM) International: West Conshohocken, PA, USA, 2020; pp. 1–5. [CrossRef]
- ASTM. D1883-21; Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils. American Society for Testing and Materials (ASTM) International: West Conshohocken, PA, USA, 2021; pp. 1–16. [CrossRef]
- INVIAS. Capitulo 3—Afirmados, Subbases y Bases: Especificaciones Generales de Construccion de Carreteras 2022; Instituto Nacional de Vías (INVIAS): Bogotá, Colombia, 2022; pp. 1–101.
- Farooq, U.; Gorczewska-Langner, W.; Szymkiewicz, A. Water retention curves of sandy soils obtained from direct measurements, particle size distribution, and infiltration experiments. Vadose Zone J. 2024, 23, 20364. [Google Scholar] [CrossRef]
- Xie, Y.; Yang, J.; Zheng, X.; Qu, T.; Zhang, C.; Fu, J. Effect of Particle Size Distributions (PSDs) on ground responses induced by tunnelling in dense coarse-grained soils: A DEM investigation. Comput. Geotech. 2023, 163, 105763. [Google Scholar] [CrossRef]
- Stanić, F.; Tchiguirinskaia, I.; Versini, P.-A.; Cui, Y.-J.; Delage, P.; Aimedieu, P.; Tarquis, A.M.; Bornert, M.; Schertzer, D. A new multifractal-based grain size distribution model. Geoderma 2021, 404, 115294. [Google Scholar] [CrossRef]
- Yong, L.; Chengmin, H.; Baoliang, W.; Xiafei, T.; Jingjing, L. A unified expression for grain size distribution of soils. Geoderma 2017, 288, 105–119. [Google Scholar] [CrossRef]
- Duque, J.; Fuentes, W.; Rey, S.; Molina, E. Effect of Grain Size Distribution on California Bearing Ratio (CBR) and Modified Proctor Parameters for Granular Materials. Arab. J. Sci. Eng. 2020, 45, 8231–8239. [Google Scholar] [CrossRef]
- Karakan, E. Comparative Analysis of Atterberg Limits, Liquidity Index, Flow Index and Undrained Shear Strength Behavior in Binary Clay Mixtures. Appl. Sci. 2022, 12, 8616. [Google Scholar] [CrossRef]
- O’Kelly, B.C. Theory of liquid and plastic limits for fine soils, methods of determination and outlook. Geotech. Res. 2024, 11, 43–61. [Google Scholar] [CrossRef]
- Bhavya, K.; Nagaraj, H.B. Influence of soil structure and clay mineralogy on Atterberg limits. Sci. Rep. 2025, 15, 15459. [Google Scholar] [CrossRef] [PubMed]
- O’Kelly, B.C. Review of Recent Developments and Understanding of Atterberg Limits Determinations. Geotechnics 2021, 1, 59–75. [Google Scholar] [CrossRef]
- Barzegar, A.R.; Asoodar, M.A.; Ansari, M. Effectiveness of sugarcane residue incorporation at different water contents and the proctor compaction loads in reducing soil compactibility. Soil Tillage Res. 2000, 57, 167–172. [Google Scholar] [CrossRef]
- Mahardika, A.G.; Mulya, E.S.; Biantoro, A.W.; Setiawan, D.; Ariostar; Nuryono, B.; Ramady, D.G. Analysis of Soil Compaction using Proctor Standards in Highway Construction Design. J. Phys. Conf. Ser. 1933, 1993, 012084. [Google Scholar] [CrossRef]
- Bayat, H.; Asghari, S.; Rastgou, M.; Sheykhzadeh, G.R. Estimating Proctor parameters in agricultural soils in the Ardabil plain of Iran using support vector machines, artificial neural networks and regression methods. Catena 2020, 189, 104467. [Google Scholar] [CrossRef]
- Aragón, A.; García, M.G.; Filgueira, R.R.; Pachepsky, Y.A. Maximum compactibility of Argentine soils from the Proctor test; The relationship with organic carbon and water content. Soil Tillage Res. 2000, 56, 197–204. [Google Scholar] [CrossRef]
- Kuzmanić, T.; Lebar, K.; Mikoš, M. Comparison of Different-Energy-Level Abrasion in Los Angeles and Micro-Deval Apparatuses Using Mass Loss and Rounding of Sediment Particles. Appl. Sci. 2023, 13, 6102. [Google Scholar] [CrossRef]
- Guo, Y.; Markine, V.; Song, J.; Jing, G. Ballast degradation: Effect of particle size and shape using Los Angeles Abrasion test and image analysis. Constr. Build. Mater. 2018, 169, 414–424. [Google Scholar] [CrossRef]
- Tunc, E.T.; Alyamac, K.E. A preliminary estimation method of Los Angeles abrasion value of concrete aggregates. Constr. Build. Mater. 2019, 222, 437–446. [Google Scholar] [CrossRef]
- Adomako, S.; Engelsen, C.J.; Thorstensen, R.T.; Barbieri, D.M. Review of the relationship between aggregates geology and Los Angeles and micro-Deval tests. Bull. Eng. Geol. Environ. 2021, 80, 1963–1980. [Google Scholar] [CrossRef]
- Choo, H.; Kim, J.; Lee, W.; Lee, C. Relationship between hydraulic conductivity and formation factor of coarse-grained soils as a function of particle size. J. Appl. Geophys. 2016, 127, 91–101. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, S.; Zhang, Y.; Wang, L.; Li, Z. Hydraulic conductivity of gravelly soils with various coarse particle contents subjected to freeze–thaw cycles. J. Hydrol. 2021, 598, 126302. [Google Scholar] [CrossRef]
- Alakayleh, Z.; Clement, T.P.; Fang, X. Understanding the Changes in Hydraulic Conductivity Values of Coarse- and Fine-Grained Porous Media Mixtures. Water 2018, 10, 313. [Google Scholar] [CrossRef]
- Alzara, M.; Onyelowe, K.C.; Ebid, A.M.; Hanandeh, S.; Yosri, A.M.; Alshammari, T.O. Modeling of the effect of gradation and compaction characteristics on the california bearing ratio of granular materials for subbase and landfill liner construction. Sci. Rep. 2024, 14, 23630. [Google Scholar] [CrossRef]
- Moffat, R.; Faundez, F.; Villalobos, F.A. Experimental Investigation and Analysis of the Influence of Depth and Moisture Content on the Relationship Between Subgrade California Bearing Ratio Tests and Cone Penetration Tests for Pavement Design. Buildings 2025, 15, 345. [Google Scholar] [CrossRef]
- Lillian, N.; Ahmed, S.B.; Krishnan, D.; Eze, V.H.U. Comprehensive evaluation of sub-base materials for road pavements, integrating California bearing ratio and triaxial compression tests for enhanced stability and durability: A systematic review. Discov. Civ. Eng. 2025, 2, 116. [Google Scholar] [CrossRef]
- Li, T.; Kong, L.; Liu, B. The California Bearing Ratio and Pore Structure Characteristics of Weakly Expansive Soil in Frozen Areas. Appl. Sci. 2020, 10, 7576. [Google Scholar] [CrossRef]
- BS EN ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006.
- BS EN ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- Oele, M.; Dolfing, R.; Grace, V.; Sustainability, P. SimaPro 9.4. Full Update Instructions v1.0. 2022. Available online: https://simapro.com/wp-content/uploads/2022/07/FullUpdateInstructionsToSimaPro940.pdf (accessed on 1 October 2025).
- Schaubroeck, T. Relevance of attributional and consequential life cycle assessment for society and decision support. Front. Sustain. 2023, 4, 1063583. [Google Scholar] [CrossRef]
- Schaubroeck, T.; Schaubroeck, S.; Heijungs, R.; Zamagni, A.; Brandão, M.; Benetto, E. Attributional & Consequential Life Cycle Assessment: Definitions, Conceptual Characteristics and Modelling Restrictions. Sustainability 2021, 13, 7386. [Google Scholar] [CrossRef]
- Smith, S.H.; Durham, S.A. A cradle to gate LCA framework for emissions and energy reduction in concrete pavement mixture design. Int. J. Sustain. Built Environ. 2016, 5, 23–33. [Google Scholar] [CrossRef]
- Stoiber, N.; Hammerl, M.; Kromoser, B. Cradle-to-gate life cycle assessment of CFRP reinforcement for concrete structures: Calculation basis and exemplary application. J. Clean. Prod. 2021, 280, 124300. [Google Scholar] [CrossRef]
- Cao, C. Chapter 21: Sustainability and life assessment of high strength natural fibre composites in construction. In Advanced High Strength Natural Fibre Composites in Construction; Woodhead: Cambridge, UK, 2017; pp. 529–544. [Google Scholar] [CrossRef]
- Kokare, S.; Oliveira, J.P.; Godina, R. Life cycle assessment of additive manufacturing processes: A review. J. Manuf. Syst. 2023, 68, 536–559. [Google Scholar] [CrossRef]
- Guerrero-Bustamante, O.; Camargo, R.; Duque, J.; Martinez-Arguelles, G.; Polo-Mendoza, R.; Acosta, C.; Murillo, M. Designing Sustainable Asphalt Pavement Structures with a Cement-Treated Base (CTB) and Recycled Concrete Aggregate (RCA): A Case Study from a Developing Country. Designs 2025, 9, 65. [Google Scholar] [CrossRef]
- Polo-Mendoza, R.; Mora, O.; Duque, J.; Turbay, E.; Martinez-Arguelles, G.; Fuentes, L.; Guerrero, O.; Perez, S. Environmental and economic feasibility of implementing perpetual pavements (PPs) against conventional pavements: A case study of Barranquilla city, Colombia. Case Stud. Constr. Mater. 2023, 18, e02112. [Google Scholar] [CrossRef]
- Polo-Mendoza, R.; Martinez-Arguelles, G.; Peñabaena-Niebles, R. A multi-objective optimization based on genetic algorithms for the sustainable design of Warm Mix Asphalt (WMA). Int. J. Pavement Eng. 2022, 24, 2074417. [Google Scholar] [CrossRef]
- Frischknecht, R.; Jungbluth, N.; Althaus, H.-J.; Doka, G.; Dones, R.; Heck, T.; Hellweg, S.; Hischier, R.; Nemecek, T.; Rebitzer, G.; et al. The ecoinvent Database: Overview and Methodological Framework. Int. J. Life Cycle Assess. 2004, 10, 3–9. [Google Scholar] [CrossRef]
- Curran, M.A.; Overly, J.G.; Hofstetter, P.; Muller, R.; Lippiatt, B.C. NISTIR 6865: BEES 2.0—Building for Environmental and Economic Sustainability—Peer Review Report; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2002. [Google Scholar]
- Lippiatt, B.C. NISTIR 7423: BEES 4.0—Building for Environmental and Economic Sustainability Technical Manual and User Guide; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2007. [Google Scholar]
- Cantero-Durango, J.; Polo-Mendoza, R.; Martinez-Arguelles, G.; Fuentes, L. Properties of Hot Mix Asphalt (HMA) with Several Contents of Recycled Concrete Aggregate (RCA). Infrastructures 2023, 8, 109. [Google Scholar] [CrossRef]
- Rahman, A.S.A.; Noor, M.J.M.; Ahmad, J.B.; Sidek, N. Prediction of soil stress-strain response incorporates mobilised shear strength envelope of granitic residual soil. AIP Conf. Proc. 2017, 1891, 020006. [Google Scholar] [CrossRef]
- Sobczyk, K.; Chmielewski, R.; Kruszka, L.; Rekucki, R. Strength characterization of soils’ properties at high strain rates using the hopkinson technique—a review of experimental testing. Materials 2021, 15, 274. [Google Scholar] [CrossRef]
- Fang, C.; Faller, R.K.; Kim, S.; Alomari, Q.A.; Bahar, M.A.; Kumar, G.S. A Review of Soil Constitutive Models for Simulating Dynamic Soil–Structure Interaction Processes Under Impact Loading. Geotechnics 2025, 5, 40. [Google Scholar] [CrossRef]
- Shi, X.; Sun, J.; Qi, Y.; Zhu, X.; Zhang, X.; Liang, R.; Chen, H. Study on Stiffness Parameters of the Hardening Soil Model in Sandy Gravel Stratum. Appl. Sci. 2023, 13, 2710. [Google Scholar] [CrossRef]
Characterization Test | International Standard | Acceptance Criteria |
---|---|---|
Grain size distribution | ASTM D6913 [27] | Bounds as reported later in the manuscript |
Atterberg limits | ASTM D4318 [28] | Liquid limit 25% Plasticity index 6% |
Proctor compaction | ASTM D698 [29] | 7% optimum moisture content 10% Maximum dry density 2.0 g/cm3 |
LA abrasion | ASTM C131 [30] | 50% |
CBR | ASTM D1883 [31] | 30% for low- to medium-traffic roads 40% for high-traffic roads |
Stage | Process Name | SimaPro Unit Processes | Database |
---|---|---|---|
Raw materials extraction/production | RCA crushing (Equipment Efficiency: 0.4 kWh/ton) | Diesel, burned in building machine {GLO}|processing|Cut-off, U | Ecoinvent |
Coarse aggregate extraction | Gravel, crushed {RoW}|production|Cut-off, U | ||
Fine aggregate extraction | Sand {RoW}|gravel and quarry operation|Cut-off, U | ||
Transportation of raw materials to the processing plant | RCA transportation (One-way distance: 0 km) | Transport, freight, lorry 16-32 metric ton, EURO4 {RoW}|transport, freight, lorry 16-32 metric ton, EURO4|Cut-off, U | |
Coarse aggregate transportation (One-way distance: 73 km) | |||
Fine aggregate transportation (One-way distance: 73 km) | |||
Composite materials production | Mixing process for GSB (Equipment Efficiency: 2.33 kWh/ton) | Diesel, burned in building machine {GLO}|processing|Cut-off, U |
Blends | Raw Materials | ||
---|---|---|---|
Virgin Coarse Aggregate (ton) | Virgin Fine Aggregate (ton) | FRCA (ton) | |
100% GSB38 | 0.844 | 1.436 | 0.000 |
90% GSB38 + 10% FRCA | 0.728 | 1.239 | 0.219 |
85% GSB38 + 15% FRCA | 0.639 | 1.089 | 0.305 |
Impact Categories (Unit) | Meaning | Real-World Significance |
---|---|---|
AC (H+ mmole eq) | Measures emissions that increase the acidity of soils and water bodies (e.g., SO2, NOx). | Leads to forest decline, freshwater acidification, and damage to buildings and ecosystems. |
EC (g 2.4-D eq) | Quantifies the potential of chemicals to harm terrestrial and aquatic organisms. | Reflects risks to biodiversity and ecosystem services due to toxic substances. |
EU (g N eq) | Assesses nutrient enrichment (mainly nitrogen and phosphorus) of aquatic systems. | Causes algal blooms, oxygen depletion, and aquatic ecosystem degradation. |
GW (g CO2 eq) | Measures the contribution of greenhouse gas emissions to climate change. | Leads to temperature rise, extreme weather, sea-level rise, and ecosystem disruption. |
HA (T&E count) | Evaluates land use and resource extraction impacts on threatened and endangered species. | Represents loss of biodiversity and natural habitats. |
HHC (g C6H6 eq) | Quantifies exposure to carcinogenic substances. | Indicates potential long-term risks of cancer from environmental pollutants. |
HHCAP (microDALYs) | Assesses health effects from common air pollutants (e.g., PM10, O3, CO). | Represents morbidity and mortality from respiratory and cardiovascular diseases. |
HHNC (g C7H7 eq) | Quantifies exposure to toxic substances causing non-cancer effects. | Reflects potential for neurological, reproductive, or developmental disorders. |
IAQ (g TVOC eq) | Measures emissions of total volatile organic compounds affecting indoor environments. | Affects occupant health, comfort, and productivity in buildings. |
NRD (MJ surplus) | Estimates the extra energy required to obtain future mineral and fossil resources. | Indicates the long-term sustainability of resource use and energy demands. |
OD (g CFC-11 eq) | Quantifies emissions that degrade the stratospheric ozone layer. | Leads to increased ultraviolet radiation, skin cancer, and crop damage. |
SM (g NOx eq) | Evaluates emissions contributing to photochemical smog formation. | Causes respiratory problems, reduced visibility, and crop damage. |
WI (liters) | Measures total freshwater withdrawal during the life cycle. | Reflects pressure on freshwater resources and competition with other uses. |
Impact Categories | SimaPro Unit Processes | |||
---|---|---|---|---|
Diesel, Burned in Building Machine {GLO}|Processing|Cut-off, U | Gravel, Crushed {RoW}|Production|Cut-off, U | Sand {RoW}|Gravel and Quarry Operation|Cut-off, U | Transport, Freight, Lorry 16–32 Metric Ton, EURO4 {RoW}|Transport, Freight, Lorry 16–32 Metric Ton, EURO4|Cut-off, U | |
(unit) | (kWh) | (ton) | (ton) | (tkm) |
AC (H+ mmole eq) | 1.780 × 102 | 2.520 × 103 | 1.450 × 103 | 4.310 × 101 |
EC (g 2.4-D eq) | 9.760 × 10−1 | 1.260 × 102 | 5.390 × 101 | 9.860 × 10−1 |
EU (g N eq) | 3.640 × 10−1 | 4.120 × 101 | 1.250 × 101 | 1.970 × 10−1 |
GW (g CO2 eq) | 3.250 × 102 | 8.280 × 103 | 4.030 × 103 | 1.700 × 102 |
HA (T&E count) | 6.320 × 10−16 | 1.450 × 10−13 | 7.390 × 10−14 | 3.820 × 10−15 |
HHC (g C6H6 eq) | 4.410 × 10−1 | 5.450 × 101 | 2.170 × 101 | 3.840 × 10−1 |
HHCAP (microDALYs) | 5.310 × 10−2 | 1.750 | 8.880 × 10−1 | 2.370 × 10−2 |
HHNC (g C7H7 eq) | 8.220 × 102 | 1.680 × 105 | 6.810 × 104 | 1.440 × 103 |
IAQ (g TVOC eq) | 0.000 | 0.000 | 0.000 | 0.000 |
NRD (MJ surplus) | 6.300 × 10−1 | 1.000 × 101 | 4.930 | 3.410 × 10−1 |
OD (g CFC-11 eq) | 4.660 × 10−5 | 3.590 × 10−4 | 2.510 × 10−4 | 2.470 × 10−5 |
SM (g NOx eq) | 4.860 | 3.690 × 101 | 2.780 × 101 | 9.450 × 10−1 |
WI (liters) | 1.970 × 10−1 | 3.760 × 102 | 1.410 × 103 | 2.510 × 10−1 |
Impact Categories (Unit) | Materials | ||
---|---|---|---|
100% GSB38 | 90% GSB38 + 10% FRCA | 85% GSB38 + 15% FRCA | |
AC (H+ mmole eq) | 1.233 × 104 | 1.074 × 104 | 9.491 × 103 |
EC (g 2.4-D eq) | 3.530 × 102 | 3.051 × 102 | 2.683 × 102 |
EU (g N eq) | 8.745 × 101 | 7.565 × 101 | 6.656 × 101 |
GW (g CO2 eq) | 4.280 × 104 | 3.712 × 104 | 3.270 × 104 |
HA (T&E count) | 8.677 × 10−13 | 7.489 × 10−13 | 6.581 × 10−13 |
HHC (g C6H6 eq) | 1.434 × 102 | 1.240 × 102 | 1.090 × 102 |
HHCAP (microDALYs) | 6.979 | 6.052 | 5.333 |
HHNC (g C7H7 eq) | 4.836 × 105 | 4.177 × 105 | 3.672 × 105 |
NRD (MJ surplus) | 7.562 × 101 | 6.562 × 101 | 5.783 × 101 |
OD (g CFC-11 eq) | 5.022 × 10−3 | 4.360 × 10−3 | 3.845 × 10−3 |
SM (g NOx eq) | 2.542 × 102 | 2.222 × 102 | 1.967 × 102 |
WI (liters) | 2.385 × 103 | 2.058 × 103 | 1.808 × 103 |
Characterization Test | Materials | ||
---|---|---|---|
100% GSB38 | 90% GSB38 + 10% FRCA | 85% GSB38 + 15% FRCA | |
Grain size distribution | ✅ | ✅ | ✅ |
Atterberg limits | ✅ | ✅ | ✅ |
Proctor compaction | ✅ | ✅ | ✅ |
LA abrasion | ✅ | ❌ | ❌ |
CBR (for low- to medium-traffic roads) | ✅ | ✅ | ✅ |
CBR (for high-traffic roads) | ✅ | ❌ | ✅ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salcedo Fontalvo, J.E.; Vega A., D.L.; Polo-Mendoza, R.; Puc Hernandez, F.Á.; Navarro Ortiz, L.; Meneses Vides, G. Valorization of Fine Recycled Concrete Aggregate By-Products from Construction Waste as a Sustainable Material for Granular Subbases: Mechanical and Environmental Assessments. Appl. Sci. 2025, 15, 11184. https://doi.org/10.3390/app152011184
Salcedo Fontalvo JE, Vega A. DL, Polo-Mendoza R, Puc Hernandez FÁ, Navarro Ortiz L, Meneses Vides G. Valorization of Fine Recycled Concrete Aggregate By-Products from Construction Waste as a Sustainable Material for Granular Subbases: Mechanical and Environmental Assessments. Applied Sciences. 2025; 15(20):11184. https://doi.org/10.3390/app152011184
Chicago/Turabian StyleSalcedo Fontalvo, José Eduardo, Daniela L. Vega A., Rodrigo Polo-Mendoza, Felipe Ángeles Puc Hernandez, Luisa Navarro Ortiz, and Grey Meneses Vides. 2025. "Valorization of Fine Recycled Concrete Aggregate By-Products from Construction Waste as a Sustainable Material for Granular Subbases: Mechanical and Environmental Assessments" Applied Sciences 15, no. 20: 11184. https://doi.org/10.3390/app152011184
APA StyleSalcedo Fontalvo, J. E., Vega A., D. L., Polo-Mendoza, R., Puc Hernandez, F. Á., Navarro Ortiz, L., & Meneses Vides, G. (2025). Valorization of Fine Recycled Concrete Aggregate By-Products from Construction Waste as a Sustainable Material for Granular Subbases: Mechanical and Environmental Assessments. Applied Sciences, 15(20), 11184. https://doi.org/10.3390/app152011184