Influence of Different Post-Processing Procedures on the Accuracy of 3D Printed Dental Models Using Vat Polymerization: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Reporting
Eligibility Criteria
2.2. Inclusion and Exclusion Criteria
2.2.1. Inclusion Criteria
- Participants: dental models;
- Interventions: post-curing and post-rinsing procedures of 3D-printed dental models;
- Comparisons: comparisons were made between the different rinsing agents and the curing parameters during post-processing;
- Outcome measures: differences in the degree to which each post-processing procedure influences the accuracy of 3D-printed dental casts;
- Study design: randomized and non-randomized in vitro studies.
2.2.2. Exclusion Criteria
2.3. A Literature Search Strategy
2.4. Data Collection, Extraction, and Management
2.5. Risk of Bias/Quality Assessment in Individual Studies
- Clearly stated aims/objectives;
- Detailed explanation of sample size calculation;
- Detailed explanation of the sampling technique;
- Details of the comparison group;
- Detailed explanation of methodology;
- Operator details;
- Randomization;
- Method of measurement of outcome;
- Outcome assessor details;
- Blinding;
- Statistical analysis;
- Presentation of results.
- Two points for adequately specified criteria;
- One point for inadequately specified criteria;
- Zero points for non-specified criteria;
- Not applicable criteria were excluded from the calculation.
- Low risk of bias (when final score is >70%);
- Medium risk of bias (when final score is 50–70%);
- High risk of bias (when final score is <50%).
2.6. Data Synthesis
3. Results
3.1. Study Selection
3.2. Characteristics of Included Studies
3.3. Risk of Bias Within Studies

| Authors/ Publication Year | Study Design | Participants (Number of Dental Models) | Intervention | Outcomes | Method of Outcome Assessment | Results | Conclusion |
|---|---|---|---|---|---|---|---|
| D. Mostafavi [59] (2023) | In vitro study | 160 specimens (divided in two groups, N = 80. Each group was divided in 4 subgroups of 20 specimens each) | 1. Post polymerization conditions (dry or water submerged) 2. Post polymerization time (2, 10, 20, 40 min) | Dimensional accuracy of 3d printed dental models |
|
|
|
| CA Lammer [65] (2025) | In vitro study | 72 maxillary dental casts (divided in 3 groups based on resin type. Each resin group divided in 3 subgroups based on cleaning solutions) | 1. Resin type: a. WW (EPAX WATER- WW1, EPAX 3D -WW2) b. NWW (keymodel Ultra resin- ivory) 2. Cleaning solution (Water, MES, IPA) 3. Storage duration | Dimensional accuracy of 3d printed dental models |
|
|
|
| G Çakmak [66] (2025) | In vitro study | 3 dental models (36 specimens from each model) | 1. Resin type: a. WW (EPAX - WW1, Phrozen-WW2) b. NWW (keymodel Ultra resin- beige) 2. Cleaning solution (Water, MES, IPA) | Surface roughness and microhardness |
|
|
|
| Yoojin lim [27] (2022) | In vitro study | 46 dental models (one master model and 3 groups of 15) | IPA alternative rinsing solvents: 1. Mean Green 2. Yellow Magic 77 3. Propylene glycol | Dimensional accuracy of 3d printed dental models |
|
|
|
| D Mostafavi [64] (2021) | In vitro study | 160 printed specimens (80 per each solvent group) | Resin type (E-model Light; Envisiontec, Deadborn, MI) Interventions: 1. Different solvents (IPA, TPM) 2. Rinsing Time (5, 7, 9, 11 min) | Dimensional accuracy of 3d printed dental models |
|
|
|
| Authors/ Publication Year | Trueness and Precision Overview | |
|---|---|---|
| Trueness: Assessment of dimensional deviations relative to a reference model Precision: Examination of variability in dimensional deviations across repeated prints | ||
| D. Mostafavi [59] (2023) | Assessment of dimensional accuracy across different post-curing protocols | |
| Results concerning trueness: Post-curing protocol, insufficient curing, over-curing or inappropriate curing conditions resulted in dimensional deviations in 3d printed models compared to the reference model (lower trueness). | Results concerning precision: Inconsistent post-curing procedure or suboptimal curing parameters led to higher variability between prints (lower precision). | |
| CA Lammer [65] (2025) | Assessment of dimensional accuracy across different resin types, rinsing solutions and storage durations | |
| Results concerning trueness: NWW resin with IPA or MES had the lowest deviations (higher trueness). | Results concerning precision: Concerning reproducibility among repeated prints, dimensional deviations were within clinically acceptable thresholds (high precision even if trueness varied). | |
| G Çakmak [66] (2025) | Assessment of surface properties (roughness and hardness) accuracy across different resin types and rinsing solutions | |
| Results concerning trueness: WW2-water and WW2-MES achieved the lowest deviations in both surface roughness and hardness (highest trueness). | Results concerning precision: Relatively low deviations across groups regardless of resin or rinsing solution (good precision in surface properties). Less stable solvents or inconsistent rinsing techniques resulted in variability between prints (low precision). | |
| Yoojin lim [27] (2022) | Assessment of dimensional accuracy across different rinsing solvents | |
| Results concerning trueness: Different rinsing agents led to variations in the dimensional accuracy of the models affecting the printed model trueness. Propylene glycol had the lowest average errors (highest trueness). | Results concerning precision: Certain rinsing agents contributed to more consistent dimensions across prints, enhancing the precision of the manufacturing process. | |
| D Mostafavi [64] (2021) | Assessment of dimensional accuracy across different rinsing solutions and times | |
| Results concerning trueness: The rinsing solution significantly affected trueness. Isopropyl alcohol (IPA) led to lower dimensional deviations (higher trueness). | Results concerning precision: Variability of deviations among repeated specimens across rinsing conditions was relatively low (high precision). | |
| Author (Year) | Outcomes | Clearly Stated Objectives | Details of Sample Size Calculation | Details of Sampling Technique | Details of Comparison Group | Detailed Methodology Explanation | Operator Details | Randomization | Method of Outcome Measurement | Outcome Assessor Details | Blinding | Statistical Analysis | Presentation of results | Final Score | Final Score (%) | Risk of Bias |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| D. Mostafavi [59] (2023) | Dimensional accuracy of 3d printed dental models | 2 | 2 | 2 | 2 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 2 | 18 | 75% | Low |
| CA Lammer [65] (2025) | Dimensional stability of 3d printed dental models | 2 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 0 | 1 | 2 | 2 | 17 | 70.8% | Low |
| G Çakmak [66] (2025) | Surface roughness and microhardness of 3d printed dental models | 2 | 2 | 2 | 2 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 2 | 17 | 70.8% | Low |
| Yoojin lim [27] (2022) | Dimensional accuracy of 3d printed dental models | 2 | 1 | 2 | 2 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 2 | 16 | 66.7% | Medium |
| D Mostafavi [64] (2021) | Dimensional accuracy of 3d printed dental models | 2 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 0 | 1 | 2 | 2 | 18 | 75% | Low |
4. Discussion
| Author/Publication Year | Outcomes | Variables Tested | Main Findings | Limitations |
|---|---|---|---|---|
| Mostafavi et al. (2021) [58] | Effect of rinsing agents and duration on dimensional accuracy | IPA vs TPM; rinsing time | TPM showed superior trueness & precision compared to IPA; optimal rinsing = 3–4 min + extra 2–3 min; all deviations within 100–300 µm | Only one resin tested; limited rinsing times; lack of variable control |
| Lim (2022) [26] | Alternative rinsing solutions for LCD models affecting their dimensional accuracy | IPA vs Mean Green, Yellow Magic 7, PG | PG showed lowest mean error and highest dimensional accuracy; all deviations within 100–300 µm (diagnostic use acceptable) | Small sample; no ultrasonic bath; single printer; limited scope |
| Lammer et al. (2025) [64] | Dimensional stability over 3-month storage | NWW vs WW resins; solvents (MES, IPA, water) | NWW resins most stable; Phrozen WW > EPAX WW; MES showed lowest deviations; water least effective; all results within 200–250 µm | Different polymerization units used; potential variability |
| Çakmak et al. (2025) [65] | Surface roughness & microhardness | Resins (WW vs NWW); solvents (IPA, MES, water) | Resin and solvent both influenced results; exception: surface roughness in WW resins not affected by solvent; MES & water provided sustainable alternatives | Only one NWW resin tested; limited scope on mechanical properties |
| Mostafavi (2025) [63] | Post-curing conditions on dimensional accuracy | Dry vs submerged curing; curing time (2–40 min) | Dry curing gave higher accuracy; best times: 10 and 40 min; deviations 10–90 µm (acceptable for diagnostics, borderline for restorations) | One UV device only; limited curing times; manual measurements; small sample size |
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CAD/CAM | Computer-Aided Design/Computer-Aided Manufacturing |
| SM | subtractive manufacturing |
| AM | additive manufacturing |
| SLA | stereolithography |
| DLP | digital light processing |
| LCD | liquid crystal display |
| UV | ultraviolet |
| DMD | digital micromirror device |
| LEDs | light-emitting diodes |
| HV | Vickers hardness numbers |
| NWW | non-water-washable |
| MES | methyl ether solvent |
| IPA | isopropyl alcohol |
| PG | propylene glycol |
| TPM | tripropylene glycol monomethyl ether |
References
- Sitaras, S.; Tsolakis, I.A.; Gelsini, M.; Tsolakis, A.I.; Schwendicke, F.; Wolf, T.G.; Perlea, P. Applications of Artificial Intelligence in Dental Medicine: A Critical Review. Int. Dent. J. 2025, 75, 474–486. [Google Scholar] [CrossRef]
- Tsolakis, I.A.; Tsolakis, A.I.; Elshebiny, T.; Matthaios, S.; Palomo, J.M. Comparing a Fully Automated Cephalometric Tracing Method to a Manual Tracing Method for Orthodontic Diagnosis. J. Clin. Med. 2022, 11, 6854. [Google Scholar] [CrossRef]
- Rokhshad, R.; Mohammad-Rahimi, H.; Sohrabniya, F.; Jafari, B.; Shobeiri, P.; Tsolakis, I.A.; Ourang, S.A.; Sultan, A.S.; Khawaja, S.N.; Bavarian, R.; et al. Deep Learning for Temporomandibular Joint Arthropathies: A Systematic Review and Meta-Analysis. J. Oral Rehabil. 2024, 51, 1632–1644. [Google Scholar] [CrossRef] [PubMed]
- Tsolakis, I.A.; Gizani, S.; Panayi, N.; Antonopoulos, G.; Tsolakis, A.I. Three-Dimensional Printing Technology in Orthodontics for Dental Models: A Systematic Review. Children 2022, 9, 1106. [Google Scholar] [CrossRef] [PubMed]
- Alghazzawi, T.F. Advancements in CAD/CAM Technology: Options for Practical Implementation. J. Prosthodont. Res. 2016, 60, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Beuer, F.; Schweiger, J.; Edelhoff, D. Digital Dentistry: An Overview of Recent Developments for CAD/CAM Generated Restorations. Br. Dent. J. 2008, 204, 505–511. [Google Scholar] [CrossRef]
- Abduo, J.; Lyons, K.; Bennamoun, M. Trends in Computer-Aided Manufacturing in Prosthodontics: A Review of the Available Streams. Int. J. Dent. 2014, 2014, 783948. [Google Scholar] [CrossRef]
- Dawood, A.; Marti Marti, B.; Sauret-Jackson, V.; Darwood, A. 3D Printing in Dentistry. Br. Dent. J. 2015, 219, 521–529. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, C.; Xu, X.; Wang, J.; Hou, X.; Li, K.; Lu, X.; Shi, H.; Lee, E.S.; Jiang, H.B. A Review of 3D Printing in Dentistry: Technologies, Affecting Factors, and Applications. Scanning 2021, 2021, 9950131. [Google Scholar] [CrossRef]
- Schweiger, J.; Edelhoff, D.; Güth, J.F. 3D Printing in Digital Prosthetic Dentistry: An Overview of Recent Developments in Additive Manufacturing. J. Clin. Med. 2021, 10, 2010. [Google Scholar] [CrossRef]
- Lin, L.; Fang, Y.; Liao, Y.; Chen, G.; Gao, C.; Zhu, P. 3D Printing and Digital Processing Techniques in Dentistry: A Review of Literature. Adv. Eng. Mater. 2019, 21, 1801013. [Google Scholar] [CrossRef]
- Li, X.; Zhang, S.; Jiang, P.; Nie, M.; Kong, D.; Kang, Z.; Liu, M.; Zhu, D.; Jiang, C.; Zhang, Q.; et al. Smart Bionic Structures: Connecting Nature and Technology through Additive Manufacturing. Addit. Manuf. Front. 2024, 3, 200137. [Google Scholar] [CrossRef]
- Ng, W.L.; An, J.; Chua, C.K. Process, Material, and Regulatory Considerations for 3D Printed Medical Devices and Tissue Constructs. Engineering 2024, 36, 146–166. [Google Scholar] [CrossRef]
- Zhou, L.; Miller, J.; Vezza, J.; Mayster, M.; Raffay, M.; Justice, Q.; Al Tamimi, Z.; Hansotte, G.; Sunkara, L.D.; Bernat, J. Additive Manufacturing: A Comprehensive Review. Sensors 2024, 24, 2668. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Xiong, R.; Zhao, Z.; Zhao, C.; Wang, Z.F.; Niu, W.; Xue, H.; Cheng, F.; Liu, W.; Wei, S. Laser Melting Deposition of In-Situ (TiB + TiC) Hybrid Reinforced TC4 Composites: Preparation, Microstructure and Room/High-Temperature Corrosion Behavior. J. Mater. Sci. Technol. 2025, 228, 137–154. [Google Scholar] [CrossRef]
- Bhargav, A.; Sanjairaj, V.; Rosa, V.; Feng, L.W.; Jin, J.F. Applications of Additive Manufacturing in Dentistry: A Review. J. Biomed. Mater. Res. B Appl. Biomater. 2018, 106, 2058–2064. [Google Scholar] [CrossRef]
- Dodziuk, H. Applications of 3D Printing in Healthcare. Kardiochir. Torakochir. Pol. 2016, 13, 283–293. [Google Scholar] [CrossRef]
- Ramos Marcel, T.; Hickel, R.; Kühnisch, J. Accuracy of CAD/CAM-Fabricated Bite Splints: Milling vs 3D Printing. Clin. Oral Investig. 2020, 24, 4607–4615. [Google Scholar] [CrossRef]
- Jindal, P.; Juneja, M.; Bajaj, D.; Siena, F.; Breedon, P. Effects of Post-Curing Conditions on Mechanical Properties of 3D Printed Clear Dental Aligners. Rapid Prototyp. J. 2020, 26, 675–683. [Google Scholar] [CrossRef]
- ElShebiny, T.; Matthaios, S.; Menezes, L.M.; Tsolakis, I.A.; Palomo, J.M. Effect of Printing Technology, Layer Height, and Orientation on Assessment of 3D-Printed Models. J. World Fed. Orthod. 2024, 13, 169–174. [Google Scholar] [CrossRef]
- Tsoukala, E.; Lyros, I.; Tsolakis, A.I.; Maroulakos, M.P.; Tsolakis, I.A. Direct 3D-Printed Orthodontic Retainers: A Systematic Review. Children 2023, 10, 676. [Google Scholar] [CrossRef]
- ElShebiny, T.; Menezes, L.M.; Matthaios, S.; Tsolakis, I.A.; Palomo, J.M. Effect of Printing Technology and Orientation on the Accuracy of Three-Dimensional Printed Retainers. Angle Orthod. 2024, 94, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Tsolakis, I.A.; Papaioannou, W.; Papadopoulou, E.; Dalampira, M.; Tsolakis, A.I. Comparison in Terms of Accuracy between DLP and LCD Printing Technology for Dental Model Printing. Dent. J. 2022, 10, 181. [Google Scholar] [CrossRef] [PubMed]
- Stansbury, J.W.; Idacavage, M.J. 3D Printing with Polymers: Challenges among Expanding Options and Opportunities. Dent. Mater. 2016, 32, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Tsolakis, I.A.; Lyros, I.; Christopoulou, I.; Tsolakis, A.I.; Papadopoulos, M.A. Comparing the Accuracy of Three Different Liquid Crystal Display Printers for Dental Model Printing. Am. J. Orthod. Dentofacial Orthop. 2024, 166, 7–14. [Google Scholar] [CrossRef]
- Chen, H.; Cheng, D.H.; Huang, S.C.; Lin, Y.M. Comparison of Flexural Properties and Cytotoxicity of Interim Materials Printed from Mono-LCD and DLP 3D Printers. J. Prosthet. Dent. 2021, 126, 703–708. [Google Scholar] [CrossRef]
- Lim, Y. Influence of Different Postprocessing Rinsing Agents on the Manufacturing Accuracy of Dental Models Printed by LCD Resin 3D Printer; College of Dentistry: Hong Kong, China, 2022; Available online: https://hdl.handle.net/1969.1/197435 (accessed on 24 June 2025).
- Lee, S.H.; Park, W.S.; Cho, H.S.; Zhang, W.; Leu, M.C. A Neural Network Approach to the Modelling and Analysis of Stereolithography Processes. Proc. I Mech. Eng. B 2001, 215, 1719–1733. [Google Scholar] [CrossRef]
- Puebla, K.; Arcaute, K.; Quintana, R.; Wicker, R.B. Effects of Environmental Conditions, Aging and Build Orientations on the Mechanical Properties of ASTM Type I Specimens Manufactured via Stereolithography. Rapid Prototyp. J. 2012, 18, 374–388. [Google Scholar] [CrossRef]
- Braian, M.; Jimbo, R.; Wennerberg, A. Production Tolerance of Additive Manufactured Polymeric Objects for Clinical Applications. Dent. Mater. 2016, 32, 853–861. [Google Scholar] [CrossRef]
- Ide, Y.; Nayar, S.; Logan, H.; Gallagher, B.; Wolfaard, J. The Effect of the Angle of Acuteness of Additive Manufactured Models and the Direction of Printing on the Dimensional Fidelity: Clinical Implications. Odontology 2017, 105, 108–115. [Google Scholar] [CrossRef]
- Cho, H.S.; Park, W.S.; Choi, B.W.; Leu, M.C. Determining Optimal Parameters for Stereolithography Processes via Genetic Algorithm. J. Manuf. Sci. Eng. 2000, 122, 18–27. [Google Scholar] [CrossRef]
- Alharbi, N.; Osman, R.; Wismeijer, D. Effect of Build Direction on the Mechanical Properties of 3D Printed Complete Coverage Interim Dental Restorations. J. Prosthet. Dent. 2016, 115, 760–767. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, N.; Osman, R.; Wismeijer, D. Factors Influencing the Dimensional Accuracy of 3D-Printed Full-Coverage Dental Restorations Using Stereolithography Technology. Int. J. Prosthodont. 2016, 29, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Reymus, M.; Fabritius, R.; Kebler, A.; Hickel, R.; Edelhoff, D.; Stawarczyk, B. Fracture Load of 3D-Printed Fixed Dental Prostheses Compared with Milled and Conventionally Fabricated Ones: The Impact of Resin Material, Build Orientation, Postcuring and Artificial Aging—An In Vitro Study. Clin. Oral Investig. 2020, 24, 701–710. [Google Scholar] [CrossRef]
- Unkovskiy, A.; Bui, P.H.; Schille, C.; Geis-Gerstorfer, J.; Huettig, F.; Spintzyk, S. Objects Build Orientation, Positioning and Curing Influence Dimensional Accuracy and Flexural Properties of Stereolithographically Printed Resin. Dent. Mater. 2018, 34, e324–e333. [Google Scholar] [CrossRef]
- Lee, J.Y.; An, J.; Chua, C.H. Fundamentals and Applications of 3D Printing for Novel Materials. Appl. Mater. Today 2017, 7, 120–133. [Google Scholar] [CrossRef]
- Revilla-Leon, M.; Umorin, M.; Ozcan, M.; Piedra-Cascon, W. Color Dimensions of Additive Manufactured Interim Restorative Dental Material. J. Prosthet. Dent. 2019, 121, 123–130. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, Z.; Zhang, Q.; Qi, H.J.; Fang, D. Mechanics of Shape Distortion of DLP 3D-Printed Structures during UV Post-Curing. Soft Matter 2019, 15, 6151–6159. [Google Scholar] [CrossRef]
- Revilla-Leon, M.; Meyers, M.J.; Zandinejad, A.; Ozcan, M. A Review on Chemical Composition, Mechanical Properties and Manufacturing Workflow of Additively Manufactured Current Polymers for Interim Dental Restorations. J. Esthet. Restor. Dent. 2019, 31, 51–57. [Google Scholar] [CrossRef]
- Park, G.S.; Kim, S.K.; Heo, S.J.; Koak, J.Y.; Seo, D.G. Effects of Printing Parameters on the Fit of Implant-Supported 3D Printing Resin Prosthetics. Materials 2019, 12, 2533. [Google Scholar] [CrossRef]
- Arnold, C.; Monsees, D.; Hey, J.; Schweyen, R. Surface Quality of 3D-Printed Models as a Function of Various Printing Parameters. Materials 2019, 12, 1970. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Li, P.L.; Chu, F.T.; Shen, G. Influence of the Three-Dimensional Printing Technique and Printing Layer Thickness on Model Accuracy. J. Orofac. Orthop. 2019, 80, 194–204. [Google Scholar] [CrossRef]
- Loflin, W.A.; English, J.D.; Borders, C.; Harris, L.M.; Moon, A.; Holland, J.N.; Kasper, F.K. Effect of Print Layer Height on the Assessment of 3D-Printed Models. Am. J. Orthod. Dentofacial Orthop. 2019, 156, 283–289. [Google Scholar] [CrossRef]
- Favero, C.S.; English, J.D.; Cozad, B.E.; Wirthlin, J.O.; Short, M.M.; Kasper, F.K. Effect of Print Layer Height and Printer Type on the Accuracy of 3-Dimensional Printed Orthodontic Models. Am. J. Orthod. Dentofac. Orthop. 2017, 152, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Reymus, M.; Lumkemann, N.; Stawarczyk, B. 3D Printed Material for Temporary Restorations: Impact of Print Layer Thickness and Post-Curing Method on Degree of Conversion. Int. J. Comput. Dent. 2019, 22, 231–237. [Google Scholar] [PubMed]
- Chockalingam, K.; Jawahar, N.; Chandrasekhar, U. Influence of Layer Thickness on Mechanical Properties in Stereolithography. Rapid Prototyp. J. 2006, 12, 106–113. [Google Scholar] [CrossRef]
- Tahayeri, A.; Morgan, M.; Fugolin, A.P.; Bompolaki, D.; Athirasala, A.; Pfeifer, C.S.; Ferracane, J.L.; Bertassoni, L.E. 3D Printed versus Conventionally Cured Provisional Crown and Bridge Dental Materials. Dent. Mater. 2018, 34, 192–200. [Google Scholar] [CrossRef]
- ISO 5725-1:2023; Accuracy (Trueness and Precision) of Measurement Methods and Results—Part 1: General Principles and Definitions. ISO: Geneva, Switzerland, 2023. Available online: https://www.iso.org/obp/ui/#iso:std:iso:5725:-1:ed-1:v1:en (accessed on 16 July 2025).
- Ender, A.; Mehl, A. Accuracy of Complete-Arch Dental Impressions: A New Method of Measuring Trueness and Precision. J. Prosthet. Dent. 2013, 109, 121–128. [Google Scholar] [CrossRef]
- Ender, A.; Mehl, A. Accuracy in Dental Medicine, a New Way to Measure Trueness and Precision. J. Vis. Exp. 2014, 86, 51374. [Google Scholar] [CrossRef]
- Renne, W.; Ludlow, M.; Fryml, J.; Schurch, Z.; Mennito, A.; Kessler, R.; Lauer, A. Evaluation of the Accuracy of 7 Digital Scanners: An In Vitro Analysis Based on 3-Dimensional Comparisons. J. Prosthet. Dent. 2017, 118, 36–42. [Google Scholar] [CrossRef]
- Nulty, A. A Comparison of Trueness and Precision of 12 3D Printers Used in Dentistry. BDJ Open 2022, 8, 14. [Google Scholar] [CrossRef]
- Naeem, O.A.; Bencharit, S.; Yang, I.H.; Stilianoudakis, S.C.; Carrico, C.; Tüfekçi, E. Comparison of 3-Dimensional Printing Technologies on the Precision, Trueness, and Accuracy of Printed Retainers. Am. J. Orthod. Dentofac. Orthop. 2022, 161, 582–591. [Google Scholar] [CrossRef] [PubMed]
- Revilla-Leon, M.; Ozcan, M. Additive Manufacturing Technologies Used for Processing Polymers: Current Status and Potential Application in Prosthetic Dentistry. J. Prosthodont. 2019, 28, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Katheng, A.; Vania, M.; Suryajaya, W.S.; Ucok, H.; Santoso, C.M. Effect of Post-Rinsing Times and Methods on Surface Roughness, Hardness, and Polymerization of 3D-Printed Photopolymer Resin. Eur. J. Dent. 2024, 18, 556–562. [Google Scholar] [CrossRef]
- Bayarsaikhan, E.; Lim, J.H.; Shin, S.H.; Park, K.H.; Park, Y.B.; Lee, J.H.; Kim, J.E. Effects of Postcuring Temperature on the Mechanical Properties and Biocompatibility of Three-Dimensional Printed Dental Resin Material. Polymers 2021, 13, 1180. [Google Scholar] [CrossRef]
- Taormina, G.; Sciancalepore, C.; Messori, M.; Bondioli, F. 3D Printing Processes for Photocurable Polymeric Materials: Technologies, Materials, and Future Trends. J. Appl. Biomater. Funct. Mater. 2018, 16, 151–160. [Google Scholar] [CrossRef]
- Mostafavi, D.; Methani, M.M.; Piedra-Cascón, W.; Zandinejad, A.; Att, W.; Revilla-León, M. Influence of the Polymerization Post-Processing Procedures on the Accuracy of Additively Manufactured Dental Model Material. Int. J. Prosthodont. 2023, 36, 479–485. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Amir-Behghadami, A.; Janati, A. Population, Intervention, Comparison, Outcomes and Study (PICOS) Design as a Framework to Formulate Eligibility Criteria in Systematic Reviews. Emerg. Med. J. 2020, 37, 387. [Google Scholar] [CrossRef]
- Sheth, V.H.; Shah, N.P.; Jain, R.; Bhanushali, N.; Bhatnagar, V. Development and Validation of a Risk-of-Bias Tool for Assessing In Vitro Studies Conducted in Dentistry: The QUIN. J. Prosthet. Dent. 2024, 131, 1038–1042. [Google Scholar] [CrossRef] [PubMed]
- Mostafavi, D.; Methani, M.M.; Piedra-Cascón, W.; Revilla-León, M. Influence of the Rinsing Postprocessing Procedures on the Manufacturing Accuracy of Vat-Polymerized Dental Model Material. J. Prosthodont. 2021, 30, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Lammer, M.B.; Dönmez, G.; Çakmak, Ç.; Kahveci, Ç.; Yilmaz, B. Does Ecologically Sustainable Printing and Postprocessing Enable Dimensionally Stable Dental Casts? J. Dent. 2025, 161, 105908. [Google Scholar] [CrossRef] [PubMed]
- Çakmak, G.; Sabatini, G.P.; de Paula, M.S.; Orgev, A.; Kahveci, Ç.; Revilla-Léon, M.; Yilmaz, B. Can Nonhazardous Postprocessing Cleaning Solutions Enable Adequate Surface Properties for Printed Dental Casts in Different Resins? J. Prosthet. Dent. 2025, 133, 893–902. [Google Scholar] [CrossRef]
- Panayi, N.C.; Efstathiou, S.; Christopoulou, I.; Kotantoula, G.; Tsolakis, I.A. Digital Orthodontics: Present and Future. Am. J. Orthod. Dentofac. Orthop. Clin. Companion 2024, 4, 14–25. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, F.; Zhai, W.; Cheng, S.; Li, J.; Wang, Y. Unraveling of Advances in 3D-Printed Polymer-Based Bone Scaffolds. Polymers 2022, 14, 566. [Google Scholar] [CrossRef]
- Zuo, X.; Zhou, Y.; Hao, K.; Liu, C.; Yu, R.; Huang, A.; Wu, C.; Yang, Y. 3D Printed All-Natural Hydrogels: Flame-Retardant Materials toward Attaining Green Sustainability. Adv. Sci. 2024, 11, e2306360. [Google Scholar] [CrossRef]
- ElShebiny, T.; Canepa, I.; Kasper, F.K.; Tsolakis, I.A.; Matthaios, S.; Palomo, J.M. The Influence of 3-Dimensional Printing Layer Thickness on Model Accuracy and the Perceived Fit of Thermoformed Retainers. Am. J. Orthod. Dentofacial Orthop. 2025, 167, 490–498.e3. [Google Scholar] [CrossRef]
- Mayer, J.; Reymus, M.; Wiedenmann, F.; Edelhoff, D.; Hickel, R.; Stawarczyk, B. Temporary 3D Printed Fixed Dental Prosthesis Materials: Impact of Post Printing Cleaning Methods on Degree of Conversion as well as Surface and Mechanical Properties. Int. J. Prosthodont. 2021, 34, 784–795. [Google Scholar] [CrossRef]
- Xu, Y.; Xepapadeas, A.B.; Koos, B.; Geis-Gerstorfer, J.; Li, P.; Spintzyk, S. Effect of Post-Rinsing Time on the Mechanical Strength and Cytotoxicity of a 3D Printed Orthodontic Splint Material. Dent. Mater. 2021, 37, 314–327. [Google Scholar] [CrossRef]
- Katheng, A.; Kanazawa, M.; Iwaki, M.; Minakuchi, S. Evaluation of Dimensional Accuracy and Degree of Polymerization of Stereolithography Photopolymer Resin under Different Postpolymerization Conditions: An In Vitro Study. J. Prosthet. Dent. 2021, 125, 695–702. [Google Scholar] [CrossRef]
- Piedra-Cascón, W.; Krishnamurthy, V.R.; Att, W.; Revilla-León, M. 3D Printing Parameters, Supporting Structures, Slicing, and Post-Processing Procedures of Vat-Polymerization Additive Manufacturing Technologies: A Narrative Review. J. Dent. 2021, 109, 103630. [Google Scholar] [CrossRef] [PubMed]
- Mayer, J.; Stawarczyk, B.; Vogt, K.; Hickel, R.; Edelhoff, D.; Reymus, M. Influence of Cleaning Methods after 3D Printing on Two-Body Wear and Fracture Load of Resin-Based Temporary Crown and Bridge Material. Clin. Oral Investig. 2021, 25, 5987–5996. [Google Scholar] [CrossRef] [PubMed]
- Bardelcik, A.; Yang, S.; Alderson, F.; Gadsden, A. The Effect of Wash Treatment on the Mechanical Properties and Energy Absorption Potential of a 3D Printed Polymethyl Methacrylate (PMMA). Mater. Today Commun. 2021, 26, 101728. [Google Scholar] [CrossRef]
- Park, M.E.; Shin, S.Y. Three-Dimensional Comparative Study on the Accuracy and Reproducibility of Dental Casts Fabricated by 3D Printers. J. Prosthet. Dent. 2018, 119, 861.e1–861.e7. [Google Scholar] [CrossRef]
- Kim, Y.; Shin, Y.S.; Jung, H.D.; Hwang, C.J.; Baik, H.S.; Cha, J.Y. Precision and Trueness of Dental Models Manufactured with Different 3-Dimensional Printing Techniques. Am. J. Orthod. Dentofac. Orthop. 2018, 153, 144–153. [Google Scholar] [CrossRef]
- Dietrich, C.A.; Ender, A.; Baumgartner, S.; Mehl, A. A Validation Study of Reconstructed Rapid Prototyping Models Produced by Two Technologies. Angle Orthod. 2017, 87, 782–787. [Google Scholar] [CrossRef]
- Rossini, G.; Parrini, S.; Castroflorio, T.; Deregibus, A.; Debernardi, C.L. Diagnostic Accuracy and Measurement Sensitivity of Digital Models for Orthodontic Purposes: A Systematic Review. Am. J. Orthod. Dentofac. Orthop. 2016, 149, 161–170. [Google Scholar] [CrossRef]
- Hazeveld, A.; Huddleston Slater, J.J.; Ren, Y. Accuracy and Reproducibility of Dental Replica Models Reconstructed by Different Rapid Prototyping Techniques. Am. J. Orthod. Dentofac. Orthop. 2014, 145, 108–115. [Google Scholar] [CrossRef]
- Etemad-Shahidi, Y.; Qallandar, O.B.; Evenden, J.; Alifui-Segbaya, F.; Ahmed, K.E. Accuracy of 3-Dimensionally Printed Full-Arch Dental Models: A Systematic Review. J. Clin. Med. 2020, 9, 3357. [Google Scholar] [CrossRef]
- Németh, A.; Vitai, V.; Czumbel, M.L.; Szabo, B.; Varga, G.; Keremi, B.; Hegyi, P.; Hermann, P.; Borbély, J. Clear Guidance to Select the Most Accurate Technologies for 3D Printing Dental Models—A Network Meta-Analysis. J. Dent. 2023, 134, 104532. [Google Scholar] [CrossRef] [PubMed]
- Hwangbo, N.K.; Nam, N.E.; Choi, J.H.; Kim, J.E. Effects of the Washing Time and Washing Solution on the Biocompatibility and Mechanical Properties of 3D Printed Dental Resin Materials. Polymers 2021, 13, 4410. [Google Scholar] [CrossRef] [PubMed]
- Pongprueksa, P.; De Munck, J.; Duca, R.C.; Poels, K.; Covaci, A.; Hoet, P.; Godderis, L.; Van Meerbeek, B.; Van Landuyt, K.L. Monomer elution in relation to degree of conversion for different types of composite. J. Dent. 2015, 43, 1448–1455. [Google Scholar] [CrossRef] [PubMed]
- Quinn, J.B.; Quinn, G.D. Practical and Systematic Review of Weibull Statistics for Reporting the Strengths of Dental Materials. Dent. Mater. 2010, 26, 135–147. [Google Scholar] [CrossRef]
- Kim, D.; Shim, J.S.; Lee, D.; Shin, S.H.; Nam, N.E.; Park, K.H.; Shim, J.-S.; Kim, J.-E. Effects of Post-Curing Time on the Mechanical and Color Properties of Three-Dimensional Printed Crown and Bridge Materials. Polymers 2020, 12, 2762. [Google Scholar] [CrossRef]
- Oberoi, G.; Nitsch, S.; Edelmayer, M.; Janjic, K.; Müller, A.S.; Agis, H. 3D Printing Encompasses the Facets of Dentistry. Front. Bioeng. Biotechnol. 2018, 6, 172. [Google Scholar] [CrossRef]
- Kirby, S.; Pesun, I.; Nowakowski, A.; França, R. Effect of Different Post-Curing Methods on the Degree of Conversion of 3D-Printed Resin for Models in Dentistry. Polymers 2024, 16, 549. [Google Scholar] [CrossRef]
- Sahrir, C.D.; Lin, W.-S.; Wang, C.-S.; Lin, H.-E.; Wang, C.-W.; Lin, W.-C. Effects of 3D-Printers and Manufacturer-Specified Post-Curing Units on Dimensional Accuracy and Mechanical Properties of 3D-Printed Dental Prostheses. J. Prosthet. Dent. 2025, 133, e1–e9. [Google Scholar] [CrossRef]
- Tien, C.; Jean, C.; Poupaud, L.; Laverne, F.; Segonds, F. Enhancing Dental Model Accuracy through Optimized Vat Photopolymerization Parameters. J. Prosthet. Dent. 2025, 133, e1–e7. [Google Scholar] [CrossRef]
- Knode, V.; Ludwig, B.; Hamadeh, S.; Pandis, N.; Fleming, P.S. An In Vitro Comparison of the Dimensional Stability of Four 3D-Printed Models under Various Storage Conditions. Angle Orthod. 2024, 94, 346–352. [Google Scholar] [CrossRef]
- Ling, L.; Lai, T.; Chung, P.-T.; Sabet, S.; Tran, V.; Malyala, R. A Novel 3D-Printing Model Resin with Low Volumetric Shrinkage and High Accuracy. Polymers 2025, 17, 610. [Google Scholar] [CrossRef]

| 1. PubMed n = 3 | ||||||
| a. ((dental models[MeSH Terms]) AND (3d printing[MeSH Terms])) AND (postprocessing[Title/Abstract]) b. (((dental models[MeSH Terms]) AND (3d printing[MeSH Terms])) AND (accuracy[Title/Abstract])) AND (postprocessing[Title/Abstract]) | ||||||
| c. (((“dental models”[MeSH Terms]) AND (“3d printing”[MeSH Terms]))) AND (postprocessing[Title/Abstract] OR “curing time”[Title/Abstract] OR “washing time”[Title/Abstract]) | ||||||
| d. (((“dental models”[MeSH Terms]) AND (“3d printing”[MeSH Terms]))) AND (postprocessing[Title/Abstract] OR “polymerization time”[Title/Abstract] OR “rinsing time”[Title/Abstract]) | ||||||
| 2. Scopus n = 94 | ||||||
| a. (ALL (“dental models”) AND ALL (“3d printing”) AND ALL (postprocessing)) | ||||||
| b. (ALL (“dental models”) AND ALL (“3d printing”) AND ALL (postprocessing) AND ALL (accuracy)) c. (TITLE-ABS-KEY (“dental models”) AND TITLE-ABS-KEY (“3d printing”) AND TITLE-ABS-KEY (postprocessing OR “washing time” OR “curing time”)) | ||||||
| d. (TITLE-ABS-KEY (“dental models”) AND TITLE-ABS-KEY (“3d printing”) AND TITLE-ABS-KEY (postprocessing OR “rinsing time” OR “polymerization time”)) | ||||||
| 3. Web of Science n = 2 | ||||||
| a. “dental models” (All Fields) AND “3d printing” (All Fields) AND “postprocessing” (All Fields) b. “dental models” (All Fields) AND “3d printing” (All Fields) AND “postprocessing” (All Fields) AND “accuracy” (All Fields) | ||||||
| c. “dental models” (All Fields) AND “3d printing” (All Fields) AND “postprocessing” OR “curing time” OR “washing time” (All Fields) | ||||||
| d. “dental models” (All Fields) AND “3d printing” (All Fields) AND “postprocessing” OR “polymerization time” OR “rinsing time” (All Fields) | ||||||
| 4. Google Scholar n = 27 | ||||||
| a. “dental models AND “3d printing” AND “postprocessing” | ||||||
| b. “dental models” AND “3d printing” AND “postprocessing” AND “accuracy” | ||||||
| c. “dental models” (All Fields) AND “3d printing” (All Fields) AND “postprocessing” OR “curing time” OR “washing time” (All Fields) d. “dental models” AND “3d printing” AND “postprocessing” AND “polymerization time” AND “rinsing time” | ||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morali, A.; Lyros, I.; Plakias, S.; Scuzzo, G.; Tsolakis, I.A. Influence of Different Post-Processing Procedures on the Accuracy of 3D Printed Dental Models Using Vat Polymerization: A Systematic Review. Appl. Sci. 2025, 15, 11123. https://doi.org/10.3390/app152011123
Morali A, Lyros I, Plakias S, Scuzzo G, Tsolakis IA. Influence of Different Post-Processing Procedures on the Accuracy of 3D Printed Dental Models Using Vat Polymerization: A Systematic Review. Applied Sciences. 2025; 15(20):11123. https://doi.org/10.3390/app152011123
Chicago/Turabian StyleMorali, Athanasia, Ioannis Lyros, Spyridon Plakias, Giacomo Scuzzo, and Ioannis A. Tsolakis. 2025. "Influence of Different Post-Processing Procedures on the Accuracy of 3D Printed Dental Models Using Vat Polymerization: A Systematic Review" Applied Sciences 15, no. 20: 11123. https://doi.org/10.3390/app152011123
APA StyleMorali, A., Lyros, I., Plakias, S., Scuzzo, G., & Tsolakis, I. A. (2025). Influence of Different Post-Processing Procedures on the Accuracy of 3D Printed Dental Models Using Vat Polymerization: A Systematic Review. Applied Sciences, 15(20), 11123. https://doi.org/10.3390/app152011123

