Assessment of the Impact of Training Using the Luna-EMG Rehabilitation Robot on the Functional Status of Patients After Total Hip Replacement: A Randomized Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Characteristics of Study Participants
2.3. Eligibility Criteria
2.4. Study Design
2.5. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Katz, J.N.; Arant, K.R.; Loeser, R.F. Diagnosis and treatment of hip and knee osteoarthritis: A review. JAMA 2021, 325, 568–578. [Google Scholar] [CrossRef]
- Courties, A.; Berenbaum, F. Is hip osteoarthritis preventable? Jt. Bone Spine 2020, 87, 371–375. [Google Scholar] [CrossRef]
- Lespasio, M.J.; Sultan, A.A.; Piuzzi, N.S.; Khlopas, A.; Husni, M.E.; Muschler, G.F.; Mont, M.A. Hip Osteoarthritis: A Primer. Perm. J. 2018, 22, 17-084. [Google Scholar] [CrossRef]
- Colibazzi, V.; Coladonato, A.; Zanazzo, M.; Romanini, E. Evidence based rehabilitation after hip arthroplasty. Hip Int. 2020, 30 (Suppl. S2), 20–29. [Google Scholar] [CrossRef]
- Skou, S.T.; Roos, E.M. Physical therapy for patients with knee and hip osteoarthritis: Supervised, active treatment is current best practice. Clin. Exp. Rheumatol. 2019, 37 (Suppl. S120), 112–117. [Google Scholar]
- Liu, Z.; Chang, J.; Liu, Y.; Ma, Y.; Ding, X.; Huo, J. Efficacy of Bed Exercise Following Primary Total Hip Replacement in Young Active Patients. Med. Sci. Monit. 2025, 31, e946819. [Google Scholar] [CrossRef] [PubMed]
- Nicolau, C.; Mendes, L.; Ciríaco, M.; Ferreira, B.; Baixinho, C.L.; Fonseca, C.; Ferreira, R.; Sousa, L. Educational Intervention in Rehabilitation to Improve Functional Capacity after Hip Arthroplasty: A Scoping Review. J. Pers. Med. 2022, 12, 656. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Fu, Y.; Lu, Y.; Zhang, Y.; Huang, Q.; Yang, Y.; Zhang, K.; Li, M. Impact of Virtual Reality-Based Therapies on Cognition and Mental Health of Stroke Patients: Systematic Review and Meta-analysis. J. Med. Internet Res. 2021, 23, e31007. [Google Scholar] [CrossRef] [PubMed]
- Ding, K.; Song, F.; Sun, W.; Sun, M.; Xia, R. Impact of exercise training on cognitive function in patients with COPD: A systematic review and meta-analysis of randomised controlled trials. Eur. Respir. Rev. 2025, 34, 240170. [Google Scholar] [CrossRef]
- Peternel, L.; Tsagarakis, N.; Ajoudani, A. A Human-Robot Co-Manipulation Approach Based on Human Sensorimotor Information. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 811–822. [Google Scholar] [CrossRef]
- Leszczak, J.; Wolan-Nieroda, A.; Drużbicki, M.; Poświata, A.; Mikulski, M.; Roksela, A.; Guzik, A. Evaluation of Reliability of the Luna EMG Rehabilitation Robot to Assess Proprioception in the Upper Limbs in 102 Healthy Young Adults. Med. Sci. Monit. 2024, 30, e942439. [Google Scholar] [CrossRef]
- Trzmiel, T.; Marchewka, R.; Pieczyńska, A.; Zasadzka, E.; Zubrycki, I.; Kozak, D.; Mikulski, M.; Poświata, A.; Tobis, S.; Hojan, K. The Effect of Using a Rehabilitation Robot for Patients with Post-Coronavirus Disease (COVID-19) Fatigue Syndrome. Sensors 2023, 23, 8120. [Google Scholar] [CrossRef]
- Lewandowska-Sroka, P.; Stabrawa, R.; Kozak, D.; Poświata, A.; Łysoń-Uklańska, B.; Bienias, K.; Roksela, A.; Kliś, M.; Mikulski, M. The Influence of EMG-Triggered Robotic Movement on Walking, Muscle Force and Spasticity after an Ischemic Stroke. Medicina 2021, 57, 227. [Google Scholar] [CrossRef]
- Rampazo-Lacativa, M.K.; D’Elboux, M.J. Effect of cycle ergometer and conventional exercises on rehabilitation of older patients with total hip arthroplasty: Study protocol for randomized controlled trial. Trials 2015, 16, 139. [Google Scholar] [CrossRef] [PubMed]
- Austin, M.S.; Urbani, B.T.; Fleischman, A.N.; Fernando, N.D.; Purtill, J.J.; Hozack, W.J.; Parvizi, J.; Rothman, R.H. Formal Physical Therapy After Total Hip Arthroplasty Is Not Required: A Randomized Controlled Trial. J. Bone Jt. Surg. Am. 2017, 99, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Nelson, E.C.; Landgraf, J.M.; Hays, R.D.; Kirk, J.W.; Wasson, J.W.; Keller, A.; Zubkoff, M. Functional Status Measurement in Primary Care; WONCA Classification Committee: New York, NY, USA, 1990; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Chua, K.S.G.; Piravej, K.; Kang, J.H.; Chou, L.W. Editorial for the Special Issue “Physical Medicine and Rehabilitation: Trends and Applications”. Life 2025, 15, 419. [Google Scholar] [CrossRef]
- Mizna, S.; Arora, S.; Saluja, P.; Das, G.; Alanesi, W.A. An analytic research and review of the literature on practice of artificial intelligence in healthcare. Eur. J. Med. Res. 2025, 30, 382. [Google Scholar] [CrossRef] [PubMed]
- Zasadzka, E.; Tobis, S.; Trzmiel, T.; Marchewka, R.; Kozak, D.; Roksela, A.; Pieczyńska, A.; Hojan, K. Application of an EMG-Rehabilitation Robot in Patients with Post-Coronavirus Fatigue Syndrome (COVID-19)-A Feasibility Study. Int. J. Environ. Res. Public Health 2022, 19, 10398. [Google Scholar] [CrossRef]
- Bernhardsson, S.; Larsson, A.; Bergenheim, A.; Ho-Henriksson, C.M.; Ekhammar, A.; Lange, E.; Larsson, M.E.H.; Nordeman, L.; Samsson, K.S.; Bornhöft, L. Digital physiotherapy assessment vs. conventional face-to-face physiotherapy assessment of patients with musculoskeletal disorders: A systematic review. PLoS ONE 2023, 18, e0283013. [Google Scholar] [CrossRef]
- Shim, G.Y.; Kim, E.H.; Baek, Y.J.; Chang, W.K.; Kim, B.R.; Oh, J.H.; Lee, J.I.; Hwang, J.H.; Lim, J.Y. A randomized controlled trial of postoperative rehabilitation using digital healthcare system after rotator cuff repair. NPJ Digit. Med. 2023, 6, 95. [Google Scholar] [CrossRef]
- Areias, A.C.; Costa, F.; Janela, D.; Molinos, M.; Moulder, R.G.; Lains, J.; Scheer, J.K.; Bento, V.; Yanamadala, V.; Correia, F.D. Long-Term Clinical Outcomes of a Remote Digital Musculoskeletal Program: An Ad Hoc Analysis from a Longitudinal Study with a Non-Participant Comparison Group. Healthcare 2022, 10, 2349. [Google Scholar] [CrossRef]
- Zębalski, M.A.; Parysek, K.; Krzywon, A.; Nowosielski, K. LUNA EMG as a Marker of Adherence to Prehabilitation Programs and Its Effect on Postoperative Outcomes among Patients Undergoing Cytoreductive Surgery for Ovarian Cancer and Suspected Ovarian Tumors. Cancers 2024, 16, 2493. [Google Scholar] [CrossRef] [PubMed]
- Leszczak, J.; Pniak, B.; Drużbicki, M.; Poświata, A.; Mikulski, M.; Roksela, A.; Guzik, A. Assessment of inter-rater and intra-rater reliability of the Luna EMG robot as a tool for assessing upper limb proprioception in patients with stroke-a prospective observational study. PeerJ 2024, 12, e17903. [Google Scholar] [CrossRef] [PubMed]
- Korczyński, B.; Frasuńska, J.; Poświata, A.; Siemianowicz, A.; Mikulski, M.; Tarnacka, B. Surface electromyography vs. clinical outcome measures after robot-assisted gait training in patients with spinal cord injury after post-acute phase of rehabilitation. Ann. Agric. Environ. Med. 2024, 31, 599–608. [Google Scholar] [CrossRef]
- Olczak, A.; Truszczyńska-Baszak, A.; Gniadek-Olejniczak, K. The Relationship between the Static and Dynamic Balance of the Body, the Influence of Eyesight and Muscle Tension in the Cervical Spine in CAA Patients—A Pilot Study. Diagnostics 2021, 11, 2036. [Google Scholar] [CrossRef]
- Olczak, A.; Truszczyńska-Baszak, A. Influence of the Passive Stabilization of the Trunk and Upper Limb on Selected Parameters of the Hand Motor Coordination, Grip Strength and Muscle Tension, in Post-Stroke Patients. J. Clin. Med. 2021, 10, 2402. [Google Scholar] [CrossRef]
- Taravati, S.; Capaci, K.; Uzumcugil, H.; Tanigor, G. Evaluation of an upper limb robotic rehabilitation program on motor functions, quality of life, cognition, and emotional status in patients with stroke: A randomized controlled study. Neurol. Sci. 2022, 43, 1177–1188. [Google Scholar] [CrossRef]
- Moghadasi, A.N.; Rastkar, M.; Mohammadifar, M.; Mohammadi, A.; Ghajarzadeh, M. Effects of robotic rehabilitation on fatigue experience, disability, and quality of life in patients with multiple sclerosis (MS): A systematic review and meta-analysis. Caspian J. Intern. Med. 2024, 15, 589–600. [Google Scholar] [CrossRef]
- Adar, S.; Keskin, D.; Dündar, Ü.; Toktaş, H.; Yeşil, H.; Eroğlu, S.; Eyvaz, N.; Beştaş, E.; Demircan, A. Effect of Robotic Rehabilitation on Hand Functions and Quality of Life in Children with Cerebral Palsy: A Prospective Randomized Controlled Study. Am. J. Phys. Med. Rehabil. 2024, 103, 716–723. [Google Scholar] [CrossRef]
- Fareh, R.; Elsabe, A.; Baziyad, M.; Kawser, T.; Brahmi, B.; Rahman, M.H. Will Your Next Therapist Be a Robot?-A Review of the Advancements in Robotic Upper Extremity Rehabilitation. Sensors 2023, 23, 5054. [Google Scholar] [CrossRef]
- Varoqui, D.; Niu, X.; Mirbagheri, M.M. Ankle voluntary movement enhancement following robotic-assisted locomotor training in spinal cord injury. J. Neuroeng. Rehabil. 2014, 11, 46. [Google Scholar] [CrossRef] [PubMed]
Variable | Statistical Measures | Group | p-Value | ||
---|---|---|---|---|---|
Study Group (n = 34) | Control Group (n = 32) | ||||
Age | Mean ± SD | 71.3 ± 8.2 | 71.3 ± 9.0 | 0.5673 | |
Me [Q25; Q75] | 72 [70; 76] | 70.5 [66.8; 77] | |||
Min; Max | 44; 87 | 52; 90 | |||
Gender | F | n (%) | 25 (73.5%) | 17 (53.1%) | 0.0850 |
M | 9 (26.5%) | 15 (46.9%) | |||
BMI | Mean ± SD | 28.3 ± 4.5 | 27.7 ± 5.0 | 0.5717 | |
Me [Q25; Q75] | 28.0 [24.6; 32.1] | 26.4 [24.4; 30.5] | |||
Min; Max | 20.5; 36.1 | 19.3; 37.3 | |||
BMI | norm | n (%) | 10 (29.4%) | 11 (34.4%) | 0.8122 |
overweight | 12 (35.3%) | 12 (37.5%) | |||
obesity | 12 (35.3%) | 9 (28.1%) | |||
Time (months) | Mean ± SD | 6.9 ± 12 | 7.5 ± 11.1 | 0.6332 | |
Me [Q25; Q75] | 4 [2; 5.8] | 4 [2; 6.5] | |||
Min; Max | 0.2; 53 | 0.1; 55 | |||
Type of endoprosthesis | non-cemented | n (%) | 32 (94.1%) | 30 (93.7%) | 0.6502 |
cemented | 2 (5.9%) | 2 (6.3%) | |||
Orthopedic supplies | none | n (%) | 17 (50%) | 15 (46.9%) | 0.1255 |
1 crutch | 5 (14.7%) | 4 (12.5%) | |||
2 crutches | 10 (29.4%) | 5 (15.6%) | |||
walking frame | 2 (5.9%) | 8 (25%) |
Group | Measures | Max Tension Operated Limb (µV) | p-Value (Before vs. After Therapy) | Cohen’s d | Max Tension Unaffected Limb (µV) | p-Value (Beforevs. After Therapy) | Cohen’s d | ||
---|---|---|---|---|---|---|---|---|---|
Before Therapy | After Therapy | Before Therapy | After Therapy | ||||||
Study group | Mean ± SD | 183.37 ± 108.72 | 221.95 ± 119.28 | 0.1016 | 0.8567 | 215.59 ± 124.05 | 244.38 ± 112.57 | 0.2777 | 0.5091 |
Me [Q25; Q75] | 170.13 [103.83; 225.04] | 208.67 [145.38; 261.28] | 178.49 [119.27; 286.53] | 245.72 [159.73; 289.52] | |||||
Min; Max | 30.96; 510.87 | 36.7; 626.52 | 36.63; 565.42 | 56.25; 577.13 | |||||
Control group | Mean ± SD | 195.6 ± 112.7 | 226.22 ± 90.89 | 0.0876 | 0.6385 | 198.18 ± 118.1 | 218.24 ± 95.24 | 0.3959 | 0.8867 |
Me [Q25; Q75] | 186.24 [107.14; 240.93] | 215.81 [182.16; 259.08] | 191.2 [130.13; 237.37] | 227.35 [141.44; 266.91] | |||||
Min; Max | 60.15; 483.03 | 63.7; 513.8 | 37.35; 656.95 | 62.15; 438.93 | |||||
p-value (comparison of groups) | 0.9721 | 0.9504 | x | 0.9116 | 0.8601 | x |
Group | Measures | Max Strength Operated Limb (Nm) | p-Value (Before vs. After Therapy) | Cohen’s d | Max Strength Unaffected Limb (Nm) | p-Value (Before vs. After Therapy) | Cohen’s d | ||
---|---|---|---|---|---|---|---|---|---|
Before Therapy | After Therapy | Before Therapy | After Therapy | ||||||
Study group | Mean ± SD | 20.35 ± 11.73 | 27.37 ± 12.45 | 0.0016 | 1.6815 | 24.1 ± 14.99 | 33.2 ± 21.54 | 0.0056 | 1.0572 |
Me [Q25; Q75] | 18.5 [10.05; 30.53] | 25 [19.13; 34.05] | 21.17 [12.8; 33.25] | 29.3 [23.33; 36.43] | |||||
Min; Max | 5.7; 42.8 | 8; 63.5 | 6.1; 69.8 | 6.8; 122.96 | |||||
Control group | Mean ± SD | 23.26 ± 12.86 | 27.81 ± 14.63 | 0.1391 | 0.5632 | 24.49 ± 16.49 | 31.03 ± 17.58 | 0.0182 | 1.0584 |
Me [Q25; Q75] | 19.7 [13.88; 27.58] | 24.85 [15.98; 37.05] | 18.7 [11.6; 31.24] | 26.95 [17.53; 37.15] | |||||
Min; Max | 7; 58.7 | 6.4; 63.5 | 7.2; 67.9 | 6.8; 71.9 | |||||
p-value (comparison of groups) | 0.8544 | 0.9969 | x | 0.9985 | 0.9844 | x |
Group | Measures | Average Strength Operated Limb (Nm) | p-Value (Before vs. After Therapy) | Cohen’s d | Average Strength Unaffected Limb (Nm) | p-Value (Before vs. After Therapy) | Cohen’s d | ||
---|---|---|---|---|---|---|---|---|---|
Before Therapy | After Therapy | Before Therapy | After Therapy | ||||||
Study group | Mean ± SD | 6.99 ± 4.02 | 10.05 ± 5.57 | 0.0016 | 1.3385 | 8.96 ± 5.58 | 11.21 ± 6.59 | 0.0697 | 0.6869 |
Me [Q25; Q75] | 5.05 [3.5; 10] | 9.11 [6.13; 13.1] | 8.25 [4.2; 12.4] | 9.5 [7.08; 12.48] | |||||
Min; Max | 2.6; 16.7 | 3; 29.5 | 1.3; 23.4 | 2.5; 31.1 | |||||
Control group | Mean ± SD | 7.76 ± 5.95 | 10 ± 6.53 | 0.0706 | 0.5856 | 8.88 ± 6.96 | 10.48 ± 6.71 | 0.1301 | 0.6693 |
Me [Q25; Q75] | 5.6 [4.55; 8.13] | 8.5 [5.1; 13.78] | 6.25 [4.38; 10.98] | 8.55 [5.93; 13.53] | |||||
Min; Max | 1.5; 30.8 | 2; 29.8 | 2.6; 33.4 | 1.7; 31.4 | |||||
p-value (comparison of groups) | 0.9701 | 0.9714 | x | 0.9681 | 0.9334 | x |
Group | Measures | Strength MicroFET Operated Limb (µN) | p-Value (Before vs. After Therapy) | Cohen’s d | Strength MicroFET Unaffected Limb (µN) | p-Value (Before vs. After Therapy) | Cohen’s d | ||
---|---|---|---|---|---|---|---|---|---|
Before Therapy | After Therapy | Before Therapy | After Therapy | ||||||
Study group | Mean ± SD | 150.18 ± 58.67 | 183.48 ± 72.09 | 0.0002 | 1.9208 | 172.1 ± 52.13 | 207.66 ± 76.33 | 0.0009 | 1.9406 |
Me [Q25; Q75] | 135.85 [115.43; 172.13] | 176.25 [126.33; 231.65] | 163.45 [138.95; 209.15] | 207.3 [156.1; 234.98] | |||||
Min; Max | 39.1; 329.6 | 67.6; 353.7 | 84.1; 292 | 95.1; 424 | |||||
Control group | Mean ± SD | 150.55 ± 54.31 | 178.9 ± 60.35 | 0.0025 | 1.6283 | 168.6 ± 57.87 | 192.85 ± 63.05 | 0.0589 | 1.2464 |
Me [Q25; Q75] | 160.55 [115.95; 180.7] | 174.8 [149.48; 213.3] | 178.35 [119.95; 213.5] | 183.15 [149.98; 244.2] | |||||
Min; Max | 15.5; 260.2 | 24.3; 302.9 | 41.3; 270.9 | 56; 338.1 | |||||
p-value (comparison of groups) | 0.9728 | 0.9997 | x | 0.9997 | 0.9342 | x |
Group | Measures | DCFC | p-Value | Cohen’s d | |
---|---|---|---|---|---|
Before Therapy | After Therapy | (Before vs. After) | |||
Study group | Mean ± SD | 24.91 ± 5.12 | 14.71 ± 4.16 | <0.0001 | 3.5926 |
Me [Q25; Q75] | 24.5 [22; 27.75] | 14 [11.25; 17] | |||
Min; Max | 16; 36 | 9; 23 | |||
Control group | Mean ± SD | 27.81 ± 6.68 | 23.81 ± 5.62 | 0.0001 | 1.9516 |
Me [Q25; Q75] | 27.5 [22; 32.25] | 23.5 [20; 27.25] | |||
Min; Max | 16; 44 | 15; 38 | |||
Level p (comparison of groups) | 0.3559 | <0.0001 | x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milewska, A.; Przedborska, A.; Irzmański, R. Assessment of the Impact of Training Using the Luna-EMG Rehabilitation Robot on the Functional Status of Patients After Total Hip Replacement: A Randomized Trial. Appl. Sci. 2025, 15, 11065. https://doi.org/10.3390/app152011065
Milewska A, Przedborska A, Irzmański R. Assessment of the Impact of Training Using the Luna-EMG Rehabilitation Robot on the Functional Status of Patients After Total Hip Replacement: A Randomized Trial. Applied Sciences. 2025; 15(20):11065. https://doi.org/10.3390/app152011065
Chicago/Turabian StyleMilewska, Aleksandra, Agnieszka Przedborska, and Robert Irzmański. 2025. "Assessment of the Impact of Training Using the Luna-EMG Rehabilitation Robot on the Functional Status of Patients After Total Hip Replacement: A Randomized Trial" Applied Sciences 15, no. 20: 11065. https://doi.org/10.3390/app152011065
APA StyleMilewska, A., Przedborska, A., & Irzmański, R. (2025). Assessment of the Impact of Training Using the Luna-EMG Rehabilitation Robot on the Functional Status of Patients After Total Hip Replacement: A Randomized Trial. Applied Sciences, 15(20), 11065. https://doi.org/10.3390/app152011065