Effects of Long-Term Combined Aerobic and Resistance Training According to MTHFR C677T Genotype in Patients with Chronic Stroke
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Measurement
2.3.1. Blood Collection and Assessment of Biomarkers
2.3.2. MTHFR C677T Genotypes
2.3.3. Anthropometric
2.3.4. Cardiorespiratory Fitness
2.3.5. Energy Intake Analysis
2.3.6. Criteria for Stroke Risk Factors
2.4. Combined Aerobic and Resistance Exercise Training
2.5. Statistical Analysis
3. Results
3.1. Dietary Intake
3.2. Body Composition and Cardiorespiratory Fitness
3.3. Stroke Risk Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feigin, V.L.; Brainin, M.; Norrving, B.; Martins, S.O.; Pandian, J.; Lindsay, P.; Grupper, M.F.; Rautalin, I. World Stroke Organization: Global Stroke Fact Sheet 2025. Int. J. Stroke Off. J. Int. Stroke Soc. 2025, 20, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Langhorne, P.; Bernhardt, J.; Kwakkel, G. Stroke rehabilitation. Lancet 2011, 377, 1693–1702. [Google Scholar] [CrossRef]
- Pinzon, R.T.; Wijaya, V.O.; Veronica, V. The role of homocysteine levels as a risk factor of ischemic stroke events: A systematic review and meta-analysis. Front. Neurol. 2023, 14, 1144584. [Google Scholar] [CrossRef]
- Holmen, M.; Hvas, A.M.; Arendt, J.F.H. Hyperhomocysteinemia and Ischemic Stroke: A Potential Dose-Response Association-A Systematic Review and Meta-analysis. TH Open Companion J. Thromb. Haemost. 2021, 5, e420–e437. [Google Scholar] [CrossRef]
- Fan, R.; Zhang, A.; Zhong, F. Association between Homocysteine Levels and All-cause Mortality: A Dose-Response Meta-Analysis of Prospective Studies. Sci. Rep. 2017, 7, 4769. [Google Scholar] [CrossRef] [PubMed]
- Zarembska, E.; Ślusarczyk, K.; Wrzosek, M. The Implication of a Polymorphism in the Methylenetetrahydrofolate Reductase Gene in Homocysteine Metabolism and Related Civilisation Diseases. Int. J. Mol. Sci. 2023, 25, 193. [Google Scholar] [CrossRef]
- Deminice, R.; Ribeiro, D.F.; Frajacomo, F.T. The Effects of Acute Exercise and Exercise Training on Plasma Homocysteine: A Meta-Analysis. PLoS ONE 2016, 11, e0151653. [Google Scholar] [CrossRef]
- Tang, A.; Eng, J.J.; Krassioukov, A.V.; Madden, K.M.; Mohammadi, A.; Tsang, M.Y.C.; Tsang, T.S.M. Exercise-induced changes in cardiovascular function after stroke: A randomized controlled trial. Int. J. Stroke 2014, 9, 883–889. [Google Scholar] [CrossRef]
- Lee, J.H.; Hong, S.M.; Shin, Y.A. Effects of exercise training on stroke risk factors, homocysteine concentration, and cognitive function according the APOE genotype in stroke patients. J. Exerc. Rehabil. 2018, 14, 267–274. [Google Scholar] [CrossRef]
- VITATOPS Trial Study Group. B vitamins in patients with recent transient ischaemic attack or stroke in the VITAmins TO Prevent Stroke (VITATOPS) trial: A randomised, double-blind, parallel, placebo-controlled trial. Lancet Neurol. 2010, 9, 855–865. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.; Li, J.; Qin, X.; Huang, Y.; Wang, X.; Gottesman, R.F.; Tang, G.; Wang, B.; Chen, D.; He, M.; et al. Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China: The CSPPT randomized clinical trial. JAMA 2015, 313, 1325–1335. [Google Scholar] [CrossRef]
- Hankey, G.J. B vitamins for stroke prevention. Stroke Vasc. Neurol. 2018, 3, 51–58. [Google Scholar] [CrossRef]
- Wouters, M.G.; Moorrees, M.T.; van der Mooren, M.J.; Blom, H.J.; Boers, G.H.; Schellekens, L.A.; Thomas, C.M.; Eskes, T.K. Plasma homocysteine and menopausal status. Eur. J. Clin. Investig. 1995, 25, 801–805. [Google Scholar] [CrossRef] [PubMed]
- Park, C.Y.; Lim, J.Y.; Park, H.Y. Age at natural menopause in Koreans: Secular trends and influences thereon. Menopause 2018, 111, 104–110. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kang, K.; Kang, J.; Koo, J.; Kim, D.H.; Kim, B.J.; Kim, W.J.; Kim, E.G.; Kim, J.G.; Kim, J.M.; et al. Executive summary of stroke statistics in Korea 2018: A report from the Korean Stroke Society and Clinical Research Center for Stroke. J. Stroke 2019, 21, 42–59. [Google Scholar] [CrossRef]
- Frosst, P.; Blom, H.J.; Milos, R.; Goyette, P.; Sheppard, C.A.; Matthews, R.G.; Boers, G.J.; den Heijer, M.; Kluijtmans, L.A.; van den Heuvel, L.P.; et al. A candidate genetic risk factor for vascular disease: A common mutation in methylenetetrahydrofolate reductase. Nat. Genet. 1995, 10, 111–113. [Google Scholar] [CrossRef] [PubMed]
- da Silva, T.D.; Martins, C.P.; Ribeiro, T.S.; de Sousa, A.V.; Costa, M.F.P.; Lindquist, A.R.R.; Lindquist, A.R.R. Comparison between the six-minute walk test and the six-minute step test in post-stroke patients. Int. Arch. Med. 2013, 6, 31. [Google Scholar] [CrossRef] [PubMed]
- Zuniga, J.M.; Housh, T.J.; Camic, C.L.; Bergstrom, H.C.; Traylor, D.A.; Schmidt, R.J.; Johnson, G.O. Metabolic parameters for ramp versus step incremental cycle ergometer tests. Appl. Physiol. Nutr. Metab. 2012, 37, 1110–1117. [Google Scholar] [CrossRef]
- Goldstein, L.B.; Adams, R.; Becker, K.; Furberg, C.D.; Gorelick, P.B.; Hademenos, G.; Hill, M.; Howard, G.; Howard, V.J.; Jacobs, B.; et al. Primary prevention of ischemic stroke: A statement for healthcare professionals from the Stroke Council of the American Heart Association. Stroke 2001, 32, 280–299. [Google Scholar] [CrossRef]
- Haam, J.H.; Kim, B.T.; Kim, E.M.; Kwon, H.; Kang, J.H.; Park, J.H.; Kim, K.K.; Rhee, S.Y.; Kim, Y.H.; Lee, K.Y. Diagnosis of Obesity: 2022 Update of Clinical Practice Guidelines for Obesity by the Korean Society for the Study of Obesity. J. Obes. Metab. Syndr. 2023, 32, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Vincent, H.K.; Bourguignon, C.; Vincent, K.R. Resistance training lowers exercise-induced oxidative stress and homocysteine levels in overweight and obese older adults. Obesity 2006, 14, 1921–1930. [Google Scholar] [CrossRef] [PubMed]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zieliński, G. Effect Size Guidelines for Individual and Group Differences in Physiotherapy. Arch. Phys. Med. Rehabilit. 2025, 19, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.C.; Brellenthin, A.G.; Lanningham-Foster, L.M.; Kohut, M.L.; Li, Y. Aerobic, resistance, or combined exercise training and cardiovascular risk profile in overweight or obese adults: The CardioRACE trial. Eur. Heart J. 2024, 45, 1127–1142. [Google Scholar] [CrossRef]
- Villareal, D.T.; Aguirre, L.; Gurney, A.B.; Waters, D.L.; Sinacore, D.R.; Colombo, E.; Armamento-Villareal, R.; Qualls, C. Aerobic or Resistance Exercise, or Both, in Dieting Obese Older Adults. N. Engl. J. Med. 2017, 376, 1943–1955. [Google Scholar] [CrossRef]
- Ostchega, Y.; Hughes, J.P.; Terry, A.; Fakhouri, T.H.; Miller, I. Abdominal obesity, body mass index, and hypertension in US adults: NHANES 2007–2010. Am. J. Hypertens. 2012, 25, 1271–1278. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, W.J.; Khera, A.V.; Kim, J.Y.; Yon, D.K.; Lee, S.W.; Shin, J.I.; Won, H.H. Association between adiposity and cardiovascular outcomes: An umbrella review and meta-analysis of observational and Mendelian randomization studies. Eur. Heart J. 2021, 42, 3388–3403. [Google Scholar] [CrossRef]
- Kolmos, M.; Christoffersen, L.; Kruuse, C. Recurrent ischemic stroke–a systematic review and meta-analysis. J. Stroke Cerebrovasc. Dis. 2021, 30, 105935. [Google Scholar] [CrossRef]
- Smulders, K.; van Swigchem, R.; de Swart, B.J.; Geurts, A.C.; Weerdesteyn, V. Community-dwelling people with chronic stroke need disproportionate attention while walking and negotiating obstacles. Gait Posture 2012, 36, 127–132. [Google Scholar] [CrossRef]
- Weerdesteyn, V.; de Niet, M.; van Duijnhoven, H.J.; Geurts, A.C. Falls in individuals with stroke. J. Rehabil. Res. Dev. 2008, 45, 1195–1214. [Google Scholar] [CrossRef] [PubMed]
- Timmermans, C.; Roerdink, M.; Meskers, C.G.M.; Beek, P.J.; Janssen, T.W.J. Walking-adaptability therapy after stroke: Results of a randomized controlled trial. Trials 2021, 22, 923. [Google Scholar] [CrossRef]
- Awad, L.N.; Reisman, D.S.; Binder-Macleod, S.A. Distance-induced changes in walking speed after stroke: Relationship to community walking activity. J. Neurol. Phys. Ther. 2019, 33, 819–830. [Google Scholar] [CrossRef] [PubMed]
- Fulk, G.D.; He, Y. Minimal clinically important difference of the 6-minute walk test in people with stroke. J. Neurol. Phys. Ther. 2018, 42, 235–240. [Google Scholar] [CrossRef]
- Buurke, J.H.; Nene, A.V.; Kwakkel, G.; Erren-Wolters, V.; Ijzerman, M.J.; Hermens, H.J. Recovery of gait after stroke: What changes? Neurorehabilit. Neural Repair 2008, 22, 676–683. [Google Scholar] [CrossRef]
- Chi, N.F.; Huang, Y.C.; Chiu, H.Y.; Chang, H.J.; Huang, H.C. Systematic Review and Meta-Analysis of Home-Based Rehabilitation on Improving Physical Function Among Home-Dwelling Patients with a Stroke. Arch. Phys. Med. Rehabil. 2020, 101, 359–373. [Google Scholar] [CrossRef]
- Brouwer, R.; van Dijk, A.; de Greef, B.; van Meeteren, N.; Visser-Meily, J.; Toorenburgh, S. Effect of aerobic training on vascular and metabolic risk factors for recurrent stroke: A meta-analysis. Disabil. Rehabil. 2021, 43, 2084–2091. [Google Scholar] [CrossRef]
- Ivey, F.M.; Ryan, A.S.; Hafer-Macko, C.E.; Goldberg, A.P.; Macko, R.F. Treadmill aerobic training improves glucose tolerance and indices of insulin sensitivity in disabled stroke survivors: A preliminary report. Stroke 2007, 38, 2752–2758. [Google Scholar] [CrossRef] [PubMed]
- Messerli, F.H.; Bangalore, S.; Bavishi, C. Angiotensin-converting enzyme inhibitors in hypertension: To use or not to use? J. Am. Coll. Cardiol. 2018, 71, 1474–1482. [Google Scholar] [CrossRef]
- Wiysonge, C.S.; Bradley, H.A.; Volmink, J.; Mayosi, B.M.; Mbewu, A.; Opie, L.H.; Bethel, A. Beta-blockers for hypertension. Cochrane Database Syst. Rev. 2017, 1, CD002003. [Google Scholar] [CrossRef] [PubMed]
- Baigent, C.; Blackwell, L.; Emberson, J.; Holland, L.E.; Reith, C.; Bhala, N.; Collins, R. Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 2010, 376, 1670–1681. [Google Scholar] [CrossRef]
- Church, T.S.; Blair, S.N.; Cocreham, S.; Johannsen, N.; Johnson, W.; Kramer, K.; Mikus, C.R.; Myers, V.; Nauta, M.; Rodarte, R.Q.; et al. Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: A randomized controlled trial. JAMA 2010, 304, 2253–2262. [Google Scholar] [CrossRef]
- Corso, L.M.; Macdonald, H.V.; Johnson, B.T.; Farinatti, P.; Livingston, J.; Zaleski, A.L.; Blanchard, A.; Pescatello, L.S. Is Concurrent Training Efficacious Antihypertensive Therapy? A Meta-analysis. Med. Sci. Sports Exerc. 2016, 48, 2398–2406. [Google Scholar] [CrossRef]
- Green, D.J.; Smith, K.J. Effects of Exercise on Vascular Function, Structure, and Health in Humans. Cold Spring Harb. Perspect. Med. 2018, 8, a029819. [Google Scholar] [CrossRef] [PubMed]
- Tchernof, A.; Nolan, A.; Sites, C.K.; Ades, P.A.; Poehlman, E.T. Weight loss reduces C-reactive protein levels in obese postmenopausal women. Circulation 2002, 105, 564–569. [Google Scholar] [CrossRef]
- Raghubeer, S.; Matsha, T.E. Methylenetetrahydrofolate (MTHFR), the One-Carbon Cycle, and Cardiovascular Risks. Nutrients 2021, 13, 4562. [Google Scholar] [CrossRef]
- Clarke, R.; Sherliker, P.; Hin, H.; Nexo, E.; Hvas, A.M.; Schneede, J.; Birks, J.; Ueland, P.M.; Emmens, K.; Scott, J.M.; et al. Detection of vitamin B12 deficiency in older people by measuring vitamin B12 or the active fraction of vitamin B12, holotranscobalamin. Clin. Chem. 2007, 53, 963–970. [Google Scholar] [CrossRef]
- Herrmann, W.; Obeid, R. Causes and early diagnosis of vitamin B12 deficiency. Dtsch. Ärzteblatt Int. 2008, 105, 680–685. [Google Scholar] [CrossRef]
- Clarke, R.; Bennett, D.; Parish, S.; Lewington, S.; Skeaff, M.; Eussen, S.J.; Lewerin, C.; Stott, D.J.; Armitage, J.; Hankey, G.J.; et al. Effects of homocysteine lowering with B vitamins on cardiovascular disease, cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials involving 37,485 individuals. Arch. Intern. Med. 2010, 170, 1622–1631. [Google Scholar] [CrossRef] [PubMed]
- Obeid, R.; Herrmann, W. Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett. 2006, 580, 2994–3005. [Google Scholar] [CrossRef] [PubMed]
Variables | CC (n, %) | CT (n, %) | TT (n, %) | Total (n, %) |
---|---|---|---|---|
Total | 19 (41.3) | 19 (41.3) | 8 (17.4) | 46 (100) |
Male | 10 (21.7) | 7 (15.2) | 5 (10.9) | 22 (47.8) |
Female | 9 (19.6) | 12 (26.1) | 3 (6.5) | 24 (52.2) |
Variables | Group | Pre | Post | Δ | F | p | ES (η2) | |
---|---|---|---|---|---|---|---|---|
Total energy (kcal/d) | CC | 1494.12 ± 334.72 | 1375.31 ± 343.08 | −118.81 | G | 0.194 | 0.825 | 0.012 |
CT | 1436.33 ± 452.19 | 1425.28 ± 342.67 | −11.05 | T | 3.506 | 0.070 | 0.096 | |
TT | 1694.74 ± 508.28 | 1334.47 ± 330.07 | −360.27 | GxT | 1.124 | 0.337 | 0.064 | |
Carbohydrates (%) | CC | 57.98 ± 9.40 | 57.59 ± 8.00 | −6.30 | G | 0.213 | 0.809 | 0.032 |
CT | 60.30 ± 8.69 | 58.26 ± 7.10 | 0.64 | T | 0.328 | 0.571 | 0.109 | |
TT | 58.42 ± 8.38 | 57.64 ± 6.38 | −7.58 | GxT | 0.100 | 0.905 | 0.088 | |
Potein (%) | CC | 16.29 ± 2.80 | 17.22 ± 3.42 | 0.93 | G | 1.267 | 0.295 | 0.071 |
CT | 16.78 ± 3.14 | 16.10 ± 4.09 | −0.68 | T | 1.163 | 0.289 | 0.034 | |
TT | 17.14 ± 1.16 | 19.80 ± 6.70 | 2.66 | GxT | 1.043 | 0.364 | 0.059 | |
Fat (%) | CC | 24.16 ± 8.93 | 23.71 ± 6.76 | −0.45 | G | 0.068 | 0.934 | 0.004 |
CT | 22.35 ± 7.38 | 24.54 ± 4.82 | 2.19 | T | 0.084 | 0.773 | 0.003 | |
TT | 24.37 ± 8.30 | 24.21 ± 3.99 | −0.16 | GxT | 0.284 | 0.754 | 0.017 | |
Vitamin 6 (mg/d) | CC | 1.69 ± 0.58 | 1.73 ± 0.56 | 0.04 | G | 2.182 | 0.129 | 0.117 |
CT | 1.66 ± 0.64 | 1.92 ± 0.76 | 0.26 | T | 0.010 | 0.916 | 0.000 | |
TT | 2.43 ± 0.89 | 2.08 ± 0.97 | −0.35 | GxT | 1.192 | 0.316 | 0.067 | |
Folate (μg/d) | CC | 273.51 ± 269.95 | 278.16 ± 114.66 | 4.65 | G | 1.652 | 0.207 | 0.091 |
CT | 180.78 ± 62.88 | 239.29 ± 65.20 | 58.51 | T | 0.123 | 0.728 | 0.004 | |
TT | 246.29 ± 55.88 | 225.36 ± 85.13 | −20.93 | GxT | 0.358 | 0.702 | 0.021 |
Variables | Group | Pre | Post | Δ | F | p | ES (η2) | |
---|---|---|---|---|---|---|---|---|
Weight (kg) | CC | 67.72 ± 9.62 | 65.26 ± 8.73 | −2.45 ††† | G | 0.785 | 0.463 | 0.035 |
CT | 64.16 ± 8.18 | 62.21 ± 8.50 | −1.95 ††† | T | 58.026 | 0.000 *** | 0.574 | |
TT | 63.78 ± 11.91 | 61.56 ± 11.52 | −2.21 †† | GxT | 0.362 | 0.698 | 0.017 | |
Fat free mass (kg) | CC | 45.32 ± 8.07 | 46.06 ± 9.40 | 0.75 | G | 0.789 | 0.461 | 0.035 |
CT | 42.89 ± 6.87 | 42.53 ± 8.61 | −0.36 | T | 0.143 | 0.707 | 0.003 | |
TT | 46.45 ± 7.82 | 45.29 ± 9.50 | −1.16 | GxT | 0.647 | 0.528 | 0.029 | |
Fat mass (kg) | CC | 18.47 ± 7.60 | 16.77 ± 7.70 | −1.70 † | G | 0.830 | 0.443 | 0.037 |
CT | 18.65 ± 6.91 | 16.29 ± 4.96 | −2.36 †† | T | 11.873 | 0.001 ** | 0.216 | |
TT | 15.31 ± 5.88 | 13.30 ± 5.80 | −2.01 | GxT | 0.153 | 0.859 | 0.007 | |
WHR (index) | CC | 0.94 ± 0.09 | 0.91 ± 0.07 | −0.03 †† | G | 0.384 | 0.683 | 0.018 |
CT | 0.93 ± 0.05 | 0.90 ± 0.05 | −0.03 †† | T | 22.918 | 0.000 *** | 0.348 | |
TT | 0.92 ± 0.06 | 0.89 ± 0.04 | −0.03 † | GxT | 0.107 | 0.899 | 0.005 | |
VO2max (ml/kg/min) | CC | 12.36 ± 2.66 | 12.79 ± 2.99 | 0.42 | G | 0.259 | 0.773 | 0.012 |
CT | 12.22 ± 2.92 | 13.02 ± 2.92 | 0.80 † | T | 14.314 | 0.000 *** | 0.250 | |
TT | 12.66 ± 1.33 | 13.98 ± 1.47 | 1.32 † | GxT | 1.185 | 0.315 | 0.052 | |
6-min walk (m) | CC | 322.37 ± 115.65 | 340.84 ± 129.84 | 18.47 | G | 0.259 | 0.773 | 0.012 |
CT | 316.21 ± 126.92 | 351.05 ± 126.93 | 34.84 † | T | 14.314 | 0.000 *** | 0.250 | |
TT | 335.38 ± 57.84 | 392.88 ± 63.73 | 57.50 † | GxT | 1.185 | 0.315 | 0.052 |
Variables | Group | Pre | Post | Δ | F | p | ES (η2) | |
---|---|---|---|---|---|---|---|---|
TG (mg/dL) | CC | 143.79 ± 54.78 | 133.58 ± 55.36 | −10.21 | G | 0.109 | 0.897 | 0.005 |
CT | 141.21 ± 91.86 | 131.21 ± 83.22 | −10.00 | T | 1.412 | 0.241 | 0.032 | |
TT | 128.13 ± 58.38 | 123.25 ± 48.10 | −4.88 | GxT | 0.047 | 0.954 | 0.002 | |
FBG (mg/dL) | CC | 117.74 ± 27.29 | 114.21 ± 26.32 | −3.53 | G | 0.164 | 0.849 | 0.008 |
CT | 114.84 ± 29.03 | 117.16 ± 37.24 | 2.32 | T | 0.469 | 0.497 | 0.011 | |
TT | 105.00 ± 26.47 | 115.38 ± 24.22 | 10.38 | GxT | 0.720 | 0.493 | 0.032 | |
Homocysteine (μmol/L) | CC | 17.26 ± 6.85 | 15.19 ± 5.73 | −2.08 †† | G | 0.667 | 0.518 | 0.030 |
CT | 14.53 ± 4.12 | 13.97 ± 4.14 | −0.56 | T | 12.708 | 0.001 ** | 0.228 | |
TT | 16.15 ± 7.05 | 14.62 ± 4.38 | −1.53 | GxT | 1.873 | 0.166 | 0.080 | |
SBP (mmHg) | CC | 122.84 ± 13.17 | 119.05 ± 11.29 | −3.79 | G | 0.149 | 0.862 | 0.007 |
CT | 123.21 ± 11.11 | 118.79 ± 11.95 | −4.42 | T | 3.344 | 0.074 | 0.028 | |
TT | 124.75 ± 6.48 | 121.25 ± 12.83 | −3.50 | GxT | 0.017 | 0.983 | 0.032 | |
DBP (mmHg) | CC | 83.37 ± 11.72 | 81.00 ± 8.72 | −2.37 | G | 0.160 | 0.852 | 0.007 |
CT | 80.84 ± 11.30 | 81.42 ± 9.48 | 0.58 | T | 0.192 | 0.663 | 0.004 | |
TT | 80.50 ± 10.89 | 80.00 ± 6.57 | −0.50 | GxT | 0.352 | 0.705 | 0.016 | |
BMI (kg/m2) | CC | 25.25 ± 4.01 | 24.15 ± 3.43 | −1.10 †† | G | 0.237 | 0.790 | 0.011 |
CT | 24.82 ± 3.51 | 23.79 ± 2.67 | −1.03 † | T | 11.746 | 0.001 ** | 0.215 | |
TT | 24.13 ± 3.18 | 23.40 ± 3.19 | −0.73 | GxT | 1.33 | 0.876 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.-H.; Shin, Y.-A. Effects of Long-Term Combined Aerobic and Resistance Training According to MTHFR C677T Genotype in Patients with Chronic Stroke. Appl. Sci. 2025, 15, 11026. https://doi.org/10.3390/app152011026
Lee K-H, Shin Y-A. Effects of Long-Term Combined Aerobic and Resistance Training According to MTHFR C677T Genotype in Patients with Chronic Stroke. Applied Sciences. 2025; 15(20):11026. https://doi.org/10.3390/app152011026
Chicago/Turabian StyleLee, Kun-Ho, and Yun-A Shin. 2025. "Effects of Long-Term Combined Aerobic and Resistance Training According to MTHFR C677T Genotype in Patients with Chronic Stroke" Applied Sciences 15, no. 20: 11026. https://doi.org/10.3390/app152011026
APA StyleLee, K.-H., & Shin, Y.-A. (2025). Effects of Long-Term Combined Aerobic and Resistance Training According to MTHFR C677T Genotype in Patients with Chronic Stroke. Applied Sciences, 15(20), 11026. https://doi.org/10.3390/app152011026