Integrated Geophysical and Geochemical Surveys for Assessing Mineral Potential in the Xintianling Tungsten Deposit, Nanling Range, South China
Abstract
1. Introduction
2. Geological Setting
2.1. Regional Geology
2.2. Deposit Geology
3. Materials and Methods
- (1)
- In conjunction with geological data, the upper zone with resistivity of approximately 700 Ω·m is interpreted as Carboniferous limestone, whereas shallow zones with resistivity <300 Ω·m are attributed to Quaternary overburden.
- (2)
- Zones with uniform resistivity contours ranging from 700–1200 Ω·m are identified as granite.
- (3)
- Low-resistivity anomalies (<600 Ω·m) at the contact between deep granite and country rocks, along with areas showing resistivity contour depressions or disturbances (relatively lower resistivity), are interpreted as (mineralized) skarn zones.
- (1)
- Data Import: The multi-element analytical data were imported into Surfer from Excel files. Data columns and grid geometry were defined, with a grid node spacing of 500 × 500 m.
- (2)
- Data Processing: The workflow encompassed data cleaning, interpolation (using the Kriging method with a linear variogram model in this study), smoothing, and filtering. R-mode cluster analysis and factor analysis were conducted using SPSS.
- (3)
- Visualization Analysis: Following interpolation, contour maps were generated based on the numerical distributions. Contour intervals were optimized according to element abundances to effectively illustrate the spatial distribution and characteristics of the geochemical data.
- (4)
- Result Export: Upon completion of processing and analysis, the results were exported as images. This study focused on contour maps for 19 selected elements: As, Be, Bi, Ce, Fe, Li, Mn, Mo, Nb, P, Pb, Sn, Sr, Ti, V, W, Zn, Mg, and Cu.
4. Results and Discussion
4.1. Geophysical Data Processing and Interpretation
4.1.1. Geophysical Characteristics of the Study Area
4.1.2. Data Interpretation and Analysis
4.2. Geochemical Data Interpretation and Analysis
4.3. Integrated Analysis of Geophysical and Geochemical Data and Metallogenic Prediction
5. Conclusions
- (1)
- The Xintianling tungsten deposit is primarily characterized by skarn-type mineralization, structurally controlled by the north–south-trending Danfengping composite anticline and its subsidiary folds. The granite–limestone contact zone represents the most favorable environment for ore formation, with thicker and higher-grade orebodies preferentially developing in depression zones along the pluton roof.
- (2)
- The opposing-coil transient electromagnetic (OCTEM) method effectively delineated low-resistivity anomalies at the contact zone, exhibiting strong spatial correlation with geochemical anomalies (W-Sn-Fe-Bi and Cu-Mo-As associations). This integrated geophysical–geochemical approach successfully mapped the spatial distribution of mineralization.
- (3)
- Integrated interpretation identified 15 low-resistivity anomalies, of which 14 are interpreted as prospective mineralization zones. Three potential exploration targets were delineated in the Shanglongshan–Huanggualing sector, offering clear guidance for peripheral prospecting efforts.
- (4)
- This study demonstrates that the combination of OCTEM and geochemistry provides an effective methodology for exploring concealed skarn-type tungsten deposits, with broad applicability to similar geological settings in the Nanling Range and beyond.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mao, J.W.; Cheng, Y.B.; Chen, M.H.; Pirajno, F. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Miner. Depos. 2013, 48, 267–294. [Google Scholar]
- Xiong, Y.Q.; Shao, Y.J.; Cheng, Y.B.; Jiang, S.Y. Discrete Jurassic and Cretaceous mineralization events at the Xiangdong W(-Sn) deposit, Nanling Range, South China. Econ. Geol. 2020, 115, 385–413. [Google Scholar] [CrossRef]
- Fan, J.; Hou, E.; Jin, D.; Xi, Z.; Long, X.; Zhou, S.; Nan, S.; Liu, Y.; Guo, K.; Ning, D. Application of opposing coils transient electromagnetic method in urban area with metal interference. J. Appl. Geophys. 2024, 228, 105467. [Google Scholar] [CrossRef]
- Guo, T.; Liu, Q.; Xi, Z.; Zhang, Z.; Qi, Q.; Chen, X.; Diao, H. Development of an opposing coils frequency domain electromagnetic method transmitter. J. Appl. Geophys. 2025, 241, 105847. [Google Scholar] [CrossRef]
- Wang, H.; Yan, M.S.; Xi, Z.Z.; Jiang, S.; Wang, J. Deep learning Inversion of equivalent anti-flux transient electromagnetics based on physical guidance. J. Cent. South Univ. (Nat. Sci. Ed.) 2025, 56, 1851–1860. [Google Scholar]
- Zhao, H.; Wang, L.H.; Cheng, Q.; Zhang, Q. Equivalent anti magnetic flux transient electromagnetic imaging technology and engineering applications. Prog. Geophys. 2021, 36, 2244–2250. [Google Scholar]
- He, S.L. The joint application of ground equivalent anti magnetic flux transient electromagnetic method and tunnel advanced geological prediction in karst areas: Taking the Zaogui underground excavation section of the first phase of Guiyang Rail Transit S1 Line as an example. Eng. Technol. Res. 2025, 10, 8–11. [Google Scholar]
- Wang, L.; Long, X.; Wang, T.T.; Xi, Z.Z.; Chen, X.P.; Zhong, M.F.; Dong, Z.Q. Application of equivalent anti-flux transient electromagnetic method in urban shallow cavity detection. Geophys. Geochem. Explor. 2022, 46, 1289–1295. [Google Scholar]
- Zhang, Y.W.; Xu, X.X.; Chen, H.F. Experimental study on equivalent anti magnetic flux transient electromagnetic field in Saihanaobao Pb-Zn deposit, Keshiketeng Banner, Inner Mongolia. World Nonferr. Met. 2024, 5, 40–42. [Google Scholar]
- Li, L.R.; Ren, Z.H.; Wang, B.; Zhang, Q.; Huang, H.; Liu, J.J.; Xu, H.Y.; Guo, Q. Wave field inverse transformation method for equivalent anti magnetic flux transient electromagnetic data and its application in underground advanced detection in Huize Pb-Zn deposit. Disaster Adv. Detect. Control Tunn. Undergr. Eng. 2025, 7, 51–63. [Google Scholar]
- Xi, Z.Z.; Long, X.; Zhou, S.; Huang, L.; Song, G.; Hou, H.T.; Wang, L. Opposing coils transient electromagnetic method for shallow subsurface detection. Chin. J. Geophys. 2016, 59, 551–559. [Google Scholar] [CrossRef]
- Tian, B.L.; Jiang, J.; Dai, H.; Liu, G.Z.; Zhang, W. Application research of equivalent anti magnetic flux transient electromagnetic method in geological hazard detection. Miner. Explor. 2024, 15, 237–242. [Google Scholar]
- Cheng, Z.Z.; Yuan, H.X.; Peng, L.L.; Lu, G.A.; Jia, X.X.; Bing, M.M.; Lin, C.G. A geochemical method for finding concealed ore deposits in bed-rock outcrop area: Application of tectono-geochemical survey. Earth Sci. Front. 2021, 28, 328–337. [Google Scholar]
- Lmahfoudi, Y.; Ouali, H.; Ilmen, S.; Hajjar, Z.; El-Masoudy, A.; Birrell, R.; Sapor, L.; Zouhair, M.; Maacha, L. Prediction of buried cobalt-bearing arsenides using ionic leach geochemistry in the Bou Azzer-El Graara Inlier (Central Anti-Atlas, Morocco): Implications for mineral exploration. Minerals 2025, 15, 676. [Google Scholar] [CrossRef]
- Xie, D.K.; Li, W.D.; Fu, Y.G.; Wang, J.Z.; Zeng, H.D.; Lü, Q.Q.; Zhang, W.G.; Yuan, F.L.; Lan, H.Y. Application of the combined detection of geophysical prospecting and shallow drilling geochemical prospecting in the concealed magmatic copper-nickel deposits in the shallow-covered area of the Dahuangshan in the Eastern Tianshan Metallogenic Belt. Xinjiang Geol. 2025, 43, 369–377. [Google Scholar]
- Zhao, Z.F.; Gao, P.; Zheng, Y.F. The source of Mesozoic granitoids in South China: Integrated geochemical constraints from the Taoshan batholith in the Nanling Range. Chem. Geol. 2015, 395, 11–26. [Google Scholar] [CrossRef]
- Liang, Y.; Zheng, H.; He, Z.; De Grave, J.; Li, H.; Tang, Z.; Lash, G.G.; Kang, P. Reassessing early to mid-Neoproterozoic (~885–720 Ma) tectonic evolution of the southwestern Jiangnan Orogen: A detrital zircon perspective. Precambrian Res. 2024, 410, 107482. [Google Scholar] [CrossRef]
- Yuan, S.D.; Williams-Jones, A.E.; Mao, J.W.; Zhao, P.L.; Yan, C.; Zhang, D.L. The origin of the Zhangjialong tungsten deposit, South China: Implications for W-Sn mineralization in large granite batholiths. Econ. Geol. 2018, 113, 1193–1208. [Google Scholar] [CrossRef]
- Zhao, P.L.; Chu, X.; Williams-Jones, A.E.; Mao, J.W.; Yuan, S.D. The role of phyllosilicate partial melting in segregating tungsten and tin deposits in W-Sn metallogenic provinces. Geology 2022, 50, 121–125. [Google Scholar] [CrossRef]
- Xia, Q.L.; Wang, X.Q.; Liu, Z.Z.; Li, T.F.; Feng, L. Tungsten metallogenic and geological features and mineral resource potential in China. Earth Sci. Front. 2018, 25, 50–58. [Google Scholar]
- Mao, J.C.; Ouyang, H.; Song, S.; Santosh, M.; Yuan, S.; Zhou, Z.; Zheng, W.; Liu, H.; Liu, P.; Cheng, Y. Geology and metallogeny of tungsten and tin deposits in China. SEG Spec. Publ. 2020, 22, 411–482. [Google Scholar]
- Chen, J.F.; Jahn, B.-M. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics 1998, 284, 101–133. [Google Scholar] [CrossRef]
- Faure, M.; Yao, J.L.; Chen, Y.; Shu, L.S.; Charvet, J.; Wang, B. Neoproterozoic plate tectonic process and Phanerozoic geodynamic evolution of the South China Block. Earth-Sci. Rev. 2021, 216, 103596. [Google Scholar]
- Mao, J.W.; Li, H.Y.; Shimazaki, H.; Raimbault, L.; Guy, B. Geology and metallogeny of the Shizhuyuan skarn-greisen deposit, Hunan Province, China. Int. Geol. Rev. 1996, 38, 1020–1039. [Google Scholar] [CrossRef]
- Xiong, Y.Q.; Shao, Y.J.; Zhou, H.D.; Wu, Q.H.; Liu, J.P.; Wei, H.T.; Zhao, R.C.; Cao, J.Y. Ore-forming mechanism of quartz-vein-type W-Sn deposits of the Xitian district in SE China: Implications from the trace element analysis of wolframite and investigation of fluid inclusions. Ore Geol. Rev. 2017, 83, 152–173. [Google Scholar] [CrossRef]
- Pan, J.Y.; Ni, P.; Li, W.S.; Chen, L.L.; Zhang, D.; Fan, M.S.; Gao, Y.; Wu, X.W. Constraints on the timing and genetic link of scheelite- and wolframite-bearing quartz veins in the Chuankou W ore field, South China. Ore Geol. Rev. 2021, 133, 104122. [Google Scholar] [CrossRef]
- Wang, Y.J.; Fan, W.M.; Guo, F.; Peng, T.P.; Li, C.W. Geochemistry of Mesozoic mafic rocks adjacent to the Chenzhou-Linwu fault, South China: Implications for the lithospheric boundary between the Yangtze and Cathaysia blocks. Int. Geol. Rev. 2003, 45, 263–286. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Su, H.M.; Xiong, Y.Q.; Liu, T.; Zhu, K.Y.; Zhang, L. Spatial-temporal distribution, geological characteristics and ore-formation controlling factors of major types of rare metal mineral deposits in China. Acta Geol. Sin. (Engl. Ed.) 2020, 94, 1757–1773. [Google Scholar] [CrossRef]
- Zhao, P.L.; Zajacz, Z.; Tsay, A.; Yuan, S.D. Magmatic-hydrothermal tin deposits form in response to efficient tin extraction upon magma degassing. Geochim. Cosmochim. Acta 2022, 316, 331–346. [Google Scholar] [CrossRef]
- Wang, Y.J.; Fan, W.M.; Zhang, Y.H.; Peng, T.P.; Chen, X.Y.; Xu, Y.G. Phanerozoic tectonics of the South China Block: Key observations and controversies. Gondwana Res. 2013, 23, 1273–1305. [Google Scholar] [CrossRef]
- Bai, D.Y.; Ma, T.Q.; Wang, X.H.; Zhang, X.Y.; Chen, B.H. Progress in the study of Mesozoic tectono-magmatism and mineralization in the central segment of the Nanling Mountains. Geol. China 2008, 25, 436–455. [Google Scholar]
- Wang, M.F.; Zhao, R.Z.; Shang, X.Y.; Wei, K.T.; Liu, K.; An, W.W. REE and cathodoluminescence features of scheelites from the Tongshankou Cu-Mo deposit in Eastern China. Ore Geol. Rev. 2022, 147, 104981. [Google Scholar] [CrossRef]
- Zhu, J.C.; Chen, J.; Wang, R.C.; Lu, J.J.; Xie, L. Early Yanshanian NE trending Sn/W-bearing A-type granites in the western-middle part of the Nanling Mts region. Geol. J. China Univ. 2008, 14, 474–484. [Google Scholar]
- Mao, J.W.; Xie, G.Q.; Guo, C.L.; Yuan, S.D.; Cheng, Y.B.; Chen, Y.C. Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings. Geol. J. China Univ. 2008, 14, 510–526. [Google Scholar]
- Peng, J.T.; Zhou, M.F.; Hu, R.Z.; Shen, N.P.; Yuan, S.D.; Bi, X.W.; Du, A.D.; Qu, W.J. Precise molybdenite Re–Os and mica Ar–Ar dating of the Mesozoic Yaogangxian tungsten deposit, central Nanling district, South China. Miner. Depos. 2006, 41, 661–669. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, M.; Yan, J.; Chen, X. Zircon U-Pb ages and geochemistry of the granite in the Xintianling tungsten deposit, SE China: Implications for geodynamic settings of the regional tungsten mineralization. Minerals 2022, 12, 629. [Google Scholar] [CrossRef]
- Li, B.; Zhou, S.H.; Xu, D.R.; Chen, X.L.; Wang, X.N.; Wang, H. Composition characteristics of garnet in Xintianling skarn-type scheelite deposit, South Hunan Province and its implications for the tungsten mineralization. Gold Sci. Technol. 2023, 31, 232–251. [Google Scholar]
- Hu, J.B. The Characteristics and Prospecting Significance of Tungsten-Bearing Granitoids of Xintianling Skarn Scheelite Deposit, Southern Hunan Province, Nanling Range. Master’s Thesis, Nanjing University, Nanjing, China, 2012. [Google Scholar]
- Zhu, J.C.; Wang, R.C.; Zhang, P.H.; Xie, C.F.; Zhang, W.L.; Zhao, K.D.; Xie, L.; Yang, C.; Che, X.D.; Yu, A.P.; et al. Zircon U-Pb geochronological framework of Qitianling granite batholith, middle part of Nanling Range, South China. Sci. China Ser. D Earth Sci. 2009, 52, 1279–1294. [Google Scholar] [CrossRef]
- Zhang, R.Q. Petrogenesis and Metallogeny of the W- and Sn-Bearing Granites in Southern Hunan Province: Case Study from Wangxianling and Xintianling. Ph.D. Thesis, Nanjing University, Nanjing, China, 2015. [Google Scholar]
- Cai, M.H.; Han, F.B.; He, L.Q.; Liu, G.Q.; Chen, K.X.; Fu, J.M. He, Ar isotope characteristics and Rb–Sr dating of the Xintianling skarn scheelite deposit in southern Hunan, China. Acta Geosci. Sin. 2008, 29, 167–173. [Google Scholar]
- Yuan, S.D.; Zhang, D.L.; Shuang, Y.; Du, A.D.; Qu, W.J. Re–Os dating of molybdenite from the Xintianling giant tungsten-molybdenum deposit in southern Hunan Province, China and its geological implications. Acta Petrol. Sin. 2012, 28, 27–38. [Google Scholar]
- Koga, K.; Tsuboi, M. Petrogenesis of granitic rocks in the Hisakajima Island, Goto Archipelago, Southwestern Japan: A geochemical study. Minerals 2021, 11, 136. [Google Scholar] [CrossRef]
Element | Maximum | Median | Mean | Standard Deviation | National Background Value | Coefficient of Variation | Enrichment Factor |
---|---|---|---|---|---|---|---|
Ag | 1.90 | 0.50 | 0.51 | 0.13 | 0.08 | 0.26 | 6.41 |
Al | 13.95 | 4.91 | 4.90 | 4.03 | 8.13 | 0.82 | 0.60 |
As | 638.00 | 11.00 | 34.80 | 89.87 | 1.50 | 2.58 | 23.20 |
Ba | 950.00 | 155.00 | 197.31 | 196.27 | 500.00 | 0.99 | 0.39 |
Be | 9.50 | 1.55 | 2.08 | 1.98 | 2.60 | 0.95 | 0.80 |
Bi | 9.00 | 2.00 | 2.45 | 1.17 | 0.48 | 0.48 | 5.11 |
Ca | 37.10 | 0.03 | 2.25 | 8.29 | 3.63 | 3.68 | 0.62 |
Cd | 15.50 | 0.50 | 0.66 | 1.44 | 0.11 | 2.20 | 5.97 |
Ce | 230.00 | 50.00 | 78.70 | 42.71 | 68.00 | 0.54 | 1.16 |
Co | 10.00 | 1.00 | 1.74 | 1.57 | 12.33 | 0.90 | 0.14 |
Cr | 241.00 | 31.00 | 49.10 | 41.92 | 100.00 | 0.85 | 0.49 |
Cu | 552.00 | 3.00 | 11.72 | 53.29 | 21.57 | 4.55 | 0.54 |
Fe | 50.00 | 1.34 | 3.13 | 7.00 | 5.00 | 2.23 | 0.63 |
Ga | 40.00 | 10.00 | 16.67 | 8.16 | 18.00 | 0.49 | 0.93 |
K | 5.75 | 0.79 | 1.43 | 1.47 | 2.59 | 1.03 | 0.55 |
La | 120.00 | 20.00 | 31.57 | 27.02 | 32.00 | 0.86 | 0.99 |
Li | 150.00 | 20.00 | 34.91 | 32.73 | 20.00 | 0.94 | 1.75 |
Mg | 12.75 | 0.08 | 0.27 | 1.23 | 2.09 | 4.49 | 0.13 |
Mn | 422.00 | 67.00 | 105.81 | 96.11 | 678.47 | 0.91 | 0.16 |
Mo | 56.00 | 2.00 | 2.89 | 5.36 | 1.23 | 1.85 | 2.35 |
Na | 2.17 | 0.04 | 0.20 | 0.49 | 2.83 | 2.42 | 0.07 |
Nb | 43.00 | 9.00 | 14.07 | 10.62 | 20.00 | 0.75 | 0.70 |
Ni | 65.00 | 3.00 | 8.03 | 11.24 | 80.00 | 1.40 | 0.10 |
P | 910.00 | 70.00 | 119.72 | 149.91 | 1000.00 | 1.25 | 0.12 |
Pb | 2570.00 | 8.00 | 40.94 | 245.68 | 25.96 | 6.00 | 1.58 |
S | 0.22 | 0.01 | 0.02 | 0.03 | 0.05 | 1.46 | 0.42 |
Sb | 13.00 | 5.00 | 5.08 | 0.77 | 0.74 | 0.15 | 6.87 |
Sc | 24.00 | 4.00 | 7.41 | 7.12 | 16.00 | 0.96 | 0.46 |
Sn | 40.00 | 10.00 | 10.93 | 4.20 | 3.43 | 0.38 | 3.19 |
Sr | 920.00 | 21.00 | 64.31 | 141.90 | 370.00 | 2.21 | 0.17 |
Ta | 30.00 | 10.00 | 10.46 | 2.85 | 2.00 | 0.27 | 5.23 |
Th | 80.00 | 20.00 | 27.87 | 17.80 | 11.92 | 0.64 | 2.34 |
Ti | 0.87 | 0.15 | 0.24 | 0.25 | 0.44 | 1.05 | 0.54 |
U | 110.00 | 10.00 | 11.30 | 9.73 | 2.02 | 0.86 | 5.59 |
V | 285.00 | 19.00 | 50.56 | 55.64 | 79.62 | 1.10 | 0.63 |
W | 170.00 | 10.00 | 11.67 | 15.37 | 0.77 | 1.32 | 15.15 |
Zn | 5400.00 | 11.00 | 69.74 | 515.68 | 1.43 | 7.39 | 48.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Shao, Y.-J.; Wang, Y.; Chen, K.; Li, Z.-M.; Di, H.-F.; Xu, K.-Q.; Zheng, H.; Xiong, Y.-Q. Integrated Geophysical and Geochemical Surveys for Assessing Mineral Potential in the Xintianling Tungsten Deposit, Nanling Range, South China. Appl. Sci. 2025, 15, 11022. https://doi.org/10.3390/app152011022
Liu W, Shao Y-J, Wang Y, Chen K, Li Z-M, Di H-F, Xu K-Q, Zheng H, Xiong Y-Q. Integrated Geophysical and Geochemical Surveys for Assessing Mineral Potential in the Xintianling Tungsten Deposit, Nanling Range, South China. Applied Sciences. 2025; 15(20):11022. https://doi.org/10.3390/app152011022
Chicago/Turabian StyleLiu, Wei, Yong-Jun Shao, Yi Wang, Ke Chen, Zhi-Min Li, Hong-Fei Di, Kang-Qi Xu, Han Zheng, and Yi-Qu Xiong. 2025. "Integrated Geophysical and Geochemical Surveys for Assessing Mineral Potential in the Xintianling Tungsten Deposit, Nanling Range, South China" Applied Sciences 15, no. 20: 11022. https://doi.org/10.3390/app152011022
APA StyleLiu, W., Shao, Y.-J., Wang, Y., Chen, K., Li, Z.-M., Di, H.-F., Xu, K.-Q., Zheng, H., & Xiong, Y.-Q. (2025). Integrated Geophysical and Geochemical Surveys for Assessing Mineral Potential in the Xintianling Tungsten Deposit, Nanling Range, South China. Applied Sciences, 15(20), 11022. https://doi.org/10.3390/app152011022