Machine Learning-Based Ground-Level NO2 Estimation in Istanbul: A Comparative Analysis of Sentinel-5P and GEOS-CF
Abstract
1. Introduction
- How accurately can ground-level NO2 in metropolitan cities be estimated using satellite-derived tropospheric NO2 data?
- How do ground-level NO2 estimates differ when using NO2 data with varying spatial resolutions?
- To what extent do environmental and anthropogenic factors influence the prediction of ground-level NO2?
2. Study Area and Datasets
2.1. Study Area and Ambient Air Quality Monitoring Station Data
2.2. Datasets
2.2.1. Sentinel-5P TROPOMI Tropospheric NO2 Columns
2.2.2. Satellite-Based Variables
2.2.3. Auxiliary Variables
3. Methodology
3.1. Data Preprocessing and Feature Extraction
3.2. Model Development with Machine Learning
3.3. Model Evaluation and Accuracy Assessment
4. Results
4.1. Correlation Analysis Between Variables
4.2. Accuracy Assessment and Seasonal Thematic Maps
5. Discussion
6. Strengths and Limitations
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NO2 | Nitrogen dioxide |
ML | Machine Learning |
RF | Random Forest Regression |
XGB | XGBoost Regression |
CB | CatBoost Regression |
XAI | Explainable Artificial Intelligence |
SHAP | Shapley Additive exPlanations |
References
- Liu, F.; Beirle, S.; Zhang, Q.; Dörner, S.; He, K.; Wagner, T. NOx Lifetimes and Emissions of Cities and Power Plants in Polluted Background Estimated by Satellite Observations. Atmos. Chem. Phys. 2016, 16, 5283–5298. [Google Scholar] [CrossRef]
- Khan, R.R.; Siddiqui, M.J. Review on Effects of Particulates: Sulfur Dioxide and Nitrogen Dioxide on Human Health. Int. Res. J. Environ. Sci. 2014, 3, 70–73. [Google Scholar]
- Eum, K.-D.; Kazemiparkouhi, F.; Wang, B.; Manjourides, J.; Pun, V.; Pavlu, V.; Suh, H. Long-Term NO2 Exposures and Cause-Specific Mortality in American Older Adults. Environ. Int. 2019, 124, 10–15. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 505570. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Chen, T.-M.; Kuschner, W.G.; Gokhale, J.; Shofer, S. Outdoor Air Pollution: Nitrogen Dioxide, Sulfur Dioxide, and Carbon Monoxide Health Effects. Am. J. Med. Sci. 2007, 333, 249–256. [Google Scholar] [CrossRef]
- Cao, H.; Han, L. The Short-Term Impact of the COVID-19 Epidemic on Socioeconomic Activities in China Based on the OMI-NO2 Data. Environ. Sci. Pollut. Res. 2022, 29, 21682–21691. [Google Scholar] [CrossRef]
- Schneider, P.; Lahoz, W.A.; van der A, R. Recent Satellite-Based Trends of Tropospheric Nitrogen Dioxide over Large Urban Agglomerations Worldwide. Atmos. Chem. Phys. 2015, 15, 1205–1220. [Google Scholar] [CrossRef]
- Güçlü, Y.S.; Dabanlı, İ.; Şişman, E.; Şen, Z. Air Quality (AQ) Identification by Innovative Trend Diagram and AQ Index Combinations in Istanbul Megacity. Atmos. Pollut. Res. 2019, 10, 88–96. [Google Scholar] [CrossRef]
- Wang, W.; Li, B.; Chen, B. Improved Surface NO2 Retrieval: Double-Layer Machine Learning Model Construction and Spatio-Temporal Characterization Analysis in China (2018–2023). J. Environ. Manag. 2025, 384, 125439. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Wei, J.; Zhan, Y.; Liu, L.; Yang, Z.; Zhang, Y.; Liu, R.; Ma, Z. Long-Term Exposure to Ambient NO2 and Adult Mortality: A Nationwide Cohort Study in China. J. Adv. Res. 2022, 41, 13–22. [Google Scholar] [CrossRef]
- Zhang, D.; Shi, R.; Zhou, Y.; Zheng, L.; Chen, M. The Spatial Distribution Characteristics and Ground-Level Estimation of NO2 and SO2 over Huaihe River Basin and Shanghai Based on Satellite Observations. In Proceedings of the Remote Sensing and Modeling of Ecosystems for Sustainability XV, San Diego, CA, USA, 19–23 August 2018; Gao, W., Chang, N.-B., Wang, J., Eds.; SPIE: Bellingham, WA, USA, 2018; p. 22. [Google Scholar]
- Kang, Y.; Choi, H.; Im, J.; Park, S.; Shin, M.; Song, C.-K.; Kim, S. Estimation of Surface-Level NO2 and O3 Concentrations Using TROPOMI Data and Machine Learning over East Asia. Environ. Pollut. 2021, 288, 117711. [Google Scholar] [CrossRef]
- Fernandes, A.P.; Riffler, M.; Ferreira, J.; Wunderle, S.; Borrego, C.; Tchepel, O. Spatial Analysis of Aerosol Optical Depth Obtained by Air Quality Modelling and SEVIRI Satellite Observations over Portugal. Atmos. Pollut. Res. 2019, 10, 234–243. [Google Scholar] [CrossRef]
- Duncan, B.N.; Prados, A.I.; Lamsal, L.N.; Liu, Y.; Streets, D.G.; Gupta, P.; Hilsenrath, E.; Kahn, R.A.; Nielsen, J.E.; Beyersdorf, A.J.; et al. Satellite Data of Atmospheric Pollution for U.S. Air Quality Applications: Examples of Applications, Summary of Data End-User Resources, Answers to FAQs, and Common Mistakes to Avoid. Atmos. Environ. 2014, 94, 647–662. [Google Scholar] [CrossRef]
- Qin, K.; Rao, L.; Xu, J.; Bai, Y.; Zou, J.; Hao, N.; Li, S.; Yu, C. Estimating Ground Level NO2 Concentrations over Central-Eastern China Using a Satellite-Based Geographically and Temporally Weighted Regression Model. Remote Sens. 2017, 9, 950. [Google Scholar] [CrossRef]
- Chi, Y.; Fan, M.; Zhao, C.; Yang, Y.; Fan, H.; Yang, X.; Yang, J.; Tao, J. Machine Learning-Based Estimation of Ground-Level NO2 Concentrations over China. Sci. Total Environ. 2022, 807, 150721. [Google Scholar] [CrossRef]
- Bahadur, F.T.; Shah, S.R.; Nidamanuri, R.R. Applications of Remote Sensing Vis-à-Vis Machine Learning in Air Quality Monitoring and Modelling: A Review. Environ. Monit. Assess. 2023, 195, 1502. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Tang, D.; Grieneisen, M.L.; Yang, F.; Yang, J.; Wu, G.; Wang, C.; Zhan, Y. A Machine Learning-Based Approach for Fusing Measurements from Standard Sites, Low-Cost Sensors, and Satellite Retrievals: Application to NO2 Pollution Hotspot Identification. Atmos. Environ. 2023, 302, 119756. [Google Scholar] [CrossRef]
- Cedeno Jimenez, J.R.; Pugliese Viloria, A.d.J.; Brovelli, M.A. Estimating Daily NO2 Ground Level Concentrations Using Sentinel-5P and Ground Sensor Meteorological Measurements. ISPRS Int. J. Geoinf. 2023, 12, 107. [Google Scholar] [CrossRef]
- Yagmur Aydin, N.; Aydin, I. Estimation of Ground-Level NO2 Concentrations over Megacities Using Sentinel-5P and Machine Learning Models: A Case Study of Istanbul. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2025, XLVIII-M-6–2025, 303–308. [Google Scholar] [CrossRef]
- Shetty, S.; Schneider, P.; Stebel, K.; David Hamer, P.; Kylling, A.; Koren Berntsen, T. Estimating Surface NO2 Concentrations over Europe Using Sentinel-5P TROPOMI Observations and Machine Learning. Remote Sens. Environ. 2024, 312, 114321. [Google Scholar] [CrossRef]
- Griffin, D.; Hempel, C.; McLinden, C.; Kharol, S.K.; Lee, C.; Fogal, A.; Sioris, C.; Shephard, M.; You, Y. Development and Validation of Satellite-Derived Surface NO2 Estimates Using Machine Learning versus Traditional Approaches in North America. EGUsphere 2025, 2025, 1–20. [Google Scholar] [CrossRef]
- Araki, S.; Shima, M.; Yamamoto, K. Spatiotemporal Land Use Random Forest Model for Estimating Metropolitan NO2 Exposure in Japan. Sci. Total Environ. 2018, 634, 1269–1277. [Google Scholar] [CrossRef]
- Chan, K.L.; Khorsandi, E.; Liu, S.; Baier, F.; Valks, P. Estimation of Surface NO2 Concentrations over Germany from TROPOMI Satellite Observations Using a Machine Learning Method. Remote Sens. 2021, 13, 969. [Google Scholar] [CrossRef]
- Long, S.; Wei, X.; Zhang, F.; Zhang, R.; Xu, J.; Wu, K.; Li, Q.; Li, W. Estimating Daily Ground-Level NO2 Concentrations over China Based on TROPOMI Observations and Machine Learning Approach. Atmos. Environ. 2022, 289, 119310. [Google Scholar] [CrossRef]
- Shao, Y.; Zhao, W.; Liu, R.; Yang, J.; Liu, M.; Fang, W.; Hu, L.; Adams, M.; Bi, J.; Ma, Z. Estimation of Daily NO2 with Explainable Machine Learning Model in China, 2007–2020. Atmos. Environ. 2023, 314, 120111. [Google Scholar] [CrossRef]
- Sun, W.; Tack, F.; Clarisse, L.; Schneider, R.; Stavrakou, T.; Van Roozendael, M. Inferring Surface NO2 over Western Europe: A Machine Learning Approach with Uncertainty Quantification. J. Geophys. Res. Atmos. 2024, 129, e2023JD040676. [Google Scholar] [CrossRef]
- Lundberg, S.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar] [CrossRef]
- Khorrami, B.; Heidarlou, H.B.; Feizizadeh, B. Evaluation of the Environmental Impacts of Urbanization from the Viewpoint of Increased Skin Temperatures: A Case Study from Istanbul, Turkey. Appl. Geomat. 2021, 13, 311–324. [Google Scholar] [CrossRef]
- Bozkurt, S.G.; Kuşak, L. Detection of Population Density, LULC Variation and Cross-Regional Similarities Using K-Means Clustering Algorithm in Istanbul Example. Mimar. Bilim. Uygulamaları Derg. 2024, 9, 69–86. [Google Scholar] [CrossRef]
- Akın, A.; Sunar, F.; Berberoğlu, S. Urban Change Analysis and Future Growth of Istanbul. Environ. Monit. Assess. 2015, 187, 506. [Google Scholar] [CrossRef]
- Sentinel-5P OFFL NO2: Offline Nitrogen Dioxide. Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_NO2 (accessed on 1 August 2025).
- SRTM. Available online: https://www.earthdata.nasa.gov/data/instruments/srtm (accessed on 1 August 2025).
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; NASA: Washington, DC, USA, 1973.
- MODIS. Available online: https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD43A4#description (accessed on 1 August 2025).
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS Night-Time Lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef]
- Levin, N.; Kyba, C.C.M.; Zhang, Q.; Sánchez de Miguel, A.; Román, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D.; et al. Remote Sensing of Night Lights: A Review and an Outlook for the Future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- VIIRS Lunar Gap-Filled BRDF Nighttime Lights. Available online: https://developers.google.com/earth-engine/datasets/catalog/NASA_VIIRS_002_VNP46A2#description (accessed on 1 August 2025).
- Geos-CF. Available online: https://developers.google.com/earth-engine/datasets/catalog/NASA_GEOS-CF_v1_rpl_tavg1hr#description (accessed on 1 August 2025).
- Liu, N.; Lin, W.; Ma, J.; Xu, W.; Xu, X. Seasonal Variation in Surface Ozone and Its Regional Characteristics at Global Atmosphere Watch Stations in China. J. Environ. Sci. 2019, 77, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Qin, K.; Han, X.; Li, D.; Xu, J.; Loyola, D.; Xue, Y.; Zhou, X.; Li, D.; Zhang, K.; Yuan, L. Satellite-Based Estimation of Surface NO2 Concentrations over East-Central China: A Comparison of POMINO and OMNO2d Data. Atmos. Environ. 2020, 224, 117322. [Google Scholar] [CrossRef]
- OPTUNA. Available online: https://optuna.org/ (accessed on 1 August 2025).
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, S.; Wang, P.; Zheng, Z.; Shi, S.; Li, X.; Xu, C.; Yu, K.; Chen, R.; Kan, H.; et al. Predicting Particulate Matter, Nitrogen Dioxide, and Ozone across Great Britain with High Spatiotemporal Resolution Based on Random Forest Models. Sci. Total Environ. 2024, 926, 171831. [Google Scholar] [CrossRef]
- Vaishnavi, K.; Sreya, G.; Reddy, K.K.; P R, A. Machine Learning for Air Quality Prediction: Random Forest Classifier. In Proceedings of the 2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India, 11–12 January 2024; pp. 1–5. [Google Scholar]
- Sharda, S.; Kumar, S.; Setia, R.; Dhiman, P.; Patel, N.R.; Pateriya, B.; Salem, A.; Elbeltagi, A. Evaluation of Different Spectral Indices for Wheat Lodging Assessment Using Machine Learning Algorithms. Sci. Rep. 2025, 15, 21774. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Ozturk, M.Y.; Colkesen, I. A Novel Hybrid Methodology Integrating Pixel- and Object-Based Techniques for Mapping Land Use and Land Cover from High-Resolution Satellite Data. Int. J. Remote Sens. 2024, 45, 5640–5678. [Google Scholar] [CrossRef]
- Georganos, S.; Grippa, T.; Vanhuysse, S.; Lennert, M.; Shimoni, M.; Wolff, E. Very High Resolution Object-Based Land Use–Land Cover Urban Classification Using Extreme Gradient Boosting. IEEE Geosci. Remote Sens. Lett. 2018, 15, 607–611. [Google Scholar] [CrossRef]
- Rumora, L.; Miler, M.; Medak, D. Impact of Various Atmospheric Corrections on Sentinel-2 Land Cover Classification Accuracy Using Machine Learning Classifiers. ISPRS Int. J. Geoinf. 2020, 9, 277. [Google Scholar] [CrossRef]
- Abdi, A.M. Land Cover and Land Use Classification Performance of Machine Learning Algorithms in a Boreal Landscape Using Sentinel-2 Data. GIScience Remote Sens. 2020, 57, 1–20. [Google Scholar] [CrossRef]
- Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient Boosting with Categorical Features Support. arXiv 2018, arXiv:1810.11363. [Google Scholar] [CrossRef]
- Kulkarni, C.S. Advancing Gradient Boosting: A Comprehensive Evaluation of the CatBoost Algorithm for Predictive Modeling. J. Artif. Intell. Mach. Learn. Data Sci. 2022, 1, 54–57. [Google Scholar] [CrossRef]
- Pham, T.D.; Yokoya, N.; Nguyen, T.T.T.; Le, N.N.; Ha, N.T.; Xia, J.; Takeuchi, W.; Pham, T.D. Improvement of Mangrove Soil Carbon Stocks Estimation in North Vietnam Using Sentinel-2 Data and Machine Learning Approach. GIScience Remote Sens. 2021, 58, 68–87. [Google Scholar] [CrossRef]
- Ozturk, M.Y.; Colkesen, I. Development of Transferable Hybrid Deep Learning Networks for Temporal and Multi-Regional Mapping of Poplar Plantations with Sentinel-2. Adv. Space Res. 2025, 76, 4249–4279. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From Local Explanations to Global Understanding with Explainable AI for Trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Song, W.; Dai, B.; Wu, H.; Zuo, X.; Wang, J.; Chen, J.; Li, J.; Li, S.; Chen, Z. Spatiotemporal Estimation of Surface NO2 Concentrations in the Pearl River Delta Region Based on TROPOMI Data and Machine Learning. Atmos. Pollut. Res. 2025, 16, 102353. [Google Scholar] [CrossRef]
- Kang, H.; Zhu, B.; Zhu, C.; de Leeuw, G.; Hou, X.; Gao, J. Natural and Anthropogenic Contributions to Long-Term Variations of SO2, NO2, CO, and AOD over East China. Atmos. Res. 2019, 215, 284–293. [Google Scholar] [CrossRef]
- Yu, S.; Yin, S.; Zhang, R.; Wang, L.; Su, F.; Zhang, Y.; Yang, J. Spatiotemporal Characterization and Regional Contributions of O3 and NO2: An Investigation of Two Years of Monitoring Data in Henan, China. J. Environ. Sci. 2020, 90, 29–40. [Google Scholar] [CrossRef]
- Xiao, K.; Wang, Y.; Wu, G.; Fu, B.; Zhu, Y. Spatiotemporal Characteristics of Air Pollutants (PM10, PM2.5, SO2, NO2, O3, and CO) in the Inland Basin City of Chengdu, Southwest China. Atmosphere 2018, 9, 74. [Google Scholar] [CrossRef]
- Lee, S.-J.; Lee, J.; Greybush, S.J.; Kang, M.; Kim, J. Spatial and Temporal Variation in PBL Height over the Korean Peninsula in the KMA Operational Regional Model. Adv. Meteorol. 2013, 2013, 1–16. [Google Scholar] [CrossRef]
Data Type | Name | Variable | Data Source | Input/Output |
---|---|---|---|---|
Ground Monitoring | Ground-based NO2 Station Data (Hourly average) | NO2 measurements | https://havakalitesi.ibb.gov.tr/, accessed on 1 August 2025 | Output |
Satellite Air Quality Product | Sentinel-5P TROPOMI (Daily) | Tropospheric vertical column of NO2 | https://earthengine.google.com, accessed on 1 August 2025 | Input |
Geos-CF (Hourly average) | Hourly average Nitrogen dioxide (NO2, MW = 46.00 g mol−1) tropospheric column density | https://earthengine.google.com, accessed on 1 August 2025 | Input | |
Climate | Geos-CF (Hourly average) | Dust optical depth at 550 nm (AOD550_Dust) | https://earthengine.google.com, accessed on 1 August 2025 | Input |
Surface geopotential height (PHIS) | Input | |||
Surface pressure (PS) | Input | |||
Specific humidity (Q) | Input | |||
Relative humidity after moist (RH) | Input | |||
Sea level pressure (SLP) | Input | |||
2-m air temperature (T2M) | Input | |||
Total precipitation (TPREC) | Input | |||
Surface skin temperature (TS) | Input | |||
10-m eastward wind (U10M) | Input | |||
10-m northward wind (V10M) | Input | |||
Mid-layer heights (ZL) | Input | |||
Planetary boundary layer height (ZPBL) | Input | |||
Society | MODIS (Daily) | Normalized Difference Vegetation Index (NDVI) | https://earthengine.google.com, accessed on 1 August 2025 | Input |
VIIRS (Daily) | Nighttime light (NTL) | https://earthengine.google.com, accessed on 1 August 2025 | Input | |
OpenStreetMap | Road Length (RL) | https://www.geofabrik.de, accessed on 1 August 2025 | Input | |
TUIK (Annual) | Population Density (PD) | https://biruni.tuik.gov.tr/medas/, accessed on 1 August 2025 | Input | |
Topography | SRTM | Digital Elevation Model (DEM) | https://earthengine.google.com, accessed on 1 August 2025 | Input |
- | - | Day of Year (DOY) | - | Input |
Sentinel-5P | |||||||||
Data | Train (2019–2022) | Validation (2023) | Test (2024) | ||||||
Model/Metric | R | RMSE (µg/m3) | MAE (µg/m3) | R | RMSE (µg/m3) | MAE (µg/m3) | R | RMSE (µg/m3) | MAE (µg/m3) |
RF | 0.820 | 16.302 | 11.458 | 0.660 | 17.909 | 12.880 | 0.666 | 16.645 | 12.150 |
XGB | 0.945 | 9.157 | 6.405 | 0.657 | 18.274 | 13.111 | 0.638 | 17.605 | 12.766 |
CB | 0.827 | 15.772 | 11.121 | 0.669 | 17.743 | 12.658 | 0.686 | 16.232 | 11.746 |
Geos-CF | |||||||||
Model/Metric | R | RMSE (µg/m3) | MAE (µg/m3) | R | RMSE (µg/m3) | MAE (µg/m3) | R | RMSE (µg/m3) | MAE (µg/m3) |
RF | 0.837 | 15.575 | 10.954 | 0.641 | 18.266 | 13.077 | 0.649 | 17.027 | 12.409 |
XGB | 0.842 | 14.917 | 10.402 | 0.642 | 18.389 | 13.095 | 0.653 | 17.000 | 12.388 |
CB | 0.819 | 16.164 | 11.479 | 0.643 | 18.193 | 12.954 | 0.665 | 16.582 | 12.084 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yagmur Aydin, N. Machine Learning-Based Ground-Level NO2 Estimation in Istanbul: A Comparative Analysis of Sentinel-5P and GEOS-CF. Appl. Sci. 2025, 15, 10997. https://doi.org/10.3390/app152010997
Yagmur Aydin N. Machine Learning-Based Ground-Level NO2 Estimation in Istanbul: A Comparative Analysis of Sentinel-5P and GEOS-CF. Applied Sciences. 2025; 15(20):10997. https://doi.org/10.3390/app152010997
Chicago/Turabian StyleYagmur Aydin, Nur. 2025. "Machine Learning-Based Ground-Level NO2 Estimation in Istanbul: A Comparative Analysis of Sentinel-5P and GEOS-CF" Applied Sciences 15, no. 20: 10997. https://doi.org/10.3390/app152010997
APA StyleYagmur Aydin, N. (2025). Machine Learning-Based Ground-Level NO2 Estimation in Istanbul: A Comparative Analysis of Sentinel-5P and GEOS-CF. Applied Sciences, 15(20), 10997. https://doi.org/10.3390/app152010997