Abstract
An on-site hydrogen refueling station (HRS) directly supplies hydrogen to vehicles using an on-site hydrogen production method such as electrolysis. For the efficient operation of an on-site HRS, it is essential to optimize the entire process from hydrogen production to supply. However, most existing approaches focus on the efficiency of hydrogen production. This study proposes an optimal operation model for a renewable-energy-integrated on-site HRS, which considers the degradation of electrolyzers and operation of compressors. The proposed model maximizes profit by considering the hydrogen revenue, electricity costs, and energy storage system degradation. It estimates hydrogen production using a voltage equation, models compressor power using a shaft power equation, and considers electrolyzer degradation using an empirical voltage model. The effectiveness of the proposed model is evaluated through simulation. Comparison with a conventional control strategy shows an increase of over 56% in the operating revenue.