A Review of the Alanine Electron Paramagnetic Resonance Dosimetry Method as a Dose Verification Tool for Low-Dose Electron Beam Applications: Implications on Flash Radiotherapy
Abstract
1. Introduction
2. Treatment Requirements in Conventional E-Beam Radiotherapy
3. Overview and Advantages of E-Beam Flash RT
4. Requirements for Clinical Implementation of E-Beam Flash RT
5. Assessment of Conventional RT Dosimetry Systems Under E-Beam Flash RT Conditions
6. Alanine EPR Dosimetry System: A Candidate for Dose Verification in E-Beam Flash RT
6.1. Overview of Alanine EPR Dosimetry
6.2. Formation of Radiation-Induced Radicals in Alanine
6.3. Detection and Quantification of Alanine Radicals in EPR
6.4. Hyperfine Interactions in Irradiated Alanine
6.5. Calibration
- Irradiation Procedure: Alanine dosimeters intended for calibration can be irradiated under a 60Co gamma-ray field or under a medical linear accelerator. Both irradiation procedures are calibrated under conventional dose-rates in terms of absorbed dose to water by an ionization chamber traceable to a primary standard laboratory such as National Physical Laboratory (NPL) or National Institute of Standards and Technology (NIST) [72,73].
- EPR Signal Acquisition: Quantified alanine radical concentration is represented by the EPR signal intensity of the central alanine peak which determines reliability of measurements [20].
- Curve Fitting: During calibration, the intensity of EPR signal is plotted as a function of the known irradiated doses to establish a calibration curve.
6.6. Advantages of Alanine EPR Dosimetry System for E-Beam Flash RT
- Similarity to Biological Tissue: The chemical composition of alanine is similar to biological tissue, allowing alanine to have similar radiation energy absorption properties to biological tissue [28,77]. Thus, alanine dosimeters can accurately mimic the response of biological tissue to ionizing radiation including in e-beam Flash RT.
- Dose-rate Independence: The sensitivity of alanine to ionizing radiation is not affected by a change in dose-rates up to 1010 Gy/s for pulsed e-beam and up to 102 Gy/s for continuous e-beam [21]. Consequently, the accuracy of alanine will not be affected by UHDR ≥ 40 Gy/s in e-beam Flash RT.
- Energy Independence: The standard practice of International Organization for Standardization/American Society for Testing and Materials (ISO/ASTM) 51607:2013(E) for the use of alanine EPR dosimetry system indicated that alanine is energy independent under e-beam of energies 0.1–30 MeV [21]. This property allows alanine to be utilized for a wide range of energies delivered at UHDR.
- Stability of Alanine EPR Signal: When exposed to ionizing radiation, alanine produces free radicals that are bound and stable with very little fading [78]. Together with a non-destructive readout, these properties permits alanine to be used as a transfer dosimeter between different laboratories [79,80].
- Internal EPR Reference Material: Reference crystals like Ruby (Al2O3) or Manganese (Mn2+) are used in EPR spectrometers for signal normalization [82,83]. The use of the ratio of alanine EPR signal to an internal standard minimizes the effects of preparation, fading and environmental effects [61]. This can aid in good reproducibility particularly for inter-comparison exercises.
6.7. Limitations of Alanine EPR Dosimetry at Low-Dose E-Beam Flash RT
7. Correction Strategies Addressing Limitations of Alanine EPR Dosimetry in Low-Dose E-Beam Flash RT
7.1. No Real-Time Measurement
7.2. Humidity Sensitivity
7.3. Temperature Variation
7.4. Post-Irradiation Fading
7.5. Reduced Sensitivity at Low-Doses
7.5.1. Increased Alanine Concentration
7.5.2. Averaging Directional Measurements
7.5.3. Advanced Signal Analysis
7.5.4. Combination with Alternative Dosimetry Methods
7.5.5. Monte-Carlo Simulations and Dose Response Corrections
Author (Year) [Ref] | Pellet Mass (mg) | Dose Range (Gy) | Microwave Power (mW) | Modulation Amplitude (mT) | Center Field/ Sweep Range (mT) | Sweep Time (s) | Number of Scans | Orientations/ Angles | Uncertainty | Spectrometer |
---|---|---|---|---|---|---|---|---|---|---|
Gondre et al. (2020) [20] | 64.50 ± 0.50 | 10.1–100 | 6.22 | 0.32 | - | ∼7.8 | 60 | - | ±2% * | Bruker (model not specified) |
4.9 | 6.22 | 0.32 | - | ∼13 | 60 | - | <5% * | Bruker (model not specified) | ||
Garcia et al. (2009) [86] | 66.00 ± 0.10 | 2–10 | 2 | 0.4 | 21 | 7 | 3/120° | 2.5% for 2 Gy * | Bruker ELEXSYS E500 | |
0.7% for 10 Gy * | ||||||||||
Park et al. (2020) LAB 1 [91] | 64.5 ± 0.5 | 0.60, 2.70, 8.00 | 1.002 | 0.7 | 350 | 30.72 | 10 | - | (11.38%, 6.64%, 5.65%) (k = 2) | Bruker ELEXSYS E500 |
37.95 ± 0.06 | 0.60, 2.70, 8.00 | 1.002 | 0.7 | 350 | 30.72 | 10 | - | (11.38%, 6.64%, 5.65%) (k = 2) | Bruker ELEXSYS E500 | |
Park et al. (2020) LAB 2 [91] | 64.5 ± 0.5 | 0.60, 2.70, 8.00 | 6.35 | 1 | 350 | 20 | 20 | - | (-, 16.55%, 19.79%) (k = 2) | Bruker EMX |
37.95 ± 0.06 | 0.60, 2.70, 8.00 | 6.35 | 1 | 350 | 20 | 20 | - | Bruker EMX | ||
Park et al. (2020) LAB 3 [91] | 64.5 ± 0.5 | 0.60, 2.70, 8.00 | 2.0 | 1 | 331 | 60 | 40 | - | (5.68%, 5.82%, 5.29%) (k = 2) | Magnettech MS-5000 |
37.95 ± 0.06 | 0.60, 2.70, 8.00 | 2.0 | 1 | 331 | 60 | 40 | - | (6.45%, 6.34%, 5.86%) (k = 2) | Magnettech MS-5000 | |
Park et al. (2020) LAB 4 [91] | 64.5 ± 0.5 | 0.60, 2.70, 8.00 | 5.024 | 0.5 | 350 | 30.73 | 10 | - | (14.78%, 13.12%, 13.12%) (k = 2) | Bruker ELEXSYS E500 |
37.95 ± 0.06 | 0.60, 2.70, 8.00 | 5.024 | 0.5 | 350 | 30.73 | 10 | - | (11.52%, 10.30%, 9.52%) (k = 2) | Bruker ELEXSYS E500 | |
Smith et al. (2021) [25] | Not specified | 0.05–1000 Gy | 6.2 | 0.55 | 320–365 | 60 | 1–10 | - | 2.07% (k = 1) for 10 Gy | Magnettech MiniScope |
Diameter = 4 mm | MS 5000X | |||||||||
Gu et al. (2024) [73] | 35.30 ± 0.21 | 0–50 | 10 | 0.7 | - | 120 | 3 | - | - | Magnettech ESR5000 |
Nagy et al. (2002) [97] | Not specified | 0.5–5 | 10 | 0.7 | - | 11 | 7 | 3/120° | 1.4% at 5 Gy, 1.7% at 2 Gy, | |
Diameter = 4.9 mm | 5.6% at 0.5 Gy (k = 1) | Bruker ECS106 | ||||||||
Anton (2005) [92] | 63.42 ± 0.42/ | 5–50 | 0.25 | 0.5 | 348 | ∼90 s | 5, 72° rotation | 5/72° | Reproducibility of <0.5% | Bruker EMX 1327 |
60.15 ± 0.27/ | for each scan | between each scan | for (5–50) Gy * | |||||||
65.00 ± 0.30 | ||||||||||
Helt-Hansen et al. (2009) [26] | Not specified | 1–100 | 8 | 1 | 346–354 | 20 s per scan | 6, 90° rotation between | 2/90° | <2% above 4 Gy * | Bruker EMX-micro |
Diameter = 4.8 mm | 3rd and 4th scan |
7.5.6. Optimization of EPR Parameters
- Microwave power: The choice of microwave power strongly affects alanine signal quality at low-doses. Excessive power can saturate the signal, while too little reduces sensitivity. Optimization studies show that careful tuning maximizes peak resolution without distortion [25,86]. For reliable measurements, a power setting that provides the strongest signal intensity without line broadening needs to be selected.
- Modulation amplitude: Modulation amplitude must be optimized to balance sensitivity and resolution. Large modulation amplitudes increase signal intensity but broaden lines, while small amplitudes reduce detectability at low-doses. Studies emphasize adjusting modulation amplitude for each spectrometer to achieve optimal SNR [20,86].
- Scan averaging: Measurement time in alanine EPR at low-doses depends largely on the number of scans averaged. Fewer scans shorten readout time but risk poor SNR, while additional scans improve accuracy at the cost of longer acquisition time. Reports indicate that averaging 3–5 scans achieves uncertainties within ±5% above 10 Gy [20,90], and multiple repetitions can extend reliability down to 1–2 Gy [86,88].
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ashraf, M.R.; Rahman, M.; Zhang, R.; Williams, B.B.; Gladstone, D.J.; Pogue, B.W.; Bruza, P. Dosimetry for FLASH radiotherapy: A review of tools and the role of radioluminescence and Cherenkov emission. Front. Phys. 2020, 8, 328. [Google Scholar] [CrossRef]
- Gianfaldoni, S.; Gianfaldoni, R.; Wollina, U.; Lotti, J.; Tchernev, G.; Lotti, T. An Overview on Radiotherapy: From Its History to Its Current Applications in Dermatology. Open Access Maced J. Med. Sci. 2017, 5, 521–525. [Google Scholar] [CrossRef]
- Gazis, N.; Bignami, A.; Trachanas, E.; Moniaki, M.; Gazis, E.; Bandekas, D.; Vordos, N. Simulation Dosimetry Studies for FLASH Radiation Therapy (RT) with Ultra-High Dose Rate (UHDR) Electron Beam. Quantum Beam Sci. 2024, 8, 13. [Google Scholar] [CrossRef]
- Bourhis, J.; Montay-Gruel, P.; Jorge, P.G.; Bailat, C.; Petit, B.; Ollivier, J.; Jeanneret-Sozzi, W.; Ozsahin, M.; Bochud, F.; Moeckli, R.; et al. Clinical translation of FLASH radiotherapy: Why and how? Radiother. Oncol. 2019, 139, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Friedl, A.A.; Prise, K.M.; Butterworth, K.T.; Montay-Gruel, P.; Favaudon, V. Radiobiology of the FLASH effect. Med. Phys. 2022, 49, 1993–2013. [Google Scholar] [CrossRef]
- Chow, J.C.; Ruda, H.E. Mechanisms of action in FLASH radiotherapy: A comprehensive review of Physicochemical and Biological processes on cancerous and normal cells. Cells 2024, 13, 835. [Google Scholar] [CrossRef]
- Favaudon, V.; Caplier, L.; Monceau, V.; Pouzoulet, F.; Sayarath, M.; Fouillade, C.; Poupon, M.F.; Brito, I.; Hupé, P.; Bourhis, J.; et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci. Transl. Med. 2014, 6, 245ra93. [Google Scholar] [CrossRef]
- Lin, B.; Huang, D.; Gao, F.; Yang, Y.; Wu, D.; Zhang, Y.; Feng, G.; Dai, T.; Du, X. Mechanisms of FLASH effect. Front. Oncol. 2022, 12, 995612. [Google Scholar] [CrossRef] [PubMed]
- Beyreuther, E.; Brand, M.; Hans, S.; Hideghéty, K.; Karsch, L.; Leßmann, E.; Schürer, M.; Szabó, E.R.; Pawelke, J. Feasibility of proton FLASH effect tested by zebrafish embryo irradiation. Radiother. Oncol. 2019, 139, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, A.M.; Colangelo, N.W.; Meesungnoen, J.; Azzam, E.I.; Plourde, M.É.; Jay-Gerin, J.P. Ultra-high dose-rate, pulsed (FLASH) radiotherapy with carbon ions: Generation of early, transient, highly oxygenated conditions in the tumor environment. Radiat. Res. 2020, 194, 587–593. [Google Scholar] [CrossRef]
- Maxim, P.G.; Keall, P.; Cai, J. FLASH radiotherapy: Newsflash or flash in the pan? Med. Phys. 2019, 46, 4287–4290. [Google Scholar] [CrossRef]
- Jolly, S.; Owen, H.; Schippers, M.; Welsch, C. Technical challenges for FLASH proton therapy. Phys. Medica 2020, 78, 71–82. [Google Scholar] [CrossRef]
- Schardt, D.; Elsässer, T.; Schulz-Ertner, D. Heavy-ion tumor therapy: Physical and Radiobiological benefits. Rev. Mod. Phys. 2010, 82, 383–425. [Google Scholar] [CrossRef]
- Lenartowicz-Gasik, A.; Misiarz, A.; Markopolski, V.; Walo, M.; Gryczka, U.; Bułka, S.; Pawałowski, B.; Kruszyna-Mochalska, M.; Rzadkiewicz, J. Verification of real-time dosimetry of ultra-high dose rate beams at AQURE FLASH RT on the sample surface. Pol. J. Med. Phys. Eng. 2024, 300–304. [Google Scholar] [CrossRef]
- Romano, F.; Bailat, C.; Jorge, P.G.; Lerch, M.L.F.; Darafsheh, A. Ultra-high dose rate dosimetry: Challenges and opportunities for FLASH radiation therapy. Med. Phys. 2022, 49, 4912–4932. [Google Scholar] [CrossRef] [PubMed]
- Klein, E.E.; Hanley, J.; Bayouth, J.; Yin, F.F.; Simon, W.; Dresser, S.; Serago, C.; Aguirre, F.; Ma, L.; Arjomandy, B.; et al. Task Group 142 report: Quality assurance of medical accelerators a. Med. Phys. 2009, 36, 4197–4212. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C.; Ruda, H.E. Flash radiotherapy: Innovative cancer treatment. Encyclopedia 2023, 3, 808–823. [Google Scholar] [CrossRef]
- Tuta, C.S.; Amiot, M.N.; Sommier, L.; Ioan, R.M. Alanine pellets comparison using EPR dosimetry in the frame of quality assurance for a Gamma Knife system in Romania. Radiat. Phys. Chem. 2020, 170, 108653. [Google Scholar] [CrossRef]
- Schüller, A.; Heinrich, S.; Fouillade, C.; Subiel, A.; De Marzi, L.; Romano, F.; Peier, P.; Trachsel, M.; Fleta, C.; Kranzer, R.; et al. The European Joint Research Project UHD pulse—Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates. Phys. Medica 2020, 80, 134–150. [Google Scholar] [CrossRef]
- Gondré, M.; Jorge, P.G.; Vozenin, M.C.; Bourhis, J.; Bochud, F.; Bailat, C.; Moeckli, R. Optimization of alanine measurements for fast and accurate dosimetry in FLASH radiation therapy. Radiat. Res. 2020, 194, 573–579. [Google Scholar] [CrossRef]
- ISO/ASTM International Standard 51607-2013 (E); Standard Practice for Use of an Alanine-EPR Dosimetry System. International Standardization Organization: Geneva, Switzerland; ASTM International: West Conshohocken, PA, USA, 2013.
- Goodman, B.A.; Worasith, N.; Ninlaphruk, S.; Mungpayaban, H.; Deng, W. Radiation Dosimetry Using Alanine and Electron Paramagnetic Resonance (EPR) Spectroscopy: A new Look at an Old Topic. Appl. Magn. Reson. 2017, 48, 155–173. [Google Scholar] [CrossRef]
- Baffa, O.; Kinoshita, A. Clinical applications of alanine/electron spin resonance dosimetry. Radiat. Environ. Biophys. 2014, 53, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Al-Karmi, A.M.; Ayaz, A.A.H.; Al-Enezi, M.S.; Abdel-Rahman, W.; Dwaikat, N. Verification of the pure alanine in PMMA tube dosimeter applicability for dosimetry of radiotherapy photon beams: A feasibility study. Australas. Phys. Eng. Sci. Med. 2015, 38, 425–434. [Google Scholar] [CrossRef]
- Smith, B.R.; Khan, A.; Culberson, W.S. Commissioning a compact, tabletop EPR spectrometer for alanine dosimetry. Radiat. Meas. 2021, 146, 106629. [Google Scholar] [CrossRef]
- Helt-Hansen, J.; Rosendal, F.; Kofoed, I.M.; Andersen, C.E. Medical reference dosimetry using EPR measurements of alanine: Development of an improved method for clinical dose levels. Acta Oncol. 2009, 48, 216–222. [Google Scholar] [CrossRef] [PubMed]
- IAEA. Absorbed Dose Determination in External Beam Radiotherapy; Number 398 (Rev. 1) in Technical Reports Series; International Atomic Energy Agency: Vienna, Austria, 2024. [Google Scholar] [CrossRef]
- Ciesielski, B.; Schultka, K.; Kobierska, A.; Nowak, R.; Peimel-Stuglik, Z. In vivo alanine/EPR dosimetry in daily clinical practice: A feasibility study. Int. J. Radiat. Oncol. Biol. Phys. 2003, 56, 899–905. [Google Scholar] [CrossRef]
- Gerbi, B.J.; Antolak, J.A.; Deibel, F.C.; Followill, D.S.; Herman, M.G.; Higgins, P.D.; Huq, M.S.; Mihailidis, D.N.; Yorke, E.D.; Hogstrom, K.R.; et al. Recommendations for clinical electron beam dosimetry: Supplement to the recommendations of Task Group 25. Med. Phys. 2009, 36, 3239–3279. [Google Scholar] [CrossRef]
- Adlienė, D.; Adlytė, R. Dosimetry principles, dose measurements, and radiation protection. Appl. Ioniz. Radiat. Mater. Process. 2017, 1, 55. [Google Scholar]
- Ryczkowski, A.; Kruszyna-Mochalska, M.; Pawałowski, B.; Bielęda, G.; Jodda, A.; Adrich, P.; Piotrowski, T. Shielding disc backscatter calculations in intraoperative radiotherapy using a Monte Carlo simulation based on the method of energy spectra reconstruction. Sci. Rep. 2025, 15, 12431. [Google Scholar] [CrossRef]
- Ayala, R.; Soza, Á.; García, M.J.; García, R.; Udías, J.M.; Ibáñez, P. Development and validation of a Monte Carlo model of a mobile accelerator for intraoperative radiation therapy. Med. Phys. 2025, 52, e18040. [Google Scholar] [CrossRef]
- Bourhis, J.; Sozzi, W.J.; Jorge, P.G.; Gaide, O.; Bailat, C.; Duclos, F.; Patin, D.; Ozsahin, M.; Bochud, F.; Germond, J.F.; et al. Treatment of a first patient with FLASH-radiotherapy. Radiother. Oncol. 2019, 139, 18–22. [Google Scholar] [CrossRef]
- Montay-Gruel, P.; Petersson, K.; Jaccard, M.; Boivin, G.; Germond, J.F.; Petit, B.; Doenlen, R.; Favaudon, V.; Bochud, F.; Bailat, C.; et al. Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s. Radiother. Oncol. 2017, 124, 365–369. [Google Scholar] [CrossRef]
- Vozenin, M.C.; De Fornel, P.; Petersson, K.; Favaudon, V.; Jaccard, M.; Germond, J.F.; Petit, B.; Burki, M.; Ferrand, G.; Patin, D.; et al. The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients. Clin. Cancer Res. 2019, 25, 35–42. [Google Scholar] [CrossRef]
- Vozenin, M.C.; Hendry, J.H.; Limoli, C. Biological benefits of ultra-high dose rate FLASH radiotherapy: Sleeping beauty awoken. Clin. Oncol. 2019, 31, 407–415. [Google Scholar] [CrossRef]
- Bourhis, J.; Overgaard, J.; Audry, H.; Ang, K.K.; Saunders, M.; Bernier, J.; Horiot, J.C.; Le Maître, A.; Pajak, T.F.; Poulsen, M.G.; et al. Hyperfractionated or accelerated radiotherapy in head and neck cancer: A meta-analysis. Lancet 2006, 368, 843–854. [Google Scholar] [CrossRef]
- Felici, G.; Barca, P.; Barone, S.; Bortoli, E.; Borgheresi, R.; De Stefano, S.; Di Francesco, M.; Grasso, L.; Linsalata, S.; Marfisi, D.; et al. Transforming an IORT linac into a FLASH research machine: Procedure and dosimetric characterization. Front. Phys. 2020, 8, 374. [Google Scholar] [CrossRef]
- Alhaddad, L.; Osipov, A.N.; Leonov, S. FLASH Radiotherapy: Benefits, Mechanisms, and Obstacles to Its Clinical Application. Int. J. Mol. Sci. 2024, 25, 12506. [Google Scholar] [CrossRef]
- Schulte, R.; Johnstone, C.; Boucher, S.; Esarey, E.; Geddes, C.G.; Kravchenko, M.; Kutsaev, S.; Loo, B.W., Jr.; Méot, F.; Mustapha, B.; et al. Transformative technology for FLASH radiation therapy. Appl. Sci. 2023, 13, 5021. [Google Scholar] [CrossRef] [PubMed]
- Palmiero, A.; Liu, K.; Colnot, J.; Chopra, N.; Neill, D.; Connell, L.; Velasquez, B.; Koong, A.C.; Lin, S.H.; Balter, P.; et al. On the acceptance, commissioning, and quality assurance of electron FLASH units. Med. Phys. 2024, 52, 1207–1223. [Google Scholar] [CrossRef]
- Cheng, C.; Xu, L.; Jing, H.; Selvaraj, B.; Lin, H.; Pennock, M.; Chhabra, A.M.; Hasan, S.; Zhai, H.; Zhang, Y.; et al. The potential and challenges of proton FLASH in head and neck cancer reirradiation. Cancers 2024, 16, 3249. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, F.; Del Sarto, D.; Bisogni, M.G.; Capaccioli, S.; Galante, F.; Gasperini, A.; Linsalata, S.; Mariani, G.; Pacitti, M.; Paiar, F.; et al. A new solution for UHDP and UHDR (Flash) measurements: Theory and conceptual design of ALLS chamber. Phys. Medica 2022, 102, 9–18. [Google Scholar] [CrossRef]
- Romano, F.; Milluzzo, G.; Di Martino, F.; D’Oca, M.C.; Felici, G.; Galante, F.; Gasparini, A.; Mariani, G.; Marrale, M.; Medina, E.; et al. First characterization of novel silicon carbide detectors with ultra-high dose rate electron beams for FLASH radiotherapy. Appl. Sci. 2023, 13, 2986. [Google Scholar] [CrossRef]
- Siddique, S.; Ruda, H.E.; Chow, J.C. FLASH radiotherapy and the use of radiation dosimeters. Cancers 2023, 15, 3883. [Google Scholar] [CrossRef]
- Jorge, P.G.; Jaccard, M.; Petersson, K.; Gondré, M.; Durán, M.T.; Desorgher, L.; Germond, J.F.; Liger, P.; Vozenin, M.C.; Bourhis, J.; et al. Dosimetric and preparation procedures for irradiating biological models with pulsed electron beam at ultra-high dose-rate. Radiother. Oncol. 2019, 139, 34–39. [Google Scholar] [CrossRef]
- Jorge, P.G.; Grilj, V.; Bourhis, J.; Vozenin, M.C.; Germond, J.F.; Bochud, F.; Bailat, C.; Moeckli, R. Validation of an ultrahigh dose rate pulsed electron beam monitoring system using a current transformer for FLASH preclinical studies. Med. Phys. 2022, 49, 1831–1838. [Google Scholar] [CrossRef]
- McLaughlin, W.L.; Miller, A.; Kovács, A.; Mehta, K.K. Dosimetry Methods. In Handbook of Nuclear Chemistry; Vértes, A., Nagy, S., Klencsár, Z., Lovas, R.G., Rösch, F., Eds.; Springer: Boston, MA, USA, 2011; p. 2287. [Google Scholar] [CrossRef]
- 51956-2013 (E); Standard Practice for Use of Thermoluminescence-Dosimetry System (TLD System) for Radiation Processing. International Standardization Organization: Geneva, Switzerland; ASTM International: West Conshohocken, PA, USA, 2013.
- Yorke, E.; Alecu, R.; Ding, L.; Fontenla, D.; Kalend, A.; Kaurin, D.; Masterson-McGary, M.E.; Marinello, G.; Matzen, T.; Saini, A.; et al. Diode In Vivo Dosimetry for Patients Receiving External Beam Radiation Therapy; American Association of Physicists in Medicine: Alexandria, VA, USA, 2005. [Google Scholar] [CrossRef]
- IAEA. Radiation Oncology Physics; Non-Serial Publications; International Atomic Energy Agency: Vienna, Austria, 2005. [Google Scholar]
- ISO/ASTM International Standard 51275-2013 (E); Standard Practice for Use of Radiochromic Film Dosimetry System. International Standardization Organization: Geneva, Switzerland; ASTM International: West Conshohocken, PA, USA, 2013.
- Kry, S.F.; Alvarez, P.; Cygler, J.E.; DeWerd, L.A.; Howell, R.M.; Meeks, S.; O’Daniel, J.; Reft, C.; Sawakuchi, G.; Yukihara, E.G.; et al. AAPM TG 191: Clinical use of luminescent dosimeters: TLDs and OSLDs. Med. Phys. 2020, 47, e19–e51. [Google Scholar] [CrossRef] [PubMed]
- Parwaie, W.; Refahi, S.; Ardekani, M.A.; Farhood, B. Different dosimeters/detectors used in small-field dosimetry: Pros and cons. J. Med. Signals Sens. 2018, 8, 195–203. [Google Scholar] [CrossRef]
- Liu, K.; Jorge, P.G.; Tailor, R.; Moeckli, R.; Schüler, E. Comprehensive evaluation and new recommendations in the use of Gafchromic EBT3 film. Med. Phys. 2023, 50, 7252–7262. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, A.B. Electronic dosimetry in radiation therapy. Radiat. Meas. 2006, 41, S134–S153. [Google Scholar] [CrossRef]
- Ataei, G.; Rezaei, M.; Gorji, K.E.; Banaei, A.; Goushbolagh, N.A.; Farhood, B.; Bagheri, M.; Firouzjah, R.A. Evaluation of dose rate and photon energy dependence of Gafchromic EBT3 film irradiating with 6 MV and Co-60 photon beams. J. Med. Signals Sens. 2019, 9, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Wen, N.; Lu, S.; Kim, J.; Qin, Y.; Huang, Y.; Zhao, B.; Liu, C.; Chetty, I.J. Precise film dosimetry for stereotactic radiosurgery and stereotactic body radiotherapy quality assurance using Gafchromic™ EBT3 films. Radiat. Oncol. 2016, 11, 132. [Google Scholar] [CrossRef] [PubMed]
- Yordanov, N.D.; Gancheva, V. Some new approaches in the field of solid state/EPR dosimetry. Adv. ESR Appl. 2002, 18, 227–231. [Google Scholar]
- Mierzwińska, G.; Kłodowska, M.; Michalec, B.; Pędracka, A.; Rydygier, M.; Swakoń, J.; Waligórski, M.P. Application of alanine dosimetry in dose assessment for ocular melanoma patients undergoing proton radiotherapy–preliminary results. Nukleonika 2015, 60, 609–613. [Google Scholar] [CrossRef]
- Yordanov, N.; Gancheva, V. Some physico-technical aspects of the new generation of self-calibrated alanine/EPR dosimeter and results from the international intercomparison trial. J. Radioanal. Nucl. Chem. 2000, 245, 323–328. [Google Scholar] [CrossRef]
- Sagstuen, E.; Hole, E.O.; Haugedal, S.R.; Nelson, W.H. Alanine radicals: Structure determination by EPR and ENDOR of single crystals X-irradiated at 295 K. J. Phys. Chem. A 1997, 101, 9763–9772. [Google Scholar] [CrossRef]
- Malinen, E.; Heydari, M.Z.; Sagstuen, E.; Hole, E.O. Alanine radicals, Part 3: Properties of the components contributing to the EPR spectrum of X-irradiated alanine dosimeters. Radiat. Res. 2003, 159, 23–32. [Google Scholar] [CrossRef]
- Malinen, E.; Hult, E.A.; Hole, E.O.; Sagstuen, E. Alanine radicals, Part 4: Relative amounts of radical species in alanine dosimeters after exposure to 6–19 MeV electrons and 10 kV–15 MV photons. Radiat. Res. 2003, 159, 149–153. [Google Scholar] [CrossRef]
- Miyagawa, I.; Gordy, W. Electron Spin Resonance of an Irradiated Single Crystal of Alanine: Second-Order Effects in Free Radical Resonances. J. Chem. Phys. 1960, 32, 255–263. [Google Scholar] [CrossRef]
- Heydari, M.Z.; Malinen, E.; Hole, E.O.; Sagstuen, E. Alanine radicals. 2. The Composite Polycrystalline Alanine EPR Spectrum Studied by ENDOR, Thermal Annealing, and Spectrum Simulations. J. Phys. Chem. A 2002, 106, 8971–8977. [Google Scholar] [CrossRef]
- Makino, Y.; Ueno, M.; Shoji, Y.; Nyui, M.; Nakanishi, I.; Fukui, K.; Matsumoto, K.i. Simplifying quantitative measurement of free radical species using an X-band EPR spectrometer. J. Clin. Biochem. Nutr. 2021, 70, 213. [Google Scholar] [CrossRef]
- Eaton, G.R.; Eaton, S.S.; Barr, D.P.; Weber, R.T. Quantitative Epr; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Weber, R.T. Xenon’s User Guide; Bruker Biospin Corporation: Billerica, MA, USA, 2011. [Google Scholar]
- Karakirova, Y. Application of Amino Acids for High-Dosage Measurements with Electron Paramagnetic Resonance Spectroscopy. Molecules 2023, 28, 1745. [Google Scholar] [CrossRef]
- Yordanov, N.D.; Gancheva, V.; Karakirova, Y. Some recent developments of EPR dosimetry. In EPR of Free Radicals in Solids II: Trends in Methods and Applications; Springer: Dordrecht, The Netherlands, 2012; pp. 311–343. [Google Scholar] [CrossRef]
- Desrosiers, M.; Puhl, J.; Cooper, S. An absorbed-dose/dose-rate dependence for the alanine-EPR dosimetry system and its implications in high-dose ionizing radiation metrology. J. Res. Natl. Inst. Stand. Technol. 2008, 113, 79. [Google Scholar] [CrossRef]
- Gu, R.; Wang, J.; Wang, P.; Mao, X.; Lin, B.; Tan, W.; Du, X.; Gao, F.; Wang, T. Alanine/electron spin resonance dosimetry for FLASH radiotherapy. Radiat. Phys. Chem. 2024, 225, 112113. [Google Scholar] [CrossRef]
- Secerov, B.; Radenkovic, M.; Dramicanin, M. Uncertainty and routine use of Aerial l-alanine–Electron spin resonance dosimetry system. Radiat. Meas. 2016, 89, 63–67. [Google Scholar] [CrossRef]
- STERIS Applied Sterilization Technologies. Alanine Loose Pellet Dosimeters. 2025. Available online: https://edge.sitecorecloud.io/steriscorp14550-sterisast2aa2-production420c-14c4/media/project/steris/steris/pdffiles/2024/alanine-loose-pellet-tech-sheet.pdf (accessed on 10 July 2025).
- Malinen, E. EPR dosimetry in clinical applications. In Applications of EPR in Radiation Research; Springer: Cham, Switzerland, 2014; pp. 509–538. [Google Scholar] [CrossRef]
- Sharpe, P.H.; Sephton, J.P. Alanine dosimetry at NPL-the development of a mailed reference dosimetry service at radiotherapy dose levels. In Proceedings of the International Symposium on Techniques for High Dose Dosimetry in Industry, Agriculture and Medicine, Vienna, Austria, 2–5 November 1998. [Google Scholar]
- Podgorsak, E.B. Review of Radiation Oncology Physics: A Handbook for Teachers and Students; IAE Agency: Vienna, Austria, 2003; Volume 19, p. 133. [Google Scholar]
- De Angelis, C.; De Coste, V.; Fattibene, P.; Onori, S.; Petetti, E. Use of alanine for dosimetry intercomparisons among Italian radiotherapy centers. Appl. Radiat. Isot. 2005, 62, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Ankjærgaard, C.; Konradsson, E.; Christensen, J.; Petterson, K.; Andersen, C.; Ceberg, C. PO-1772: Towards auditing FLASH electron beam dosimetry: Clinical film vs. alanine. Radiother. Oncol. 2020, 152, S987. [Google Scholar] [CrossRef]
- Romanyukha, A.A. Neutron and Gamma Multi-Element Alanine Dosimeter Holder. U.S. Patent Application 17/484,531, 24 March 2022. [Google Scholar]
- Nagy, V.; Sleptchonok, O.F.; Desrosiers, M.F.; Weber, R.T.; Heiss, A.H. Advancements in accuracy of the alanine EPR dosimetry system: Part III: Usefulness of an adjacent reference sample. Radiat. Phys. Chem. 2000, 59, 429–441. [Google Scholar] [CrossRef]
- Magnettech GmbH and Freiberg Instruments GmbH. Manual and Documentation: MiniScope MS 5000 and MS 5000X, EPR Spectrometer with Scientific Grade Performance, Version 7.2; Freiberg Instruments GmbH and Magnettech GmbH: Freiberg, Germany; Berlin, Germany, 2019. Available online: http://www.magnettech.de/esr-epr-spectrometer/miniscope-ms-5000.html (accessed on 12 June 2025).
- Ptushenko, V.V.; Linev, V.N. A Review of the Dawn of Benchtop EPR Spectrometers—Innovation That Shaped the Future of This Technology. Molecules 2022, 27, 5996. [Google Scholar] [CrossRef]
- Seco, J.; Clasie, B.; Partridge, M. Review on the characteristics of radiation detectors for dosimetry and imaging. Phys. Med. Biol. 2014, 59, R303. [Google Scholar] [CrossRef]
- Garcia, T.; Lin, M.; Pasquié, I.; Lourenço, V. A methodology for choosing parameters for ESR readout of alanine dosimeters for radiotherapy. Radiat. Phys. Chem. 2009, 78, 782–790. [Google Scholar] [CrossRef]
- Sleptchonok, O.F.; Nagy, V.; Desrosiers, M.F. Advancements in accuracy of the alanine dosimetry system. Part 1. The effects of environmental humidity. Radiat. Phys. Chem. 2000, 57, 115–133. [Google Scholar] [CrossRef]
- Höfel, S.; Stehle, M.; Zwicker, F.; Fix, M.K.; Drescher, M. A practical EPR dosimetry system for routine use in radiotherapy: Uncertainty analysis of lithium formate dosimeters at the therapeutic dose level. Phys. Med. Biol. 2021, 66, 045005. [Google Scholar] [CrossRef]
- Kim, C.E.; Park, J.I.; Jung, S.; Pak, S.i.; Jeong, S.; An, S.; Kim, C.; Jeong, J.H.; Kim, H.; Lim, Y.K.; et al. Determination of beam quality correction factors for alanine dosimetry in clinical proton beams. Phys. Medica 2025, 134, 104992. [Google Scholar] [CrossRef]
- Gago-Arias, A.; González-Castaño, D.; Gómez, F.; Peteiro, E.; Lodeiro, C.; Pardo-Montero, J. Development of an alanine dosimetry system for radiation dose measurements in the radiotherapy range. J. Instrum. 2015, 10, T08004. [Google Scholar] [CrossRef]
- Park, B.R.; Kim, J.S.; Yoo, J.; Ha, W.H.; Jang, S.; Kang, Y.R.; Kim, H.; Jang, H.K.; Han, K.T.; Min, J.; et al. The first KREDOS-EPR intercomparison exercise using alanine pellet dosimeter in South Korea. Nucl. Eng. Technol. 2020, 52, 2379–2386. [Google Scholar] [CrossRef]
- Anton, M. Development of a secondary standard for the absorbed dose to water based on the alanine EPR dosimetry system. Appl. Radiat. Isot. 2005, 62, 779–795. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, R.; Chang, C.W.; Charyyev, S.; Zhou, J.; Bradley, J.D.; Liu, T.; Yang, X. A potential revolution in cancer treatment: A topical review of FLASH radiotherapy. J. Appl. Clin. Med. Phys. 2022, 23, e13790. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Zhang, R.; Schüler, E.; Taylor, P.A.; Mascia, A.E.; Diffenderfer, E.S.; Zhao, T.; Ayan, A.S.; Sharma, M.; Yu, S.J.; et al. Framework for quality assurance of ultrahigh dose rate clinical trials investigating FLASH effects and current technology gaps. Int. J. Radiat. Oncol. Biol. Phys. 2023, 116, 1202–1217. [Google Scholar] [CrossRef]
- Anton, M.; Kapsch, R.; Krauss, A.; von Voigts-Rhetz, P.; Zink, K.; McEwen, M. Difference in the relative response of the alanine dosimeter to megavoltage x-ray and electron beams. Phys. Med. Biol. 2013, 58, 3259. [Google Scholar] [CrossRef]
- Andreo, P. Monte Carlo simulations in radiotherapy dosimetry. Radiat. Oncol. 2018, 13, 121. [Google Scholar] [CrossRef]
- Nagy, V.; Sholom, S.V.; Chumak, V.V.; Desrosiers, M.F. Uncertainties in alanine dosimetry in the therapeutic dose range. Appl. Radiat. Isot. 2002, 56, 917–929. [Google Scholar] [CrossRef] [PubMed]
Parameter | Requirement |
---|---|
Beam Energy Range | 3–25 MeV |
Ionization Chambers | Plane-parallel chambers for R50 < 3 g/cm2 (E0 ≤ 8 MeV) |
Cylindrical chambers for R50 > 3 g/cm2 (E0 > 8 MeV) | |
Phantom Material | Water or plastic scaled to depth in water |
(For reference dosimetry, only water phantoms are recommended) | |
Phantom Dimensions | ≥5 cm margin beyond field size and ≥5 g/cm2 beyond Dmax |
Beam Quality Specification | Use R50 (depth at 50% of Dmax) to determine beam quality; E0 ≈ 2.33 × R50 |
Reference Conditions | 10 × 10 cm2 field size at 100 cm Source to Surface Distance (SSD) |
Calibration Procedures | Calibration must match user beam quality or cross-calibration is allowed |
Parameter | Conventional RT | Flash RT |
---|---|---|
Dose-rate | 0.01–0.40 Gy/s [5] | ≥40 Gy/s [7] |
Total Treatment time | Longer treatment time with sessions lasting from seconds to minutes [6] | Milliseconds [7] |
Dose per fraction | ≤2 Gy [37] | Recommended dose is delivered on a single or few fractions [6] |
Effect on normal tissue | Toxicity to normal tissues limit treatment of radio-resistant tumors [4] | Has shown ability to protect normal tissue from radiation toxicity, increasing therapeutic window [7] |
Tumor control | Reliable tumor control [2] | Tumor control comparable to conventional RT for the same recommended dose [7] |
Preparedness for clinical practice | Clinically verified and adopted [6] | Currently under pre-clinical investigation [6] |
Requirement | TLDs | Silicon Diodes | Gafchromic Film |
---|---|---|---|
Dose-Rate | Linear for dose-rate range 1 × 10−2 Gy/s to 1 × 1010 Gy/s [49] | Response dependent on dose-rate [50,51] | Dose-rate independent for ranges up to 1013 Gy/s [52] |
Energy independence | Energy dependence vary with maximum readout temperature [53] | Response sensitive to electron energy fluctuations [50,54] | Minimal energy dependence [54,55] |
Dose linearity | Linear for dose range 1 Gy to 1 × 104 Gy [49] | Nonlinear at UHDR [50] | Linear over dose range 1 Gy to 40 Gy [55] |
Accuracy at UHDR | Moderate due to uncertainty levels that are unlikely to be further optimized [20] | Poor due to dose-rate sensitivity [56] | Accurate due to dose-rate independence [57] |
Characteristic | Aerial Dosimeter [73,74] | STERIS AST (Harwell Dosimeter) [75] |
---|---|---|
Mass | (35.300 ± 0.210) mg | (56.400–63.600 ± 0.600) mg |
% Mass ratio: alanine/paraffin binder | 91.630/8.370 | 90.900/9.100 |
Diameter | (4.030 ± 0.004) mm | (4.800 ± 0.100) mm |
Thickness | (2.389 ± 0.049) mm | (2.800 ± 0.100) mm |
Density | (1.247 ± 0.005) g/cm3 | (1.247 ± 0.005) g/cm3 |
Limitation | Description | Impact on Alanine EPR Measurements |
---|---|---|
No real-time measurement [1] |
|
|
Humidity sensitivity [87] |
|
|
Temperature variation [82] |
|
|
Post-irradiation fading [87] |
|
|
Reduced sensitivity at low-doses (<10 Gy) [86] |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sebinanyane, B.; Walo, M.; Hillhouse, G.C.; Kureba, C.O.; Gryczka, U. A Review of the Alanine Electron Paramagnetic Resonance Dosimetry Method as a Dose Verification Tool for Low-Dose Electron Beam Applications: Implications on Flash Radiotherapy. Appl. Sci. 2025, 15, 10939. https://doi.org/10.3390/app152010939
Sebinanyane B, Walo M, Hillhouse GC, Kureba CO, Gryczka U. A Review of the Alanine Electron Paramagnetic Resonance Dosimetry Method as a Dose Verification Tool for Low-Dose Electron Beam Applications: Implications on Flash Radiotherapy. Applied Sciences. 2025; 15(20):10939. https://doi.org/10.3390/app152010939
Chicago/Turabian StyleSebinanyane, Babedi, Marta Walo, Gregory Campbell Hillhouse, Chamunorwa Oscar Kureba, and Urszula Gryczka. 2025. "A Review of the Alanine Electron Paramagnetic Resonance Dosimetry Method as a Dose Verification Tool for Low-Dose Electron Beam Applications: Implications on Flash Radiotherapy" Applied Sciences 15, no. 20: 10939. https://doi.org/10.3390/app152010939
APA StyleSebinanyane, B., Walo, M., Hillhouse, G. C., Kureba, C. O., & Gryczka, U. (2025). A Review of the Alanine Electron Paramagnetic Resonance Dosimetry Method as a Dose Verification Tool for Low-Dose Electron Beam Applications: Implications on Flash Radiotherapy. Applied Sciences, 15(20), 10939. https://doi.org/10.3390/app152010939