Impact of Sarcopenia Severity on Body Composition, Physical Performance, and Mechanical Properties of Gait-Related Muscles in Community-Dwelling Older Women: A Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Procedures
2.3. Measurement
2.3.1. Body Composition
2.3.2. Physical Performance
2.3.3. Mechanical Properties of Gait-Related Muscles
2.4. Statistical Analysis
3. Results
3.1. Differences in Body Composition by Sarcopenia Severity in Older Women
3.2. Differences in Physical Performance by Sarcopenia Severity in Older Women
3.3. Differences in Mechanical Properties of Gait-Related Muscles by Sarcopenia Severity in Older Women
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, H.T.A.; Addo, K.M.; Findlay, H. Public Health Challenges and Responses to the Growing Ageing Populations. Public Health Chall. 2024, 3, e213. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.Y.; Lee, E.; Jung, H.W.; Jang, I.Y. Geriatrics Fact Sheet in Korea 2021. Ann. Geriatr. Med. Res. 2021, 25, 65–71. [Google Scholar] [CrossRef]
- Kim, S.; Ha, Y.C.; Kim, D.Y.; Yoo, J.I. Recent Update on the Prevalence of Sarcopenia in Koreans: Findings from the Korea National Health and Nutrition Examination Survey. J. Bone Metab. 2024, 31, 150–161. [Google Scholar] [CrossRef]
- Petermann-Rocha, F.; Balntzi, V.; Gray, S.R.; Lara, J.; Ho, F.K.; Pell, J.P.; Celis-Morales, C. Global prevalence of sarcopenia and severe sarcopenia: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2022, 13, 86–99. [Google Scholar] [CrossRef]
- Messier, V.; Rabasa-Lhoret, R.; Barbat-Artigas, S.; Elisha, B.; Karelis, A.D.; Aubertin-Leheudre, M. Menopause and sarcopenia: A potential role for sex hormones. Maturitas 2011, 68, 331–336. [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef]
- Anker, S.D.; Morley, J.E.; von Haehling, S. Welcome to the ICD-10 code for sarcopenia. J. Cachexia Sarcopenia Muscle 2016, 7, 512–514. [Google Scholar] [CrossRef]
- Baek, J.Y.; Jung, H.W.; Kim, K.M.; Kim, M.; Park, C.Y.; Lee, K.P.; Lee, S.Y.; Jang, I.Y.; Jeon, O.H.; Lim, J.Y. Korean Working Group on Sarcopenia Guideline: Expert Consensus on Sarcopenia Screening and Diagnosis by the Korean Society of Sarcopenia, the Korean Society for Bone and Mineral Research, and the Korean Geriatrics Society. Ann. Geriatr. Med. Res. 2023, 27, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Shim, G.Y.; Jang, H.C.; Kim, K.W.; Lim, J.Y. Impact of Sarcopenia on Falls, Mobility Limitation, and Mortality Using the Diagnostic Criteria Proposed in the Korean Working Group on Sarcopenia Guideline. Ann. Geriatr. Med. Res. 2025, 29, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.J.; Choi, Y.; Jung, S.J.; Kwak, H.B. Role of exercise in estrogen deficiency-induced sarcopenia. J. Exerc. Rehabil. 2022, 18, 2–9. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, B.; Huang, G.; Zhang, G.; Ding, Z.; Li, Z.; Sinclair, J.; Fan, Y. Sarcopenia: Body Composition and Gait Analysis. Front. Aging Neurosci. 2022, 14, 909551. [Google Scholar] [CrossRef]
- Moissenet, F.; Cheze, L.; Dumas, R. Individual muscle contributions to ground reaction and to joint contact, ligament and bone forces during normal gait. Multibody Syst. Dyn. 2017, 40, 193–211. [Google Scholar] [CrossRef]
- Kirkwood, R.N.; Trede, R.G.; Moreira Bde, S.; Kirkwood, S.A.; Pereira, L.S. Decreased gastrocnemius temporal muscle activation during gait in elderly women with history of recurrent falls. Gait Posture 2011, 34, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Needle, A.R.; Baumeister, J.; Kaminski, T.W.; Higginson, J.S.; Farquhar, W.B.; Swanik, C.B. Neuromechanical coupling in the regulation of muscle tone and joint stiffness. Scand. J. Med. Sci. Sports 2014, 24, 737–748. [Google Scholar] [CrossRef]
- Schleip, R.; Naylor, I.L.; Ursu, D.; Melzer, W.; Zorn, A.; Wilke, H.J.; Lehmann-Horn, F.; Klingler, W. Passive muscle stiffness may be influenced by active contractility of intramuscular connective tissue. Med. Hypotheses 2006, 66, 66–71. [Google Scholar] [CrossRef]
- Kragstrup, T.W.; Kjaer, M.; Mackey, A.L. Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging. Scand. J. Med. Sci. Sports 2011, 21, 749–757. [Google Scholar] [CrossRef]
- Chuang, L.L.; Wu, C.Y.; Lin, K.C. Reliability, validity, and responsiveness of myotonometric measurement of muscle tone, elasticity, and stiffness in patients with stroke. Arch. Phys. Med. Rehabil. 2012, 93, 532–540. [Google Scholar] [CrossRef]
- Park, G.Y.; Kwon, D.R. Sonoelastographic evaluation of medial gastrocnemius muscles intrinsic stiffness after rehabilitation therapy with botulinum toxin a injection in spastic cerebral palsy. Arch. Phys. Med. Rehabil. 2012, 93, 2085–2089. [Google Scholar] [CrossRef]
- Zullo, A.; Fleckenstein, J.; Schleip, R.; Hoppe, K.; Wearing, S.; Klingler, W. Structural and Functional Changes in the Coupling of Fascial Tissue, Skeletal Muscle, and Nerves During Aging. Front. Physiol. 2020, 11, 592. [Google Scholar] [CrossRef] [PubMed]
- Ikezoe, T.; Nakamura, M.; Shima, H.; Asakawa, Y.; Ichihashi, N. Association between walking ability and trunk and lower-limb muscle atrophy in institutionalized elderly women: A longitudinal pilot study. J. Physiol. Anthropol. 2015, 34, 31. [Google Scholar] [CrossRef] [PubMed]
- McGrath, R.; Cawthon, P.M.; Clark, B.C.; Fielding, R.A.; Lang, J.J.; Tomkinson, G.R. Recommendations for Reducing Heterogeneity in Handgrip Strength Protocols. J. Frailty Aging 2022, 11, 143–150. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Ferrucci, L.; Pieper, C.F.; Leveille, S.G.; Markides, K.S.; Ostir, G.V.; Studenski, S.; Berkman, L.F.; Wallace, R.B. Lower extremity function and subsequent disability: Consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2000, 55, M221–M231. [Google Scholar] [CrossRef]
- Ramazanoğlu, E.; Usgu, S.; Yakut, Y. Assessment of the mechanical characteristics of the lower extremity muscles with myotonometric measurements in healthy individuals. Physiother. Q. 2020, 28, 1–12. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef]
- Breen, L.; Phillips, S.M. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the ‘anabolic resistance’ of ageing. Nutr. Metab. 2011, 8, 68. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Villegas, G.; Parodi, J.; Merino-Taboada, A.; Perez-Agüero, C.; Castro-Viacava, G.; Runzer-Colmenares, F.M. Calf circumference and risk of falls among Peruvian older adults. Eur. Geriatr. Med. 2016, 7, 543–546. [Google Scholar] [CrossRef]
- Takagi, D. Relationships among limb circumferences and appendicular. muscle and fat masses using bioelectrical impedance analysis. Int. J. Phys. Ther. Rehab. 2018, 4, 2. [Google Scholar] [CrossRef]
- Prado, C.M.; Batsis, J.A.; Donini, L.M.; Gonzalez, M.C.; Siervo, M. Sarcopenic obesity in older adults: A clinical overview. Nat. Rev. Endocrinol. 2024, 20, 261–277. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.; Leung, J.; Morley, J.E. Defining sarcopenia in terms of incident adverse outcomes. J. Am. Med. Dir. Assoc. 2015, 16, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Petnehazy, N.; Barnes, H.N.; Newman, A.B.; Kritchevsky, S.B.; Cummings, S.R.; Hepplen, R.T.; Cawthon, P.M. Muscle Mass, Strength, Power and Physical Performance and Their Association with Quality of Life in Older Adults, the Study of Muscle, Mobility and Aging (SOMMA). J. Frailty Aging 2024, 13, 384–390. [Google Scholar] [CrossRef]
- Ryu, M.; Jo, J.; Lee, Y.; Chung, Y.S.; Kim, K.M.; Baek, W.C. Association of physical activity with sarcopenia and sarcopenic obesity in community-dwelling older adults: The Fourth Korea National Health and Nutrition Examination Survey. Age Ageing 2013, 42, 734–740. [Google Scholar] [CrossRef]
- Rolland, Y.; Lauwers-Cances, V.; Cristini, C.; Abellan van Kan, G.; Janssen, I.; Morley, J.E.; Vellas, B. Difficulties with physical function associated with obesity, sarcopenia, and sarcopenic-obesity in community-dwelling elderly women: The EPIDOS (EPIDemiologie de l’OSteoporose) Study. Am. J. Clin. Nutr. 2009, 89, 1895–1900. [Google Scholar] [CrossRef]
- Kyrdalen, I.L.; Thingstad, P.; Sandvik, L.; Ormstad, H. Associations between gait speed and well-known fall risk factors among community-dwelling older adults. Physiother. Res. Int. J. Res. Clin. Phys. Ther. 2019, 24, e1743. [Google Scholar] [CrossRef]
- Kim, M.; Won, C.W. Sarcopenia Is Associated with Cognitive Impairment Mainly Due to Slow Gait Speed: Results from the Korean Frailty and Aging Cohort Study (KFACS). Int. J. Environ. Res. Public Health 2019, 16, 1491. [Google Scholar] [CrossRef]
- Murley, G.S.; Menz, H.B.; Landorf, K.B. Electromyographic patterns of tibialis posterior and related muscles when walking at different speeds. Gait Posture 2014, 39, 1080–1085. [Google Scholar] [CrossRef]
- Di Nardo, F.; Ghetti, G.; Fioretti, S. Assessment of the activation modalities of gastrocnemius lateralis and tibialis anterior during gait: A statistical analysis. J. Electromyogr. Kinesiol. 2013, 23, 1428–1433. [Google Scholar] [CrossRef] [PubMed]
- Maharaj, J.N.; Cresswell, A.G.; Lichtwark, G.A. Tibialis anterior tendinous tissue plays a key role in energy absorption during human walking. J. Exp. Biol. 2019, 222, jeb191247. [Google Scholar] [CrossRef] [PubMed]
- De Visser, E.; Veth, R.P.; Schreuder, H.W.; Duysens, J. Altered phase-transitions in tibialis anterior and medial gastrocnemius during walking after limbsaving surgery. Clin. Neurophysiol. 2005, 116, 2741–2747. [Google Scholar] [CrossRef] [PubMed]
- Agyapong-Badu, S.; Warner, M.; Samuel, D.; Stokes, M. Measurement of ageing effects on muscle tone and mechanical properties of rectus femoris and biceps brachii in healthy males and females using a novel hand-held myometric device. Arch. Gerontol. Geriatr. 2016, 62, 59–67. [Google Scholar] [CrossRef]
- Baumgartner, R.N.; Waters, D.L.; Gallagher, D.; Morley, J.E.; Garry, P.J. Predictors of skeletal muscle mass in elderly men and women. Mech. Ageing Dev. 1999, 107, 123–136. [Google Scholar] [CrossRef]
- Clark, B.C. Neuromuscular Changes with Aging and Sarcopenia. J. Frailty Aging 2019, 8, 7–9. [Google Scholar] [CrossRef]
- Kang, C.; Jung, C.-H.; Baek, J.-H. Trigger Point Injection for the Treatment of Myofascial Pain Syndrome. J. Korean Orthop. Assoc. 2024, 59, 247–255. [Google Scholar] [CrossRef]
- Kim, N.; Park, J.; Shin, H.; Bae, Y. Gastrocnemius Medial Head Stiffness Is Associated with Potential Fall Risk in Community-Dwelling Older Adults. Healthcare 2022, 10, 785. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Choi, W.H. Clinical and physiopathological mechanism of sarcopenia. Korean J. Med. 2012, 83, 444–454. [Google Scholar] [CrossRef]
- Heo, J.-W.; No, M.-H.; Min, D.-H.; Kang, J.-H.; Kwak, H.-B. Aging-induced Sarcopenia and Exercise. Off. J. Korean Acad. Kinesiol. 2017, 19, 43–59. [Google Scholar] [CrossRef]
- Wang, Z.; Taniguchi, M.; Saeki, J.; Yagi, M.; Murota, N.; Nakazato, K.; Niiya, N.; Ichihashi, N. Intramuscular fat infiltration influences mechanical properties during muscle contraction in older women. Appl. Physiol. Nutr. Metab. 2024, 49, 1175–1183. [Google Scholar] [CrossRef] [PubMed]
- Villareal, D.T.; Aguirre, L.; Gurney, A.B.; Waters, D.L.; Sinacore, D.R.; Colombo, E.; Armamento-Villareal, R.; Qualls, C. Aerobic or Resistance Exercise, or Both, in Dieting Obese Older Adults. N. Engl. J. Med. 2017, 376, 1943–1955. [Google Scholar] [CrossRef]
- Cadore, E.L.; Casas-Herrero, A.; Zambom-Ferraresi, F.; Idoate, F.; Millor, N.; Gómez, M.; Rodriguez-Mañas, L.; Izquierdo, M. Multicomponent exercises including muscle power training enhance muscle mass, power output, and functional outcomes in institutionalized frail nonagenarians. Age 2014, 36, 773–785. [Google Scholar] [CrossRef]
Variable | FS (a) (n = 10) | SP (b) (n = 9) | SS (c) (n = 7) | NS (d) (n = 15) | F | p | Post-Hoc | ES (η2) |
---|---|---|---|---|---|---|---|---|
Age (years) | 80.50 ± 5.50 | 82.11 ± 4.96 | 83.71 ± 3.25 | 77.00 ± 5.45 | 3.556 | 0.023 * | c > d * | 0.224 |
Height (cm) | 147.88 ± 5.75 | 149.40 ± 3.48 | 148.86 ± 5.10 | 153.39 ± 3.25 | 3.949 | 0.015 * | d > a * | 0.243 |
SBP (mmHg) | 138.00 ± 18.25 | 145.33 ± 5.98 | 123.29 ± 18.82 | 126.13 ± 15.20 | 4.258 | 0.011 * | b > d *, c * | 0.257 |
DBP (mmHg) | 63.10 ± 14.99 | 73.89 ± 10.29 | 52.14 ± 11.87 | 62.53 ± 10.88 | 4.337 | 0.010 * | b > c ** | 0.260 |
Variable | FS (a) (n = 10) | SP (b) (n = 9) | SS (c) (n = 7) | NS (d) (n = 15) | F | p | Post-Hoc | ES (η2) |
---|---|---|---|---|---|---|---|---|
Weight (kg) | 57.36 ± 8.88 | 52.15 ± 3.49 | 50.64 ± 5.00 | 67.31 ± 12.84 | 7.440 | 0.001 ** | d > b **, c ** | 0.376 |
BMI (kg/m2) | 26.21 ± 3.67 | 23.45 ± 2.53 | 22.84 ± 1.66 | 28.64 ± 5.51 | 4.671 | 0.007 ** | d > b *, c * | 0.275 |
ASM (kg/m2) | 6.30 ± 0.25 | 5.54 ± 0.30 | 5.21 ± 0.31 | 6.80 ± 0.63 | 26.378 | 0.000 *** | b < a **, d *** c < a ***, d *** | 0.681 |
BFP (%) | 35.36 ± 8.82 | 36.07 ± 5.88 | 37.79 ± 5.82 | 40.06 ± 7.13 | 1.057 | 0.379 | - | 0.079 |
Calf circumference (cm) | 33.60 ± 3.21 | 30.77 ± 1.55 | 31.41 ± 1.33 | 35.93 ± 2.91 | 9.527 | 0.000 *** | d > b ***, c ** | 0.436 |
Variable | FS (a) (n = 10) | SP (b) (n = 9) | SS (c) (n = 7) | NS (d) (n = 15) | F | p | Post-Hoc | ES (η2) |
---|---|---|---|---|---|---|---|---|
Handgrip strength (kg) | 13.34 ± 1.83 | 18.32 ± 1.46 | 15.80 ± 1.69 | 19.21 ± 2.88 | 16.007 | 0.000 *** | a < b ***, d ***, c < d * | 0.565 |
SPPB (point) | 7.20 ± 2.97 | 10.22 ± 2.28 | 8.29 ± 2.56 | 9.80 ± 1.66 | 3.658 | 0.021 * | a < b * | 0.229 |
6 m gait speed (m/s) | 0.74 ± 0.25 | 1.04 ± 0.24 | 1.03 ± 0.17 | 1.06 ± 0.18 | 5.627 | 0.003 ** | a < b *, c *, d ** | 0.168 |
5XCST (s) | 18.03 ± 5.53 | 10.71 ± 3.45 | 13.79 ± 4.04 | 11.62 ± 3.01 | 4.572 | 0.008 ** | a > b *, d * | 0.355 |
Variable | FS (a) (n = 10) | SP (b) (n = 9) | SS (c) (n = 7) | NS (d) (n = 15) | F | p | Post-Hoc | ES (η2) |
---|---|---|---|---|---|---|---|---|
TA muscle tone (Hz) | 18.99 ± 2.85 | 21.13 ± 1.73 | 18.86 ± 1.70 | 17.77 ± 2.60 | 3.761 | 0.019 * | b > d * | 0.234 |
TA stiffness (N/m) | 407.00 ± 71.89 | 440.33 ± 65.44 | 415.43 ± 44.57 | 381.67 ± 83.30 | 1.307 | 0.287 | - | 0.096 |
TA elasticity (log) | 1.06 ± 0.10 | 0.90 ± 0.12 | 1.10 ± 0.11 | 1.14 ± 0.18 | 5.574 | 0.003 ** | b < d ** | 0.311 |
GM muscle tone (Hz) | 14.06 ± 2.53 | 15.77 ± 2.63 | 13.59 ± 2.88 | 12.21 ± 0.90 | 5.205 | 0.004 ** | b > d ** | 0.297 |
GM stiffness (N/m) | 262.20 ± 54.55 | 296.44 ± 66.04 | 267.43 ± 48.43 | 231.60 ± 36.38 | 3.202 | 0.034 * | b > d * | 0.206 |
GM elasticity (log) | 1.62 ± 0.29 | 1.65 ± 0.33 | 1.81 ± 0.33 | 1.91 ± 0.32 | 2.138 | 0.112 | - | 0.148 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, G.; Han, B.; Lee, K.-H. Impact of Sarcopenia Severity on Body Composition, Physical Performance, and Mechanical Properties of Gait-Related Muscles in Community-Dwelling Older Women: A Cross-Sectional Study. Appl. Sci. 2025, 15, 10906. https://doi.org/10.3390/app152010906
Baek G, Han B, Lee K-H. Impact of Sarcopenia Severity on Body Composition, Physical Performance, and Mechanical Properties of Gait-Related Muscles in Community-Dwelling Older Women: A Cross-Sectional Study. Applied Sciences. 2025; 15(20):10906. https://doi.org/10.3390/app152010906
Chicago/Turabian StyleBaek, Gwangyeol, Byoungduck Han, and Kun-Ho Lee. 2025. "Impact of Sarcopenia Severity on Body Composition, Physical Performance, and Mechanical Properties of Gait-Related Muscles in Community-Dwelling Older Women: A Cross-Sectional Study" Applied Sciences 15, no. 20: 10906. https://doi.org/10.3390/app152010906
APA StyleBaek, G., Han, B., & Lee, K.-H. (2025). Impact of Sarcopenia Severity on Body Composition, Physical Performance, and Mechanical Properties of Gait-Related Muscles in Community-Dwelling Older Women: A Cross-Sectional Study. Applied Sciences, 15(20), 10906. https://doi.org/10.3390/app152010906