Agreement Between Tele- and Face-to-Face Assessment of Neuromotor Development in High-Risk Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedure
2.4. Outcome Measures
2.5. Data Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Doyle, L.W.; Anderson, P.J.; Battin, M.; Bowen, J.R.; Brown, N.; Callanan, C.; Campbell, C.; Chandler, S.; Cheong, J.; Darlow, B.; et al. Long-term follow-up of high-risk children: Who, why, and how? BMC Pediatr. 2014, 14, 279. [Google Scholar] [CrossRef] [PubMed]
- Committee on Fetus and Newborn. Hospital discharge of the high-risk neonate: Proposed guidelines. Pediatrics 1998, 102, 411–417. [Google Scholar] [CrossRef]
- Kepenek-Varol, B.; Hoşbay, Z.; Varol, S.; Torun, E. Assessment of motor development using the Alberta Infant Motor Scale in full-term infants. Turk. J. Pediatr. 2020, 62, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Hadders-Algra, M. Early Diagnostics and Early Intervention in Neurodevelopmental Disorders-Age-Dependent Challenges and Opportunities. J. Clin. Med. 2021, 10, 861. [Google Scholar] [CrossRef] [PubMed]
- Danks, M.; Flynn, E.J.; Gray, P.H.; Hurrion, E.M. “Low-normal” motor skills in infants at high risk for poor developmental outcomes: A prevalence and prognostic study. Dev. Med. Child Neurol. 2022, 64, 1517–1523. [Google Scholar] [CrossRef]
- McNamara, L.; Morgan, C.; Novak, I. Interventions for Motor Disorders in High-Risk Neonates. Clin. Perinatol. 2023, 50, 121–155. [Google Scholar] [CrossRef]
- Hutchon, B.; Gibbs, D.; Harniess, P.; Jary, S.; Crossley, S.; Moffat, J.V.; Basu, N.; Basu, A.P. Early intervention programmes for infants at high risk of atypical neurodevelopmental outcome. Dev. Med. Child Neurol. 2019, 61, 1362–1367. [Google Scholar] [CrossRef] [PubMed]
- Ferrinho, P.; Van Lerberghe, W. Providing Health Care Under Adverse Conditions: Health Personnel Performance & Individual Coping Strategies; Studies in Health Services Organisation & Policies; ITGPress: Birmingham, UK, 2000. [Google Scholar]
- Chomitz, K.M.; Setiadi, G.; Azwar, A.; Ismail, N.; Widiyarti. What Do Doctors Want? Developing Incentives for Doctors to Serve in Indonesia’s Rural and Remote Areas; Policy Research Working Paper Series 1888; The World Bank: Washington, DC, USA, 1998. [Google Scholar]
- Maitre, N.L.; Benninger, K.L.; Neel, M.L.; Haase, J.A.; Pietruszewski, L.; Levengood, K.; Adderley, K.M.; Batterson, N.O.; Hague, K.M.; Lightfoot, M.M.-B.; et al. Standardized Neurodevelopmental Surveillance of High-risk Infants Using Telehealth: Implementation Study during COVID-19. Pediatr. Qual. Saf. 2021, 6, e439. [Google Scholar] [CrossRef]
- Pujolar, G.; Oliver-Anglès, A.; Vargas, I.; Vázquez, M.L. Changes in access to health services during the COVID-19 pandemic: A scoping review. Int. J. Environ. Res. Public Health 2022, 19, 1749. [Google Scholar] [CrossRef]
- Kruizinga, M.D.; Peeters, D.; van Veen, M.; van Houten, M.; Wieringa, J.; Noordzij, J.G.; Bekhof, J.; Tramper-Stranders, G.; Vet, N.J.; Driessen, G.J.A. The impact of lockdown on pediatric ED visits and hospital admissions during the COVID19 pandemic: A multicenter analysis and review of the literature. Eur. J. Pediatr. 2021, 180, 2271–2279. [Google Scholar] [CrossRef]
- Vidal-Alaball, J.; Acosta-Roja, R.; Hernández, N.P.; Luque, U.S.; Morrison, D.; Pérez, S.N.; Perez-Llano, J.; Vèrges, A.S.; Seguí, F.L. Telemedicine in the face of the COVID-19 pandemic. Aten. Primaria 2020, 52, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Fuster Casanovas, A.; Vidal Alaball, J.; El Iysaouy, M.; López Seguí, F.; Alzaga Reig, X.; Solans, O. Análisis descriptivo de una encuesta on-line a los usuarios del Servicio de teleconsulta de Cataluña: La COVID-19, ¿cambio de paradigma de los ciudadanos sobre la atención médica? Med. Gen. Fam. 2022, 11, 99–105. [Google Scholar] [CrossRef]
- Kaur, M.; Eddy, E.Z.; Tiwari, D. Exploring Practice Patterns of Pediatric Telerehabilitation During COVID-19: A Survey Study. Telemed. J. e-Health 2022, 28, 1505–1516. [Google Scholar] [CrossRef] [PubMed]
- Ogourtsova, T.; Boychuck, Z.; O’Donnell, M.; Ahmed, S.; Osman, G.; Majnemer, A. Telerehabilitation for children and youth with developmental disabilities and their families: A systematic review. Phys. Occup. Ther. Pediatr. 2023, 43, 129–175. [Google Scholar] [CrossRef] [PubMed]
- Ketelaar, M.; Vermeer, A.; Helders, P.J. Functional motor abilities of children with cerebral palsy: A systematic literature review of assessment measures. Clin. Rehabil. 1998, 12, 369–380. [Google Scholar] [CrossRef]
- Haataja, L.; Mercuri, E.; Regev, R.; Cowan, F.; Rutherford, M.; Dubowitz, V.; Dubowitz, L. Optimality score for the neurologic examination of the infant at 12 and 18 months of age. J. Pediatr. 1999, 135, 153–161. [Google Scholar] [CrossRef]
- Amiel-Tison, C. Update of the Amiel-Tison neurologic assessment for the term neonate or at 40 weeks corrected age. Pediatr. Neurol. 2002, 27, 196–212. [Google Scholar] [CrossRef] [PubMed]
- Michalec, D. Bayley Scales of Infant Development, 3rd ed.; Goldstein, S., Naglieri, J.A., Eds.; Encyclopedia of Child Behavior and Development; Springer: Boston, MA, USA, 2011. [Google Scholar] [CrossRef]
- Piper, M.C.; Pinnell, L.E.; Darrah, J.; Maguire, T.; Byrne, P.J. Construction and validation of the Alberta Infant Motor Scale (AIMS). Can. J. Public Health 1992, 83 (Suppl. S2), S46–S50. [Google Scholar] [PubMed]
- Persson, K.; Strömberg, B. Structured observation of motor performance (SOMP-I) applied to preterm and full term infants who needed neonatal intensive care. A cross-sectional analysis of progress and quality of motor performance at ages 0–10 months. Early Hum. Dev. 1995, 43, 205–224. [Google Scholar] [CrossRef] [PubMed]
- Hadders-Algra, M. General movements: A window for early identification of children at high risk for developmental disorders. J. Pediatr. 2004, 145 (Suppl. S2), S12–S18. [Google Scholar] [CrossRef] [PubMed]
- Perrin, L.; Le Métayer, M.; François, A.; Vanhulle, C.; Marret, S.; Jouve, A.; Clavel, C.; Picciolini, O.; Cozzaglio, M.; Macchi, M.; et al. Évaluation Du Potentiel Neuromoteur Du Nourrisson: Étude Multicentrique Internationale Comparative Longitudinale De Deux Méthodes Cliniques D’Examen. Mot. Cerebrale 2014, 35, 129–138. [Google Scholar] [CrossRef]
- Tupsila, R.; Bennett, S.; Mato, L.; Keeratisiroj, O.; Siritaratiwat, W. Gross motor development of Thai healthy full-term infants aged from birth to 14 months using the Alberta Infant Motor Scale: Inter individual variability. Early Hum. Dev. 2020, 151, 105169. [Google Scholar] [CrossRef] [PubMed]
- Morales-Monforte, E.; Bagur-Calafat, C.; Suc-Lerin, N.; Fornaguera-Martí, M.; Cazorla-Sánchez, E.; Girabent-Farrés, M. The Spanish version of the Alberta Infant Motor Scale: Validity and reliability analysis. Dev. Neurorehabil. 2017, 20, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.R.G.; Verdério, B.N.; de Abreu, R.W.F.; Brugnaro, B.H.; dos Santos, A.N.; dos Santos, M.M.; Rocha, N.A.C.F. Telemonitoring of motor skills using the Alberta Infant Motor Scale for at-risk infants in the first year of life. J. Telemed. Telecare 2022, 6, 885–894. [Google Scholar] [CrossRef] [PubMed]
- Le Metayer, M. Balance cerebro motor del niño pequeño—Balanç cervell motor del nen petit. Desenvol. Infant. Atenció Precoç 2011, 32, 5. [Google Scholar]
- Le Métayer, M. Reeducación Cerebromotriz del Niño Pequeño: Educación Terapéutica; Masson: Paris, France, 1994. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Noutsios, C.D.; Boisvert-Plante, V.; Laberge, E.; Perez, J.; Ingelmo, P. The telemedicine-based pediatric examination of the back and lower limbs: A narrative review. J. Pain Res. 2021, 14, 2959–2979. [Google Scholar] [CrossRef]
- Boonzaaijer, M.; Van Dam, E.; Van Haastert, I.C.; Nuysink, J. Concurrent Validity Between Live and Home Video Observations Using the Alberta Infant Motor Scale. Pediatr. Phys. Ther. 2017, 29, 146–151. [Google Scholar] [CrossRef]
- Boonzaaijer, M.; Van Wesel, F.; Nuysink, J.; Volman, M.J.M.; Jongmans, M.J. A home-video method to assess infant gross motor development: Parent perspectives on feasibility. BMC Pediatr. 2019, 19, 392. [Google Scholar] [CrossRef] [PubMed]
- Spittle, A.; Olsen, J.; Kwong, A.; Doyle, L.; Marschik, P.; Einspieler, C.; Cheong, J. The Baby Moves prospective cohort study protocol: Using a smartphone application with the General Movements Assessment to predict neurodevelopmental outcomes at age 2 years for extremely preterm or extremely low birthweight infants. BMJ Open 2016, 6, e013446. [Google Scholar] [CrossRef] [PubMed]
- Nicola, K.; Waugh, J.; Charles, E.; Russell, T. The feasibility and concurrent validity of performing the Movement Assessment Battery for Children—2nd Edition via telerehabilitation technology. Res. Dev. Disabil. 2018, 77, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Gavazzi, F.; Adang, L.; Waldman, A.; Jan, A.K.; Liu, G.; Lorch, S.A.; DeMauro, S.B.; Shults, J.; Pierce, S.R.; Ballance, E.; et al. Reliability of the Telemedicine Application of the Gross Motor Function Measure-88 in Patients With Leukodystrophy. Pediatr. Neurol. 2021, 125, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Read, J.S.; Brown, K.; Wray, J. The Feasibility and Acceptability of Remote Videoconference Use of the Brief Developmental Assessment Tool for Young Children with Congenital Heart Disease. Telemed. J. e-Health 2023, 29, 146–151. [Google Scholar] [CrossRef]
- Marcin, J.P.; Shaikh, U.; Steinhorn, R.H. Addressing health disparities in rural communities using telehealth. Pediatr. Res. 2016, 79, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Mahtta, D.; Daher, M.; Lee, M.T.; Sayani, S.; Shishehbor, M.; Virani, S.S. Promise and perils of telehealth in the current era. Curr. Cardiol. Rep. 2021, 23, 115. [Google Scholar] [CrossRef]
- Ko, J.S.; El-Toukhy, S.; Quintero, S.M.; Wilkerson, M.J.; Nápoles, A.M.; Stewart, A.L.; Strassle, P.D. Disparities in telehealth access, not willingness to use services, likely explain rural telehealth disparities. J. Rural Health 2023, 39, 617–624. [Google Scholar] [CrossRef]
Variables | Values (n = 45) | |
---|---|---|
Gender (% female) | 33.33 | |
Gestational age (weeks) (mean ± standard deviation) | 35.31 ± 4.03 | |
Chronological age (weeks) (mean ± standard deviation) | 28.60 ± 11.59 | |
Corrected age (weeks) (mean ± standard deviation) | 23.40 ± 9.43 | |
Perinatal antecedents (n) | Prematurity | 22 |
Multiple gestations | 15 | |
Intrauterine growth restriction | 4 | |
Muscle tone alterations | 3 | |
Plagiocephaly | 31 | |
Congenital muscular torticollis | 3 | |
Perinatal asphyxia/mild hypoxic–ischemic encephalopathy | 1 |
Face-to-Face Assessment | Tele-Assessment | ICC (95%CI) | |
---|---|---|---|
AIMS total score (mean ± standard deviation) | 23.89 ± 10.59 | 24.07 ± 11.02 | 0.996 (0.994, 0.998) |
AIMS subscales score (mean ± standard deviation) | |||
Prone position | 8.87 ± 4.79 | 8.89 ± 4.89 | 0.994 (0.989, 0.997) |
Supine position | 6.71 ± 1.96 | 6.49 ± 1.99 | 0.965 (0.934, 0.981) |
Sitting position | 5.38 ± 3.16 | 5.78 ± 3.40 | 0.977 (0.951, 0.988) |
Standing position | 2.98 ± 1.81 | 2.91 ± 1.94 | 0.989 (0.980, 0.994) |
Variable | Face-to-Face Assessment n (%) | Tele-Assessment n (%) | Kappa (p) |
---|---|---|---|
Axis organization in supine position n (%) | |||
1 Motor normality | 38 (84.4) | 42 (93.3) | 0.338 (0.011) |
2 Mild difficulty | 7 (15.6) | 3 (6.7) | |
3 Moderate difficulty | 0 | 0 | |
4 Severe difficulty | 0 | 0 | |
Eye–hand–mouth coordination (right/left) n (%) | |||
1 Motor normality | 34 (75.6)/34 (75.6) | 37 (82.2)/36 (80) | 0.682 (<0.001)/0.632 (<0.001) |
2 Mild difficulty | 8 (17.8)/8 (17.8) | 7 (15.6)/8 (17.8) | |
3 Moderate difficulty | 3 (6.7)/3 (6.7) | 1 (2.2)/1 (2.2) | |
Rolling supine to prone over right side/left side n (%) | |||
0 Does not apply | 6 (13.3)/6 (13.3) | 6 (13.3)/6 (13.3) | 0.673 (<0.001)/0.673 (<0.001) |
1 Motor normality | 16 (35.6)/16 (35.6) | 16 (35.6)/18 (40) | |
2 Mild difficulty | 4 (8.9)/5 (11.1) | 4 (8.9)/7 (15.6) | |
3 Moderate difficulty | 5 (11.1)/5 (11.1) | 5 (11.1)/4 (8.9) | |
4 Severe difficulty | 14 (31.1)/14 (31.1) | 14 (31.1)/10 (22.2) | |
Rolling prone to supine over right side/left side n (%) | |||
0 Does not apply | 6 (13.3)/6 (13.3) | 6 (13.3)/6 (13.3) | 0.631 (<0.001)/0.631 (<0.001) |
1 Motor normality | 25 (55.6)/25 (55.6) | 23 (51.1)/23 (51.1) | |
2 Mild difficulty | 3 (6.7)/3 (6.7) | 5 (11.1)/5 (11.1) | |
3 Moderate difficulty | 2 (4.4)/2 (4.4) | 6 (13.3)/6 (13.3) | |
4 Severe difficulty | 9 (20)/9 (20) | 5 (11.1)/5 (11.1) | |
Sitting with/without support n (%) | |||
0 Does not apply | 8 (17.8) | 8 (17.8) | 1 (<0.001) |
1 With support | 19 (42.2) | 19 (42.2) | |
2 Without support | 18 (40) | 18 (40) | |
Crawling n (%) | |||
0 Does not apply | 39 (86.7%) | 39 (86.7%) | 1 (<0.001) |
1 Crawls | 3 (6.7%) | 3 (6.7%) | |
2 Does not crawl | 3 (6.7%) | 3 (6.7%) | |
Standing without support n (%) | |||
0 Does not apply | 42 (93.3%) | 42 (93.3%) | 1 (<0.001) |
1 Motor normality | 2 (4.4%) | 2 (4.4%) | |
2 Mild difficulty | 0 | 0 | |
3 Moderate difficulty | 0 | 0 | |
4 Severe difficulty | 1 (2.2%) | 1 (2.2%) | |
Independent walking on regular ground/irregular ground n (%) | |||
0 Does not apply | 43 (95.6%)/43 (95.6%) | 43 (95.6%)/43 (95.6%) | 0.741 (<0.001)/1 (<0.001) |
1 Motor normality | 0/0 | 0/0 | |
2 Mild difficulty | 0/0 | 0/0 | |
3 Moderate difficulty | 0/0 | 1 (2.2%)/0 | |
4 Severe difficulty | 2 (4.4%)/2 (4.4%) | 1 (2.2%)/2 (4.4%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubio-López, A.I.; Valenza, M.C.; Raya-Benítez, J.; Valenza-Peña, G.; Cabrera-Martos, I.; López-López, L.; Benítez-Feliponi, Á. Agreement Between Tele- and Face-to-Face Assessment of Neuromotor Development in High-Risk Children. Appl. Sci. 2025, 15, 723. https://doi.org/10.3390/app15020723
Rubio-López AI, Valenza MC, Raya-Benítez J, Valenza-Peña G, Cabrera-Martos I, López-López L, Benítez-Feliponi Á. Agreement Between Tele- and Face-to-Face Assessment of Neuromotor Development in High-Risk Children. Applied Sciences. 2025; 15(2):723. https://doi.org/10.3390/app15020723
Chicago/Turabian StyleRubio-López, Ana Isabel, Marie Carmen Valenza, Julia Raya-Benítez, Geraldine Valenza-Peña, Irene Cabrera-Martos, Laura López-López, and Ángela Benítez-Feliponi. 2025. "Agreement Between Tele- and Face-to-Face Assessment of Neuromotor Development in High-Risk Children" Applied Sciences 15, no. 2: 723. https://doi.org/10.3390/app15020723
APA StyleRubio-López, A. I., Valenza, M. C., Raya-Benítez, J., Valenza-Peña, G., Cabrera-Martos, I., López-López, L., & Benítez-Feliponi, Á. (2025). Agreement Between Tele- and Face-to-Face Assessment of Neuromotor Development in High-Risk Children. Applied Sciences, 15(2), 723. https://doi.org/10.3390/app15020723