Intraoral Scanning Versus Conventional Methods for Obtaining Full-Arch Implant-Supported Prostheses: A Systematic Review with Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
Author and Year of Publication | Design | Bias Scale | Country | Randomization | Average Age (Min–Max) | Groups | Region | Scanner | Type of Prosthesis (N° of Implants) | Infrastructure | Trademark | Length × Diameter of Implants | Follow-Up (M) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cappare et al., 2019 [6] | RCT | II | Italy | Yes | 64.4 (48–72) | CG and DG | Mx | Carestream CS 3600 | Full-arch (6) | Metallic | CSR Implant | 13; 15–3.8; 4.2 | 24 |
Cattoni et al., 2021 [20] | RCT | II | Italy | Yes | 46–85 | GC and GD | Mx and Md | MyRay 3Di TS, Cefla, Imola, BO, Italy | Full-arch (6) | Zirconia | Winsix TTX | 13–15; 3.3; 3.8 | 48 |
Chochlidakis et al., 2020 [21] | Prospective | III-2 | USA | No | NR | CG and GD | Mx | True Definition 3M | Full-arch (6) | Titanium | NR | NR | NR |
Elawady et al., 2024 [8] | RCT | II | Egypt | Yes | 56 | CG andGD | Mx | ios-i-500 Medit | Full-arch (6) | CoCr | Nobel | NR | 6, 12, 24 M |
Eldint et al., 2024 [22] | RCT | II | Egypt | Yes | 67.1 | CG and DG | Md | Omnicam (Dentsply Sirona, Charlotte, NC, USA) | Overdenture (2) | Titanium | Neobiotech | NR | NR |
Gherlone et al., 2015 [3] | Prospective | III-3 | Italy | Yes | 56.3 | DG | Mx and Md | Lava COS (3M) | Full-arch (4) | Metallic (NR) | Winsix BioSAFin | 13; 15–3.8; 4.5 | 12 |
Gherlone et al., 2016 [4] | Prospective | III-1 | Italy | Yes | 57.2 (43–70) | CG and GD | Mx and Md | Trios (3 shape) | Full-arch (4) | CoCr | NR | 12; 15.5–3.75; 4.3 | 12 |
Klein et al., 2023 [23] | Retrospective | III-3 | USA | No | 70.6 | DG | Mx and Md | NEXUS IOS | Full-arch | Titanium | ** | NR | 12 M |
Mangano et al., 2019 [9] | Prospective | III-3 | Russian | No | 68.8 (58–76) | DG | Mx | Carestream CS 3600 | Overdenture (4) | Zirconia | BTSafe | NR | 12 |
Papaspyridakos et al., 2023 [24] | Retrospective | III-3 | USA | No | NR | DG | Mx and Md | Trios 3; bench scanner (Dental Wings 7) | Full-arch (4, 5, or 6) | PEEK | Straumman and Nobel | 8; 10; 12; 14–3.3; 3.75; 4.1; 4.8 | NR |
Papaspyridakos et al., 2023 [25] | Retrospective | III-3 | USA | No | NR | DG | Md | Trios 3 | Full-arch (4, 5, or 6) | Zirconia | Straumman and Nobel | NR | NR |
Author and Year of Publication | Patients | Impl. (CG) | Impl. (DG) | Prosthesis | Survival Impl./Prosthesis | Adaptation | Marginal Bone Loss (mm) | Scanning/Impression Time | Technical/Biological Complications |
---|---|---|---|---|---|---|---|---|---|
Cappare et al., 2019 [6] | 50 | 150 | 150 | 50 | 100% | 100% | DG (1.11 ± 0.54); CG (1.07 ± 0.66), p > 0.05 | DG (08.59 ± 2.46) < CG (16.45 ± 4.49) (p < 0.05) | CG (0/25); DG (0/25) |
Cattoni et al., 2021 [20] | 50 | 100 | 100 | 50 | CG (2/100 implantes: 98%) | 100% | DG (0.83 ± 0.11); CG (1.12 ± 0.26), p < 0.0001 | NR | Biol.: CG: 3, DG = 0; Techn.: CG = 8, DG = 4 |
Chochlidakis et al., 2020 [21] | 16 | 83 | 83 | NR | NR | 100% | NR | NR | NR |
Elawady et al., 2024 [8] | 28 | 84 | 84 | 28 | 100% (implant); Prosth: CG—8/14; DG—4/14. | NR | CG (1.28 ± 0.016); DG (1.14 ± 0.02) −24 M | NR | CG (19); DG (12) |
Eldin et al., 2024 [22] | 36 | 36 | 36 | 36 | NR | CG = DG ** | NR | NR | NR |
Gherlone et al., 2015 [3] | 14 | NR | 56 | 14 | 100% | 100% | Mx (1.07 ± 0.99 A); Md (1.02 ± 0.72 A); Mx (1.07 ± 0.81 T); Md (1.1 ± 0.89 T) | NR | 0 |
Gherlone et al., 2016 [4] | 25 | 60 | 60 | 30 | 100% | 100% | DG (1.13 ± 0.66 A); (1.06 ± 0.91 T); CG: (1.08 ± 0.77 Axial); (1.09 ± 0.32 Tilted) | DG (07.57 ± 3.08) < CG (18.23 ± 5.38) (p < 0.05) | CG (1/15); DG(0/15) |
Klein et al., 2023 [23] | 29 | NR | 203 | 37 | 100% | 100 | <3.00 mm | NR | Peri-implant mucositis (n = 1) after six months; zirconia decementation (n = 1), zirconia fracture (n = 1) |
Mangano et al., 2019 [9] | 15 | NR | 60 | 15 | 100% | 80% | NR | NR | Adaptation (3/15); periimpl: (1/15); fractured tooth (2/15) |
Papaspyridakos et al., 2023 [24] | 27 | 121 Max. | 83 Max. | 36 | NR | Mx = Md *** | NR | NR | NR |
Papaspyridakos et al., 2023 [25] | 35 | NR | 245 | 45 | NR | 86.70% | NR | NR | Adap. scan body poligonal 70% (14/20) Adap. scan body cylindrical 100% (25/25) |
3. Results
3.1. Meta-Analysis
3.1.1. Technical and Biological Complications
3.1.2. Marginal Bone Loss
3.1.3. Time Required for Scanning and Clinical Impression
3.2. Risk of Bias in Studies
3.3. Evaluating the Certainty of Evidence
4. Discussion
5. Conclusions
- The survival rates and predictability of full-arch fixed prostheses created using the intraoral scanning method are comparable to those achieved with conventional impression techniques.
- The rates of technical and biological complications, as well as marginal bone loss, have shown similar outcomes for both the intraoral scanning method and conventional impressions.
- The clinical time required to perform procedures was significantly shorter when using the intraoral scanning method compared to the conventional technique, both at the implant and patient levels. However, the number of repeated procedures was lower with the traditional impression method. It is important to note that only a limited number of studies were included in this analysis.
- More prospective and controlled clinical studies are needed to strengthen clinical practices and recommendations.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goiato, M.C.; dos Santos, D.M.; Santiago, J.F., Jr.; Moreno, A.; Pellizzer, E.P. Longevity of dental implants in type IV bone: A systematic review. Int. J. Oral Maxillofac. Surg. 2014, 43, 1108–1116. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Faverani, L.P.; Junior, J.F.S.; Sukotjo, C.; Yuan, J.C.-C. Attachment systems for mandibular implant-supported overdentures: A systematic review and meta-analysis of randomized controlled trials. J. Prosthet. Dent. 2024, 132, 354–368. [Google Scholar] [CrossRef] [PubMed]
- Gherlone, E.F.; Ferrini, F.; Crespi, R.; Gastaldi, G.; Capparé, P. Digital Impressions for Fabrication of Definitive “All-on-Four” Restorations. Implant. Dent. 2015, 24, 125–129. [Google Scholar] [CrossRef]
- Gherlone, E.; Capparé, P.; Vinci, R.; Ferrini, F.; Gastaldi, G.; Crespi, R. Conventional Versus Digital Impressions for “All-on-Four” Restorations. Int. J. Oral Maxillofac. Implants 2016, 31, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Tallarico, M.; Xhanari, E.; Kim, Y.-J.; Cocchi, F.; Martinolli, M.; Alushi, A.; Meloni, S.M. Accuracy of computer-assisted template-based implant placement using conventional impression and scan model or intraoral digital impression: A randomised controlled trial with 1 year of follow-up. Int. J. Oral Implantol. 2019, 12, 197–206. [Google Scholar]
- Cappare, P.; Sannino, G.; Minoli, M.; Montemezzi, P.; Ferrini, F. Conventional versus Digital Impressions for Full Arch Screw-Retained Maxillary Rehabilitations: A Randomized Clinical Trial. Int. J. Environ. Res. Public Health 2019, 16, 829. [Google Scholar] [CrossRef] [PubMed]
- Papaspyridakos, P.; Rajput, N.; Kudara, Y.; Weber, H. Digital Workflow for Fixed Implant Rehabilitation of an Extremely Atrophic Edentulous Mandible in Three Appointments. J. Esthet. Restor. Dent. 2017, 29, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Elawady, D.M.; Denewar, M.; Alqutaibi, A.Y.; Ibrahim, W.I. Clinical assessment of maxillary screw-retained implant prosthesis fabricated from digital versus conventional full- arch implant impression. A randomized controlled clinical trial. International. J. Comput. Dent. 2024, 1–27. [Google Scholar] [CrossRef]
- Mangano, F.; Mangano, C.; Margiani, B.; Admakin, O. Combining Intraoral and Face Scans for the Design and Fabrication of Computer-Assisted Design/Computer-Assisted Manufacturing (CAD/CAM) Polyether-Ether-Ketone (PEEK) Implant-Supported Bars for Maxillary Overdentures. Scanning 2019, 2019, 4274715. [Google Scholar] [CrossRef]
- Alsharbaty, M.H.M.; Alikhasi, M.; Zarrati, S.; Shamshiri, A.R. A Clinical Comparative Study of 3-Dimensional Accuracy between Digital and Conventional Implant Impression Techniques. J. Prosthodont. 2019, 28, e902–e908. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Lin, Y.; Cui, H.Y.; Di, P. Immediate loading of multiple splinted implants via complete digital workflow: A pilot clinical study with 1-year follow-up. Clin. Implant. Dent. Relat. Res. 2019, 21, 446–453. [Google Scholar] [CrossRef]
- Rech-Ortega, C.; Fernandez-Estevan, L.; Sola-Ruiz, M.; Agustin-Panadero, R.; Labaig-Rueda, C. Comparative in vitro study of the accuracy of impression techniques for dental implants: Direct technique with an elastomeric impression material versus intraoral scanner. Med. Oral Patol. Oral Cir. Bucal. 2019, 24, E89–E95. [Google Scholar] [CrossRef] [PubMed]
- Mühlemann, S.; Greter, E.A.; Park, J.; Hämmerle, C.H.F.; Thoma, D.S. Precision of digital implant models compared to conventional implant models for posterior single implant crowns: A within-subject comparison. Clin. Oral Implant. Res. 2018, 29, 931–936. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0. The Cochrane Collaboration. 2011. Available online: http://handbook-5-1.cochrane.org (accessed on 3 December 2024).
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. he PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- NHMRC. National Health and Medical Research Council. How to Use the Evidence: Assessment and Application of Scientific Evidence. Available online: https://www.mja.com.au/sites/default/files/NHMRC.levels.of.evidence.2008-09.pdf (accessed on 15 October 2024).
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [PubMed]
- Cattoni, F.; Chirico, L.; Merlone, A.; Manacorda, M.; Vinci, R.; Gherlone, E.F. Digital Smile Designed Computer-Aided Surgery versus Traditional Workflow in “All on Four” Rehabilitations: A Randomized Clinical Trial with 4-Years Follow-Up. Int. J. Environ. Res. Public Health 2021, 18, 3449. [Google Scholar] [CrossRef] [PubMed]
- Chochlidakis, K.; Papaspyridakos, P.; Tsigarida, A.; Romeo, D.; Chen, Y.; Natto, Z.; Ercoli, C. Digital Versus Conventional Full-Arch Implant Impressions: A Prospective Study on 16 Edentulous Maxillae. J. Prosthodont. 2020, 29, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Eldin, B.S.G.; Talaat, I.A.; Nawar, N.H.H.; Mohamed, A.M.A. Effect of different fabrication workflows on the passive fit of screw-retained bar splinting two interforaminal implants: A parallel blinded randomised clinical trial. BMC Oral Health 2024, 24, 410. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.; Tuminelli, F.J.; Sallustio, A.; Giglio, G.D.; Lerner, H.; Berg, R.W.; Waltuch, A. Full-arch restoration with the NEXUS IOS® system: A retrospective clinical evaluation of 37 restorations after a one year of follow-up. J. Dent. 2023, 139, 104741. [Google Scholar] [CrossRef] [PubMed]
- Papaspyridakos, P.; De Souza, A.; Finkelman, M.; Sicilia, E.; Gotsis, S.; Chen, Y.; Vazouras, K.; Chochlidakis, K. Digital vs Conventional Full-Arch Implant Impressions: A Retrospective Analysis of 36 Edentulous Jaws. J. Prosthodont. 2023, 32, 325–330. [Google Scholar] [CrossRef]
- Papaspyridakos, P.; Vazouras, K.; Gotsis, S.; Bokhary, A.; Sicilia, E.; Kudara, Y.; Bedrossian, A.; Chochlidakis, K. Complete digital workflow for prosthesis prototype fabrication with double digital scanning: A retrospective study with 45 edentulous jaws. J. Prosthodont. 2023, 32, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Annibali, S.; Bignozzi, I.; Cristalli, M.P.; Graziani, F.; La Monaca, G.; Polimeni, A. Peri-implant marginal bone level: A systematic review and meta-analysis of studies comparing platform switching versus conventionally restored implants. J. Clin. Periodontol. 2012, 39, 1097–1113. [Google Scholar] [CrossRef] [PubMed]
- Atieh, M.A.; Ibrahim, H.M.; Atieh, A.H. Platform Switching for Marginal Bone Preservation Around Dental Implants: A Systematic Review and Meta-Analysis. J. Periodontol. 2010, 81, 1350–1366. [Google Scholar] [CrossRef] [PubMed]
- Santiago, J.; Batista, V.d.S.; Verri, F.; Honório, H.; de Mello, C.; Almeida, D.; Pellizzer, E. Platform-switching implants and bone preservation: A systematic review and meta-analysis. Int. J. Oral Maxillofac. Surg. 2016, 45, 332–345. [Google Scholar] [CrossRef] [PubMed]
- Ni Gu, D.; Liu, Y.S.; Pan, S.X.; Wang, P.F.; Wang, B.; Liu, J.Z.; Gao, W.H.; Zhou, Y.S. Clinical Efficiency and Patient Preference of Immediate Digital Impression after Implant Placement for Single Implant-Supported Crown. Chin. J. Dent. Res. 2019, 22, 21–28. [Google Scholar] [CrossRef]
- Ferrini, F.; Capparé, P.; Vinci, R.; Gherlone, E.F.; Sannino, G. Digital versus Traditional Workflow for Posterior Maxillary Rehabilitations Supported by One Straight and One Tilted Implant: A 3-Year Prospective Comparative Study. BioMed Res. Int. 2018, 2018, 4149107. [Google Scholar] [CrossRef] [PubMed]
- Jemt, T. In vivo measurements of precision of fit involving implant-supported prostheses in the edentulous jaw. Int. J. Oral Maxillofac. Implant. 1996, 11, 151–158. [Google Scholar]
- Jemt, T.; Book, K. Prosthesis misfit and marginal bone loss in edentulous implant patients. Int. J. Oral Maxillofac. Implant. 1996, 11, 620–625. [Google Scholar]
- Joda, T.; Brägger, U. Patient-centered outcomes comparing digital and conventional implant impression procedures: A randomized crossover trial. Clin. Oral Implant. Res. 2016, 27, e185–e189. [Google Scholar] [CrossRef] [PubMed]
- Willmann, C.; Deschamps, A.; Taddei-Gross, C.; Musset, A.-M.; Lai, C.; Etienne, O. Intraoral optical impression versus conventional impression for fully edentulous maxilla: An in vivo comparative study. Int. J. Comput. Dent. 2024, 27, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, A.; Singh, S.V.; Aggarwal, H.; Gupta, A. Effect of mucostatic and selective pressure impression techniques on residual ridge resorption in individuals with different bone mineral densities: A prospective clinical pilot study. J. Prosthet. Dent. 2019, 121, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Takaichi, A.; Fueki, K.; Murakami, N.; Ueno, T.; Inamochi, Y.; Wada, J.; Arai, Y.; Wakabayashi, N. A systematic review of digital removable partial dentures. Part II: CAD/CAM framework, artificial teeth, and denture base. J. Prosthodont. Res. 2022, 66, 53–67. [Google Scholar] [CrossRef]
- Suganna, M.; Kausher, H.; Ahmed, S.T.; Alharbi, H.S.; Alsubaie, B.F.; Ds, A.; Haleem, S.; Ali, A.B.M.R. Contemporary Evidence of CAD-CAM in Dentistry: A Systematic Review. Cureus 2022, 14, e31687. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Wang, Z.; Sun, Y.; Zhou, Y. Fully digital workflow for the design and manufacture of prostheses for maxillectomy defects. J. Prosthet. Dent. 2020, 126, 257–261. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieira, F.L.; Carnietto, M.; Cerqueira Filho, J.R.A.; Bordini, E.A.F.; Oliveira, H.F.F.; Pegoraro, T.A.; Santiago Junior, J.F. Intraoral Scanning Versus Conventional Methods for Obtaining Full-Arch Implant-Supported Prostheses: A Systematic Review with Meta-Analysis. Appl. Sci. 2025, 15, 533. https://doi.org/10.3390/app15020533
Vieira FL, Carnietto M, Cerqueira Filho JRA, Bordini EAF, Oliveira HFF, Pegoraro TA, Santiago Junior JF. Intraoral Scanning Versus Conventional Methods for Obtaining Full-Arch Implant-Supported Prostheses: A Systematic Review with Meta-Analysis. Applied Sciences. 2025; 15(2):533. https://doi.org/10.3390/app15020533
Chicago/Turabian StyleVieira, Fernanda L., Maísa Carnietto, José R. A. Cerqueira Filho, Ester A. F. Bordini, Hiskell F. F. Oliveira, Thiago A. Pegoraro, and Joel F. Santiago Junior. 2025. "Intraoral Scanning Versus Conventional Methods for Obtaining Full-Arch Implant-Supported Prostheses: A Systematic Review with Meta-Analysis" Applied Sciences 15, no. 2: 533. https://doi.org/10.3390/app15020533
APA StyleVieira, F. L., Carnietto, M., Cerqueira Filho, J. R. A., Bordini, E. A. F., Oliveira, H. F. F., Pegoraro, T. A., & Santiago Junior, J. F. (2025). Intraoral Scanning Versus Conventional Methods for Obtaining Full-Arch Implant-Supported Prostheses: A Systematic Review with Meta-Analysis. Applied Sciences, 15(2), 533. https://doi.org/10.3390/app15020533