Hybrid Rule-Based and Reinforcement Learning for Urban Signal Control in Developing Cities: A Systematic Literature Review and Practice Recommendations for Indonesia
Abstract
1. Introduction
2. Review Methodology
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Screening and Selection
2.4. Data Extraction and Synthesis
2.5. Quality Appraisal
3. Operating Context for Traffic Signal Control in Developing Cities
3.1. Typology of Signal Control in Practice
3.2. Indonesia: Conditions and Constraints
3.3. Priority Scenarios for Improvement
3.4. Technical Challenges in Indonesian and LMIC Corridors
3.5. Measurement and Auditability Under Limited Sensing
4. Hybrid Architecture for Urban Signal Control
4.1. Rule-Based Coordination on Lightweight Controllers
4.1.1. Principles & Architecture
4.1.2. Reference–Follower Role Policy
4.1.3. Hardware Implementation
- Clocks are kept aligned via RTC, so that offsets remain meaningful [53].
- The reference issues a lightweight release signal each cycle; followers queue a bounded Δoffset and commit only at the next cycle boundary.
- Δoffset proposals are accepted or reverted based on AoG and PCD trends computed from controller events, yielding a transparent, performance-based workflow for small offset trims [54].
- Reads and writes can be executed through NTCIP 1202 v04 with SNMPv3 to remain vendor-neutral and fully logged [55].
4.2. Reactive MARL Offset Learning Under an Authoritative Plan
- State.
- 2.
- Action.
- 3.
- Reward.
4.3. Comparison with Other Hybrid Traffic-Signal Control Approaches
5. Sensing and Communications Under Limited Infrastructure
5.1. Indonesia-Specific Operating Constraints for Sensing and Communications
- Traffic is motorcycle-dominated and heterogeneous.
- 2.
- Camera-Only Sensing (Little to No Other Field Detectors)
- 3.
- No national standard or designated band for traffic-signal communications.
5.2. Integrated Detection Strategy with Multi-Sensor Fusion
5.3. Communications Architecture
5.3.1. Intra-Intersection Communication
5.3.2. Inter-Intersection Communication
5.3.3. Coordinator to TMC Monitoring and Communications
5.4. Floating Sensors for Traffic Vehicles and TMC Integration
6. Roadmap for Hybrid Rule-Based and MARL Traffic Signal Control in Indonesia
- Governance, standards, and baselines.
- 2.
- Communications under Indonesian rules.
- 3.
- Pilot a short reference–follower corridor.
- 4.
- Bounded and safe MARL.
- 5.
- Camera-first sensing with minimal fusion.
- 6.
- TMC integration and data pipelines.
- 7.
- Scale with proven adaptive operations.
- 8.
- Compliance and spectrum housekeeping.
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
5G | Fifth-Generation Mobile Network. |
ACS-Lite | Adaptive Control Software Lite. |
ANPR | Automatic Number Plate Recognition. |
AoG | Arrivals on Green. |
APILL | Alat Pemberi Isyarat Lalu Lintas (traffic signal devices; Indonesian regulation). |
ASC | Actuated Signal Controller |
ASCE JTE (Part A) | ASCE Journal of Transportation Engineering, Part A: Systems. |
ATCS | Area Traffic Control System. |
ATMS | Advanced Traffic Management System. |
ATSAC | Automated Traffic Surveillance and Control (Los Angeles). |
ATSPM | Automated Traffic Signal Performance Measures. |
BMS | Bus Management System (ticketing data). |
BSFR | Base Saturation Flow Rate. |
ByteTrack | Multi-object tracking method. |
CCTV | Closed-Circuit Television. |
CNN | Convolutional Neural Network. |
DeepSORT | Deep Simple Online and Realtime Tracking. |
ERP | Electronic Road Pricing. |
FHWA | Federal Highway Administration. |
GPS | Global Positioning System. |
IoT | Internet of Things. |
LMIC | Low- and Middle-Income Countries. |
LoRa | Long Range (radio). |
LoRaWAN | Long Range Wide Area Network. |
LPWAN | Low-Power Wide-Area Network. |
LTA | Land Transport Authority (Singapore). |
LTE | Long-Term Evolution (4G). |
MARL | Multi-Agent Reinforcement Learning. |
MAXBAND | Multi-Band Arterial Progression Optimization. |
MKJI | Manual Kapasitas Jalan Indonesia (Indonesian Highway Capacity Manual). |
NTCIP | National Transportation Communications for Intelligent Transportation System Protocol. |
PCD | Purdue Coordination Diagram. |
PCE | Passenger Car Equivalent. |
PTW | Powered Two-Wheeler. |
RL | Reinforcement Learning. |
SCATS | Sydney Coordinated Adaptive Traffic System. |
SCOOT | Split Cycle and Offset Optimization Technique. |
SHC | Signal Head Control |
SNMPv3 | Simple Network Management Protocol, Version 3. |
SUMO | Simulation of Urban Mobility. |
TMC | Traffic Management Center. |
TOD | Time-of-Day (plans). |
TOPIS | Transport Operation and Information Service (Seoul). |
TRPS | Traffic-Responsive Plan Selection. |
TRR | Transportation Research Record. |
UTC | Urban Traffic Control. |
V2X | Vehicle-to-Everything (communications). |
VIVDS | Video Image Vehicle Detection System. |
YOLO | You Only Look Once (object detection). |
References
- Majstorović, Ž.; Tišljarić, L.; Ivanjko, E.; Carić, T. Urban Traffic Signal Control under Mixed Traffic Flows: Literature Review. Appl. Sci. 2023, 13, 4484. [Google Scholar] [CrossRef]
- Michailidis, P.; Michailidis, I.; Lazaridis, C.R.; Kosmatopoulos, E. Traffic Signal Control via Reinforcement Learning: A Review on Applications and Innovations. Infrastructures 2025, 10, 114. [Google Scholar] [CrossRef]
- Sugiarto, S.; Saleh, S.M.; Darma, Y.; Rusdi, M.; A’yUni, Q.; Fazila, T.S.; Rahma, R. Base saturation flow rate (BSFR) and its effect on performance of pretimed signalized intersection with non-lane based urban heterogeneous traffic. PLoS ONE 2024, 19, e0306112. [Google Scholar] [CrossRef]
- Noaeen, M.; Naik, A.; Goodman, L.; Crebo, J.; Abrar, T.; Abad, Z.S.H.; Bazzan, A.L.; Far, B. Reinforcement learning in urban network traffic signal control: A systematic literature review. Expert Syst. Appl. 2022, 199, 116830. [Google Scholar] [CrossRef]
- Xiao, F.; Lu, J.; Li, L.; Tu, W.; Li, C. Advances in reinforcement learning for traffic signal control: A review of recent progress. Intell. Transp. Infrastruct. 2025, 4, liaf009. [Google Scholar] [CrossRef]
- Wei, H.; Xu, N.; Zhang, H.; Zheng, G.; Zang, X.; Chen, C.; Zhang, W.; Zhu, Y.; Xu, K.; Li, Z. CoLight. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 3–7 November 2019; ACM: New York, NY, USA, 2019; pp. 1913–1922. [Google Scholar] [CrossRef]
- Kushwaha, A.; Ravish, K.; Lamba, P.; Kumar, P. A Survey of Safe Reinforcement Learning and Constrained MDPs: A Technical Survey on Single-Agent and Multi-Agent Safety. arXiv 2025. [Google Scholar] [CrossRef]
- Müller, A.; Sabatelli, M. Safe and Psychologically Pleasant Traffic Signal Control with Reinforcement Learning using Action Masking. arXiv 2022. [Google Scholar] [CrossRef]
- Alshiekh, M.; Bloem, R.; Ehlers, U.; Könighofer, B.; Niekum, S.; Topcu, U. Safe Reinforcement Learning via Shielding. [Online]. Available online: https://www.aaai.org (accessed on 17 August 2025).
- Zheng, Y.; Luo, J.; Gao, H.; Zhou, Y.; Li, K. Pri-DDQN: Learning adaptive traffic signal control strategy through a hybrid agent. Complex Intell. Syst. 2025, 11, 47. [Google Scholar] [CrossRef]
- Han, Y.; Wang, M.; Leclercq, L. Leveraging reinforcement learning for dynamic traffic control: A survey and challenges for field implementation. Commun. Transp. Res. 2023, 3, 100104. [Google Scholar] [CrossRef]
- Miletić, M.; Ivanjko, E.; Gregurić, M.; Kušić, K. A review of reinforcement learning applications in adaptive traffic signal control. IET Intell. Transp. Syst. 2022, 16, 1269–1285. [Google Scholar] [CrossRef]
- Nasution, S.M.; Husni, E.; Kuspriyanto, K.; Yusuf, R. Heterogeneous Traffic Condition Dataset Collection for Creating Road Capacity Value. Big Data Cogn. Comput. 2023, 7, 40. [Google Scholar] [CrossRef]
- Chen, R.; Fang, F.; Sadeh, N. The Real Deal: A Review of Challenges and Opportunities in Moving Reinforcement Learning-Based Traffic Signal Control Systems Towards Reality. arXiv 2022. [Google Scholar] [CrossRef]
- A Joint Standard of AASHTO, ITE, and NEMA NTCIP 1202 v03A National Transportation Communications for ITS Protocol Object Definitions for Actuated Signal Controllers (ASC) Interface (Including FYA Errata). [Online]. 2019. Available online: https://www.ntcip.org (accessed on 17 August 2025).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Perry, R.; Whitmarsh, A.; Leach, V.; Davies, P. A comparison of two assessment tools used in overviews of systematic reviews: ROBIS versus AMSTAR-2. Syst. Rev. 2021, 10, 273. [Google Scholar] [CrossRef]
- Lunny, C.; Kanji, S.; Thabet, P.; Haidich, A.-B.; Bougioukas, K.I.; Pieper, D. Assessing the methodological quality and risk of bias of systematic reviews: Primer for authors of overviews of systematic reviews. BMJ Med. 2024, 3, e000604. [Google Scholar] [CrossRef]
- Horbachov, P.; Liubyi, Y.; Svichynskyi, S.; Muzylyov, D.; Ivanov, V. A comprehensive assessment of arterial signal coordination through a case study. Transp. Res. Interdiscip. Perspect. 2025, 29, 101321. [Google Scholar] [CrossRef]
- Alkaissi, Z.A. Effect of Signal Coordination on the Traffic Operation of Urban Corridor. Tikrit J. Eng. Sci. 2023, 30, 12–24. [Google Scholar] [CrossRef]
- Abdelaziz, S.L.; Abbas, M.M.; McGhee, C.C. Determination of Significant Critical Movements to Generate Traffic Scenarios for Large Arterial Networks. Transp. Res. Rec. J. Transp. Res. Board 2009, 2128, 202–216. [Google Scholar] [CrossRef]
- Wu, X.; Yang, H.; Mainali, B.; Pokharel, P.; Chiu, S. Development of platoon-based actuated signal control systems to coordinated intersections: Application in corridors in Houston. IET Intell. Transp. Syst. 2020, 14, 127–137. [Google Scholar] [CrossRef]
- Chia, I.; Wu, X.; Dhaliwal, S.S.; Thai, J.; Jia, X. Evaluation of Actuated, Coordinated, and Adaptive Signal Control Systems: A Case Study. J. Transp. Eng. Part A Syst. 2017, 143, 05017007. [Google Scholar] [CrossRef]
- Hansen, B.G.; Martin, P.T.; Perrin, H.J. SCOOT Real-Time Adaptive Control in a CORSIM Simulation Environment. Transp. Res. Rec. J. Transp. Res. Board 2000, 1727, 27–30. [Google Scholar] [CrossRef]
- Tian, Z.; Ohene, F.; Hu, P. Arterial Performance Evaluation on an Adaptive Traffic Signal Control System. Procedia Soc. Behav. Sci. 2011, 16, 230–239. [Google Scholar] [CrossRef]
- Moore, I.J.E.; Mattingly, S.P.; MacCarley, C.A.; McNally, M.G. Anaheim Advanced Traffic Control System Field Operations Test: A Technical Evaluation of SCOOT. Transp. Plan. Technol. 2005, 28, 465–482. [Google Scholar] [CrossRef]
- Ambarwati, L.; Pel, A.J.; Verhaeghe, R.; van Arem, B. Empirical analysis of heterogeneous traffic flow and calibration of porous flow model. Transp. Res. Part C Emerg. Technol. 2014, 48, 418–436. [Google Scholar] [CrossRef]
- Kariyana, I.M.; Suthanaya, P.A.; Wedagama, D.M.P.; Ariawan, I.M.A.; Dissanayake, D. The influence of motorcycle behavior on saturation flow rate at signalized intersections with and without exclusive stopping space for motorcycle (ESSM). IOP Conf. Ser. Earth Environ. Sci. 2021, 673, 012020. [Google Scholar] [CrossRef]
- Sulistio, H. Effect of Traffic Flow, Proportion of Motorcycle, Speed, Lane Width, and the Availabilities of Median and Shoulder on Motorcycle Accidents at Urban Roads in Indonesia. Open Transp. J. 2018, 12, 1–7. [Google Scholar] [CrossRef]
- Ministry of Transportation of Indonesia. Alat Pemberi Isyarat Lalu-Lintas [Traffic Signal Devices]. Legislation. [Online]. Available online: https://peraturan.bpk.go.id/Details/103764/permenhub-no-49-tahun-2014?utm_source=chatgpt.com (accessed on 17 August 2025).
- Pangestu, I.B.; Maimunah, M.; Hanafi, M. Traffic Congestion Detection Using YOLOv8 Algorithm With CCTV Data. PIKSEL Penelit. Ilmu Komput. Sist. Embed. Log. 2024, 12, 435–444. [Google Scholar] [CrossRef]
- Fahrunnisa, Z.; Rahmadwati, R.; Setyawan, R.A. Adaptive Traffic Light Signal Control Using Fuzzy Logic Based on Real-Time Vehicle Detection from Video Surveillance. J. Ilm. Tek. Elektro Komput. Dan Inform. 2024, 10, 235–251. [Google Scholar] [CrossRef]
- Kustija, J. SCATS (Sydney Coordinated Adaptive Traffic System) as A Solution to Overcome Traffic Congestion in Big Cities. Int. J. Res. Appl. Technol. 2023, 3, 1–14. [Google Scholar] [CrossRef]
- Federal Highway Administration. Automated Traffic Signal Performance Measures. Federal Highway Administration: Washington, DC, USA, 2020. [Online]. Available online: https://www.flickr.com/photos/sounderbruce/22448121975 (accessed on 17 August 2025).
- Tanaka, A.; Schroeder, P.B.; Trask, P.L.; Chase, T. Automated Traffic Signal Performance Measures; Kittelson & Associates, Inc.: Portland, OR, USA, 2019. [Google Scholar]
- Yulianto, B. Detector technology for demand responsive traffic signal control under mixed traffic conditions. In Proceedings of the 4th International Conference on Engineering, Technology, and Industrial Application (ICETIA), Surakarta, Indonesia, 13–14 December 2017; p. 040021. [Google Scholar] [CrossRef]
- Romero, D.D.; Prabuwono, A.S.; Hasniaty, A. A Review of Sensing Techniques for Real-time Traffic Surveillance. J. Appl. Sci. 2010, 11, 192–198. [Google Scholar] [CrossRef]
- Saldivar-Carranza, E.; Li, H.; Mathew, J.; Hunter, M.; Sturdevant, J.; Bullock, D.M. Deriving Operational Traffic Signal Performance Measures from Vehicle Trajectory Data. Transp. Res. Rec. J. Transp. Res. Board 2021, 2675, 1250–1264. [Google Scholar] [CrossRef]
- Day, C.M.; Bullock, D.M. Optimization of Traffic Signal Offsets with High Resolution Event Data. J. Transp. Eng. Part A Syst. 2020, 146. [Google Scholar] [CrossRef]
- Schultz, G.G.; Macfarlane, G.S.; Wang, B.; Graduate, E.; Assistant, R.; Mccuen, S. Evaluating the Quality of Signal Operations Using Signal Performance Measures. [Online]. Available online: https://www.udot.utah.gov/go/research (accessed on 17 August 2025).
- Tafidis, P.; Gholamnia, M.; Sajadi, P.; Vijayakrishnan, S.K.; Pilla, F. Evaluating the impact of urban traffic patterns on air pollution emissions in Dublin: A regression model using google project air view data and traffic data. Eur. Transp. Res. Rev. 2024, 16, 47. [Google Scholar] [CrossRef]
- Zhao, P.; Yuan, Y.; Guo, T. Extensible Hierarchical Multi-Agent Reinforcement-Learning Algorithm in Traffic Signal Control. Appl. Sci. 2022, 12, 12783. [Google Scholar] [CrossRef]
- Ma, J.; Wu, F. Feudal Multi-Agent Deep Reinforcement Learning for Traffic Signal Control. [Online]. Available online: https://www.ifaamas.org (accessed on 17 August 2025).
- Zou, Y.; Liu, R.; Li, Y.; Ma, Y.; Wang, G. Signal adaptive cooperative control of two adjacent traffic intersections using a two-stage algorithm. Expert Syst. Appl. 2021, 174, 114746. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, W.; Huang, X. A Dynamic Optimization Model for Adjacent Signalized Intersection Control Systems Based on the Stratified Sequencing Method. J. Highw. Transp. Res. Dev. (Engl. Ed.) 2016, 10, 85–91. [Google Scholar] [CrossRef]
- Kurniawan, F.; Jusoh, M.; Muminov, B.; Alam, H.; Dermawan, D.; Purnomo, M.J. Development of Coordinated Control of Vehicle Traffic Flow at Adjacent Intersection. Aviat. Electron. Inf. Technol. Telecommun. Electr. Control. (AVITEC) 2025, 7, 103. [Google Scholar] [CrossRef]
- Alam, H.; Kurniawan, F.; Widya, H. Hardware-Implemented Multi-Agent Coordination for Adaptive Traffic Control in Developing Regions: A Low-Cost Microcontroller Approach. In Proceedings of the 2nd International Conference on Science and Technology UISU (ICST), Online, 23–24 July 2025. [Google Scholar] [CrossRef]
- Li, W.; Ban, X. Connected Vehicle-Based Traffic Signal Coordination. Engineering 2020, 6, 1463–1472. [Google Scholar] [CrossRef]
- Shoup, G.E.; Bullock, D. Dynamic Offset Tuning Procedure Using Travel Time Data. Transp. Res. Rec. J. Transp. Res. Board 1999, 1683, 84–94. [Google Scholar] [CrossRef]
- Driessen, S.P.H.; Janssen, N.H.J.; Wang, L.; Palmer, J.L.; Nijmeijer, H. Experimentally Validated Extended Kalman Filter for UAV State Estimation Using Low-Cost Sensors. IFAC-Pap. 2018, 51, 43–48. [Google Scholar] [CrossRef]
- Kurniawan, F.; Dermawan, D.; Dinaryanto, O.; Irawati, M. Pre-Timed and Coordinated Traffic Controller Systems Based on AVR Microcontroller. TELKOMNIKA (Telecommun. Comput. Electron. Control) 2014, 12, 787. [Google Scholar] [CrossRef]
- Kurniawan, F.; Sajati, H.; Dinaryanto, O. Adaptive Traffic Controller Based On Pre-Timed System. TELKOMNIKA (Telecommun. Comput. Electron. Control) 2016, 14, 56. [Google Scholar] [CrossRef]
- Guo, H.; Crossley, P. Design of a Time Synchronization System Based on GPS and IEEE 1588 for Transmission Substations. IEEE Trans. Power Deliv. 2017, 32, 2091–2100. [Google Scholar] [CrossRef]
- Day, C.M.; Smaglik, E.J.; Bullock, D.M.; Sturdevant, J.R. FHWA/IN/JTRP-2008/9 Final Report Real-Time Arterial Traffic Signal Performance Measures. [Online]. 2008. Available online: https://www.fhwa.dot.gov/publications/research/operations/06083/index.cfm?utm_source=chatgpt.com (accessed on 21 August 2025).
- NTCIP 1202 v04 Actuated Signal Control (ASC). Institute of Transportation Engineers. [Online]. Available online: https://www.ite.org/technical-resources/topics/standards/ntcip-1202-v04-actuated-signal-control-asc/?utm_source=chatgpt.com (accessed on 18 August 2025).
- Federal Highway Administration. ACS Lite; Federal Highway Administration Research and Technology: McLean, VA, USA, 2008. [Google Scholar]
- Mishra, S.; Bhattacharya, D.; Gupta, A.; Singh, V.R. Adaptive traffic light cycle time controller using microcontrollers and crowdsource data of google apis for developing countries. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, IV-4/W7, 83–90. [Google Scholar] [CrossRef]
- Diaz, K.A.; Dailisan, D.; Sharaf, U.; Santos, C.; Gan, Q.; Uy, F.A.; Lim, M.T.; Bayen, A.M. Adaptive Coordination Offsets for Signalized Arterial Intersections using Deep Reinforcement Learning. arXiv 2022. [Google Scholar] [CrossRef]
- Kim, H.; Tak, H.; Yu, H.; Yeo, H. Hierarchical Traffic Signal Coordination with Priority-based Optimization via Deep Reinforcement Learning. Available online: https://trc-30.epfl.ch/wp-content/uploads/2024/09/TRC-30_paper_205.pdf (accessed on 17 August 2025).
- Park, S.; Han, E.; Park, S.; Jeong, H.; Yun, I. Deep Q-network-based traffic signal control models. PLoS ONE 2021, 16, e0256405. [Google Scholar] [CrossRef]
- Gu, J.; Lee, M.; Jun, C.; Han, Y.; Kim, Y.; Kim, J. Traffic Signal Optimization for Multiple Intersections Based on Reinforcement Learning. Appl. Sci. 2021, 11, 10688. [Google Scholar] [CrossRef]
- Kolat, M.; Kővári, B.; Bécsi, T.; Aradi, S. Multi-Agent Reinforcement Learning for Traffic Signal Control: A Cooperative Approach. Sustainability 2023, 15, 3479. [Google Scholar] [CrossRef]
- Jiang, Q.; Qin, M.; Shi, S.; Sun, W.; Zheng, B. Multi-Agent Reinforcement Learning for Traffic Signal Control Through Universal Communication Method. [Online]. 2022. Available online: https://github.com/ (accessed on 17 August 2025).
- Meess, H.; Gerner, J.; Hein, D.; Schmidtner, S.; Elger, G.; Bogenberger, K. First steps towards real-world traffic signal control optimisation by reinforcement learning. J. Simul. 2024, 18, 957–972. [Google Scholar] [CrossRef]
- Mathe, S.E.; Kondaveeti, H.K.; Vappangi, S.; Vanambathina, S.D.; Kumaravelu, N.K. A comprehensive review on applications of Raspberry Pi. Comput. Sci. Rev. 2024, 52, 100636. [Google Scholar] [CrossRef]
- Bouktif, S.; Cheniki, A.; Ouni, A. Traffic Signal Control Using Hybrid Action Space Deep Reinforcement Learning. Sensors 2021, 21, 2302. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Ding, Q.; Du, Y.; Liu, D.; Ren, S. Intelligent Traffic Control Decision-Making Based on Type-2 Fuzzy and Reinforcement Learning. Electronics 2024, 13, 3894. [Google Scholar] [CrossRef]
- Li, J.; Lin, S.; Shi, T.; Tian, C.; Mei, Y.; Song, J.; Zhan, X.; Li, R. A Fully Data-Driven Approach for Realistic Traffic Signal Control Using Offline Reinforcement Learning. arXiv 2022. [Google Scholar] [CrossRef]
- Lian, F.; Chen, B.; Zhang, K.; Miao, L.; Wu, J.; Luan, S. Adaptive traffic signal control algorithms based on probe vehicle data. J. Intell. Transp. Syst. 2021, 25, 41–57. [Google Scholar] [CrossRef]
- Saadi, A.; Abghour, N.; Chiba, Z.; Moussaid, K.; Ali, S. A survey of reinforcement and deep reinforcement learning for coordination in intelligent traffic light control. J. Big. Data 2025, 12, 84. [Google Scholar] [CrossRef]
- Li, M.; Pan, X.; Liu, C.; Li, Z. Federated deep reinforcement learning-based urban traffic signal optimal control. Sci. Rep. 2025, 15, 11724. [Google Scholar] [CrossRef] [PubMed]
- Othman, K.; Wang, X.; Shalaby, A.; Abdulhai, B. Multimodal adaptive traffic signal control: A decentralized multiagent reinforcement learning approach. Multimodal Transp. 2025, 4, 100190. [Google Scholar] [CrossRef]
- Satheesh, A.; Powell, K. A Constrained Multi-Agent Reinforcement Learning Approach to Autonomous Traffic Signal Control. arXiv 2025. [Google Scholar] [CrossRef]
- Huang, X.; Wu, D.; Jenkin, M.; Boulet, B. ModelLight: Model-Based Meta-Reinforcement Learning for Traffic Signal Control. arXiv 2021, 1–8. [Google Scholar] [CrossRef]
- Bie, Y.; Ji, Y.; Ma, D. Multi-agent Deep Reinforcement Learning collaborative Traffic Signal Control method considering intersection heterogeneity. Transp. Res. Part C Emerg. Technol. 2024, 164, 104663. [Google Scholar] [CrossRef]
- Jia, W.; Ji, M. Multi-Agent Deep Reinforcement Learning for Large-Scale Traffic Signal Control with Spatio-Temporal Attention Mechanism. Appl. Sci. 2025, 15, 8605. [Google Scholar] [CrossRef]
- Zhang, X.; Chan, L.S.; Nassir, N.; Sarvi, M. Towards fair lights: A multi-agent masked deep reinforcement learning for efficient corridor-level traffic signal control. Commun. Transp. Res. 2025, 5, 100203. [Google Scholar] [CrossRef]
- Dhulkefl, E.J.; Abdulsattar, A.W.; Khudhur, Z.M.; Mahmood, T.A. Design of a Hybrid Intelligent Traffic Signal Control System Using Nearest Neighbor Algorithm and Deep Reinforcement Learning with SUMO Simulator. J. Res. Eng. Comput. Sci. 2025, 3, 31–40. [Google Scholar] [CrossRef]
- Muller, A.; Rangras, V.; Ferfers, T.; Hufen, F.; Schreckenberg, L.; Jasperneite, J.; Schnittker, G.; Waldmann, M.; Friesen, M.; Wiering, M. Towards Real-World Deployment of Reinforcement Learning for Traffic Signal Control. In Proceedings of the 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), Pasadena, CA, USA, 13–16 December 2021. [Google Scholar] [CrossRef]
- Flir Helps Indonesia Start Tackling Congestion. ITS International. [Online]. Available online: https://www.itsinternational.com/its4/feature/flir-helps-indonesia-start-tackling-congestion#:~:text=Extensive%20TrafiCam%20site (accessed on 18 August 2025).
- Intelligent Transport Systems. A Singapore Government Agency. [Online]. Available online: https://www.lta.gov.sg/content/ltagov/en/getting_around/driving_in_singapore/intelligent_transport_systems.html#:~:text=Collectively%20called%20the%20Intelligent%20Transport,to%20maximise%20road%20network%20efficiency (accessed on 18 August 2025).
- TOPIS: Seoul’s Intelligent Traffic System (ITS). Seoul Solution. [Online]. Available online: https://seoulsolution.kr/en/content/2595#:~:text=The%20Seoul%20Metropolitan%20Government%20discloses,Twitter%2C%20etc (accessed on 18 August 2025).
- The Brazilian City of Curitiba Awards Indra Its Largest Intelligent Urban Transport and Mobility Project for €15 Million. IndraCompany. [Online]. Available online: https://www.indracompany.com/en/noticia/brazilian-city-curitiba-awards-indra-largest-intelligent-urban-transport-mobility-project#:~:text=The%20project%20includes%20new%20Intelligent,model%20based%20on%20predictive%20algorithms (accessed on 18 August 2025).
- Intelligent Transport Systems Intelligent Transport Systems. Kenya Urban Roads Authority. [Online]. Available online: https://kura.go.ke/news/intelligent-transport-systems/13363/#:~:text=The%20Authority%20has%20continued%20to,located%20at%20the%20KURA%20headquarters (accessed on 18 August 2025).
- Vu, T.; Thai, H.N.; Pham, V.N.; Vu, H.T.; Luong, A.T.; Van Luong, T. Counting Mixed Traffic Volumes at Motorcycle-Dominated Intersections by Using Computer Vision. Int. J. Intell. Transp. Syst. Res. 2025, 23, 146–164. [Google Scholar] [CrossRef]
- Beza, A.D.; Xie, Z.; Ramezani, M.; Levinson, D. From lane-less to lane-free: Implications in the era of automated vehicles. Transp. Res. Part C Emerg. Technol. 2025, 170, 104898. [Google Scholar] [CrossRef]
- Singh, M.K.; Rao, K.R. Simulation of Signalized Intersection with Non-Lane-Based Heterogeneous Traffic Conditions Using Cellular Automata. Transp. Res. Rec. J. Transp. Res. Board 2024, 2678, 909–930. [Google Scholar] [CrossRef]
- Pahlevi, R.; Kristanto, B. The effectiveness of atcs use policy in improving traffic smoothness and safety in banjarbaru city. J. Soc. Sci. 2025, 6, 1–7. [Google Scholar] [CrossRef]
- Oktorini, R.; Barus, L.S. Integration of Public Transportation in Smart Transportation System (Smart Transportation System) in Jakarta. Konfrontasi J. Kult. Ekon. Dan Perubahan Sos. 2022, 9, 341–347. [Google Scholar] [CrossRef]
- Tania, N.; Rachmawati, R. Area Traffic Control System (ATCS) for Supporting Urban Traffic Management in DKI Jakarta. In Proceedings of the 2022 7th International Conference on Electric Vehicular Technology (ICEVT), Bali, Indonesia, 14–16 September 2022; pp. 103–108. [Google Scholar] [CrossRef]
- Syah, A.F.; Aminudin, M.S.; Salsabila, N.; Rizqi, D.I. Leveraging Artificial Intelligence for Smart City Development: Social and Governance Impacts in Jakarta. In Proceedings of the Internasional Seminar on Arts, Artificial Intelligence & Society; 2024. Available online: https://www.google.com.hk/url?sa=t&source=web&rct=j&opi=89978449&url=https://proceeding.ikj.ac.id/index.php/UXA/article/download/118/111/385&ved=2ahUKEwjDqP6x04eQAxWcBdsEHeFHFNYQFnoECBkQAQ&usg=AOvVaw3Vvxu6ndjkCHDESqCinoro (accessed on 17 August 2025).
- Hounsell, N.B.; Shrestha, B.P.; Piao, J.; McDonald, M. Review of urban traffic management and the impacts of new vehicle technologies. IET Intell. Transp. Syst. 2009, 3, 419–428. [Google Scholar] [CrossRef]
- Otto, T.; Partzsch, I.; Holfeld, J.; Klöppel-Gersdorf, M.; Ivanitzki, V. Designing a C-ITS Communication Infrastructure for Traffic Signal Priority of Public Transport. Appl. Sci. 2023, 13, 7650. [Google Scholar] [CrossRef]
- Handoko, C.; Zhang, X. Case Study on The Palapa Ring Project: Prospects for Sub-National Competitiveness; Asia Competitiveness Institute: Singapore, 2021. [Google Scholar]
- Roadmaps for Awarding 5G Spectrum: A Focus on Indonesia. [Online]. 2022. Available online: www.gsma.com (accessed on 17 August 2025).
- An, C.; Wu, Y.-J.; Xia, J.; Lu, Z. Investigating Impacts of Communication Loss on Signal Performance with Use of Event-Based Data. Transp. Res. Rec. J. Transp. Res. Board 2017, 2645, 38–49. [Google Scholar] [CrossRef]
- Espinosa, J.E.; Velastin, S.A.; Branch, J.W. Motorcycle detection and classification in urban Scenarios using a model based on Faster R-CNN. In Proceedings of the 9th International Conference on Pattern Recognition Systems (ICPRS 2018), Valparaíso, Chile, 22–24 May 2018; Institution of Engineering and Technology: London, UK, 2018; p. 16. [Google Scholar] [CrossRef]
- Nocua M, F.; Pérez-Holguín, W.-J.; Pardo-Beainy, C. Urban traffic monitoring based on deep learning on an embedded GPU. Expert Syst. Appl. 2025, 273, 126847. [Google Scholar] [CrossRef]
- Espinosa, J.E.; Velastin, S.A.; Branch, J.W. Detection of Motorcycles in Urban Traffic Using Video Analysis: A Review. IEEE Trans. Intell. Transp. Syst. 2021, 22, 6115–6130. [Google Scholar] [CrossRef]
- Espinosa, J.E.; Velastin, S.A.; Branch, J.W. Detection and Tracking of Motorcycles in Congested Urban Environments Using Deep Learning and Markov Decision Processes. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer Verlag: Berlin/Heidelberg, Germany, 2019; pp. 139–148. [Google Scholar] [CrossRef]
- Akhtar, A.; Ahmed, R.; Yousaf, M.H.; Velastin, S.A. Real-Time Motorbike Detection: AI on the Edge Perspective. Mathematics 2024, 12, 1103. [Google Scholar] [CrossRef]
- Asaithambi, G.; Kanagaraj, V.; Toledo, T. Driving Behaviors: Models and Challenges for Non-Lane Based Mixed Traffic. Transp. Dev. Econ. 2016, 2, 19. [Google Scholar] [CrossRef]
- Yu, X.; Hu, T.; Zhu, H. Roadside Perception Applications Based on DCAM Fusion and Lightweight Millimeter-Wave Radar–Vision Integration. Electronics 2025, 14, 1576. [Google Scholar] [CrossRef]
- Zhang, Y.; Carballo, A.; Yang, H.; Takeda, K. Perception and sensing for autonomous vehicles under adverse weather conditions: A survey. ISPRS J. Photogramm. Remote Sens. 2023, 196, 146–177. [Google Scholar] [CrossRef]
- Ogunrinde, I.; Bernadin, S. Deep Camera–Radar Fusion with an Attention Framework for Autonomous Vehicle Vision in Foggy Weather Conditions. Sensors 2023, 23, 6255. [Google Scholar] [CrossRef]
- Bhadoriya, A.S.; Vegamoor, V.; Rathinam, S. Vehicle Detection and Tracking Using Thermal Cameras in Adverse Visibility Conditions. Sensors 2022, 22, 4567. [Google Scholar] [CrossRef]
- Wang, Z.; Zhan, J.; Li, Y.; Zhong, Z.; Cao, Z. A new scheme of vehicle detection for severe weather based on multi-sensor fusion. Measurement 2022, 191, 110737. [Google Scholar] [CrossRef]
- Guan, F.; Xu, H.; Tian, Y. Evaluation of Roadside LiDAR-Based and Vision-Based Multi-Model All-Traffic Trajectory Data. Sensors 2023, 23, 5377. [Google Scholar] [CrossRef]
- Tang, J.; Wan, L.; Schooling, J.; Zhao, P.; Chen, J.; Wei, S. Automatic number plate recognition (ANPR) in smart cities: A systematic review on technological advancements and application cases. Cities 2022, 129, 103833. [Google Scholar] [CrossRef]
- Marciniuk, K.; Kostek, B. Machine learning applied to acoustic-based road traffic monitoring. Procedia Comput. Sci. 2022, 207, 1087–1095. [Google Scholar] [CrossRef]
- Ghaffarpasand, O.; Almojarkesh, A.; Morris, S.; Stephens, E.; Chalabi, A.; Almojarkesh, U.; Almojarkesh, Z.; Pope, F.D. Traffic Noise Assessment Using Intelligent Acoustic Sensors (Traffic Ear) and Vehicle Telematics Data. Sensors 2023, 23, 6964. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Dong, H.; Shao, Z. A Survey of the Multi-Sensor Fusion Object Detection Task in Autonomous Driving. Sensors 2025, 25, 2794. [Google Scholar] [CrossRef]
- Wei, C.; Qin, Z.; Zhang, Z.; Wu, G.; Barth, M.J. Integrating Multi-Modal Sensors: A Review of Fusion Techniques for Intelligent Vehicles. arXiv 2025. [Google Scholar] [CrossRef]
- Azimjonov, J.; Özmen, A.; Varan, M. A vision-based real-time traffic flow monitoring system for road intersections. Multimed. Tools Appl. 2023, 82, 25155–25174. [Google Scholar] [CrossRef] [PubMed]
- Marszalek, Z.; Duda, K. Validation of Multi-Frequency Inductive-Loop Measurement System for Parameters of Moving Vehicle Based on Laboratory Model. Sensors 2024, 24, 7244. [Google Scholar] [CrossRef]
- Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and realtime tracking. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3464–3468. [Google Scholar] [CrossRef]
- Anandhalli, M.; Baligar, V.P. A novel approach in real-time vehicle detection and tracking using Raspberry Pi. Alex. Eng. J. 2018, 57, 1597–1607. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, F.; Chang, S.; Liu, Y.; Wu, H.; Feng, Z. MmWave Radar and Vision Fusion for Object Detection in Autonomous Driving: A Review. Sensors 2022, 22, 2542. [Google Scholar] [CrossRef]
- Llorca, D.F.; Martínez, A.H.; Daza, I.G. Vision-based vehicle speed estimation: A survey. IET Intell. Transp. Syst. 2021, 15, 987–1005. [Google Scholar] [CrossRef]
- Cai, G.; Wang, X.; Shi, J.; Lan, X.; Su, T.; Guo, Y. Vehicle Detection Based on Information Fusion of mmWave Radar and Monocular Vision. Electronics 2023, 12, 2840. [Google Scholar] [CrossRef]
- Li, S.; Yoon, H.-S. Sensor Fusion-Based Vehicle Detection and Tracking Using a Single Camera and Radar at a Traffic Intersection. Sensors 2023, 23, 4888. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, D.K.; Cheema, A.; Toosi, A.N. Benchmarking Deep Learning Models for Object Detection on Edge Computing Devices. arXiv 2024. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Misumi, M.; Nakamiya, T. Robust Vehicle Detection under Various Environmental Conditions Using an Infrared Thermal Camera and Its Application to Road Traffic Flow Monitoring. Sensors 2013, 13, 7756–7773. [Google Scholar] [CrossRef]
- Liu, Y.; Su, H.; Zeng, C.; Li, X. A Robust Thermal Infrared Vehicle and Pedestrian Detection Method in Complex Scenes. Sensors 2021, 21, 1240. [Google Scholar] [CrossRef]
- Ben-Shoushan, R.; Brook, A. Fused Thermal and RGB Imagery for Robust Detection and Classification of Dynamic Objects in Mixed Datasets via Pre-Trained High-Level CNN. Remote Sens. 2023, 15, 723. [Google Scholar] [CrossRef]
- Biglari, A.; Tang, W. A Review of Embedded Machine Learning Based on Hardware, Application, and Sensing Scheme. Sensors 2023, 23, 2131. [Google Scholar] [CrossRef] [PubMed]
- Saldivar-Carranza, E.D.; Desai, J.; Thompson, A.; Taylor, M.; Sturdevant, J.; Bullock, D.M. Vehicle and Pedestrian Traffic Signal Performance Measures Using LiDAR-Derived Trajectory Data. Sensors 2024, 24, 6410. [Google Scholar] [CrossRef]
- Wu, A.; Banerjee, T.; Chen, K.; Rangarajan, A.; Ranka, S. A Multi-Sensor Video/LiDAR System for Analyzing Intersection Safety. In Proceedings of the 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), Bilbao, Spain, 24–28 September 2023; pp. 1158–1165. [Google Scholar] [CrossRef]
- Liang, L.; Ma, H.; Zhao, L.; Xie, X.; Hua, C.; Zhang, M.; Zhang, Y. Vehicle Detection Algorithms for Autonomous Driving: A Review. Sensors 2024, 24, 3088. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, P.; Jiang, Y.; Yu, D.; Weng, F.; Yuan, Z.; Luo, P.; Liu, W.; Wang, X. ByteTrack: Multi-Object Tracking by Associating Every Detection Box. [Online]. Available online: https://github.com/ifzhang/ByteTrack (accessed on 17 August 2025).
- Yoshioka, T.; Sakakibara, H.; Tenhagen, R.; Lorkowski, S.; Oguchi, T. Traffic Signal Control Parameter Calculation Using Probe Data. Int. J. Intell. Transp. Syst. Res. 2022, 20, 288–298. [Google Scholar] [CrossRef]
- Nagashima, Y.; Hattori, O.; Kobayashi, M. 44 · Improvement of Traffic Signal Control Using Probe Data FEATURED TOPIC. Sei Technical Review 2014. Available online: https://global-sei.com/technology/tr/bn78/pdf/78-09.pdf (accessed on 17 August 2025).
- Traffic Signal Control API Based on Probe Data; 2024. Available online: https://sumitomoelectric.com/sites/default/files/2024-04/download_documents/E98-26.pdf (accessed on 17 August 2025).
- A Project Document of the Joint Committee on the NTCIP NTCIP 1202 Version 04 National Transportation Communications for ITS Protocol Functional Requirements: Object Definitions for Actuated Signal Controllers (ASC) Interface. [Online]. Available online: www.ntcip.org (accessed on 17 August 2025).
- NEMA Standards Publication TS 2-2021 Traffic Controller Assemblies with NTCIP Requirements Version 03.08. [Online]. 2021. Available online: www.nema.org (accessed on 17 August 2025).
- Cunha, J.; Batista, N.; Cardeira, C.; Melicio, R. Wireless Networks for Traffic Light Control on Urban and Aerotropolis Roads. J. Sens. Actuator Netw. 2020, 9, 26. [Google Scholar] [CrossRef]
- Del Rey Carrión, D.; Juan-Llácer, L.; Rodríguez, J.-V. Radio Planning Considerations in TETRA to LTE Migration for PPDR Systems: A Radioelectric Coverage Case Study. Appl. Sci. 2019, 9, 250. [Google Scholar] [CrossRef]
- Van De Beek, S.; Leferink, F. Robustness of a TETRA Base Station Receiver Against Intentional EMI. IEEE Trans. Electromagn. Compat. 2015, 57, 461–469. [Google Scholar] [CrossRef]
- Nor, R.F.A.M.; Zaman, F.H.K.; Mubdi, S. Smart traffic light for congestion monitoring using LoRaWAN. In Proceedings of the 2017 IEEE 8th Control and System Graduate Research Colloquium (ICSGRC), Shah Alam, Malaysia, 4–5 August 2017; pp. 132–137. [Google Scholar] [CrossRef]
- Menteri Komunikasi dan Informatika Republik Indonesia. Peraturan Menteri Komunikasi dan Informatika Republik Indonesia Nomor 8 Tahun 2024 Tentang Penggunaan Spektrum Frekuensi Radio Untuk Sistem Komunikasi Microwave Link; 2024. Available online: https://peraturan.bpk.go.id/Details/309376/permenkominfo-no-8-tahun-2024 (accessed on 17 August 2025).
- Suthanthira, S.; Andrino-Chavez, A.; Ctc, A.; Lewis, L. DRAFT MEMORANDUM and Fremont Blvd. Multimodal Corridor Project Implementation Guidance for Traffic Signal Technology Improvements INTRODUCTION AND BACKGROUND. 2020. Available online: https://www.alamedactc.org/wp-content/uploads/2021/02/Appendix-E_Traffic_Signal_Technology_Implementation_Guidance_20200824.pdf (accessed on 17 August 2025).
- Cronin, B. Produced under Saxton Transportation Operations Laboratory Task Order 18-404 (Feasibility Study and Assessment of Communications Approaches for Real-Time Traffic Signal Applications), DTFH6116D00030L-693JJ318F000404. Available online: https://rosap.ntl.bts.gov/view/dot/50751 (accessed on 17 August 2025).
- C-ITS Organisation. Report on Legal and Organisational Structures for C-ITS Operation; 2018. Available online: https://www.c-roads.eu/fileadmin/user_upload/media/Dokumente/Report_on_legal_structures_for_C-_ITS_operation_v1_Final.pdf (accessed on 17 August 2025).
- Zhang, C.; Zhou, Y.; Zhang, M.; Wang, B.; Nie, Y. Review and prospect of floating car data research in transportation. J. Traffic Transp. Eng. (Engl. Ed.) 2025, 12, 752–771. [Google Scholar] [CrossRef]
- Tang, R.; Kanamori, R.; Yamamoto, T. Improving Coverage Rate for Urban Link Travel Time Prediction Using Probe Data in the Low Penetration Rate Environment. Sensors 2020, 20, 265. [Google Scholar] [CrossRef] [PubMed]
- Hellinga, B.; Izadpanah, P.; Takada, H.; Fu, L. Decomposing travel times measured by probe-based traffic monitoring systems to individual road segments. Transp. Res. Part C: Emerg. Technol. 2008, 16, 768–782. [Google Scholar] [CrossRef]
- Xu, J.; Tian, Z.; Wang, A.; Xie, G.; Valenzuela, L. Development and assessment of trajectory-based arterial through percent arrivals on red for arterial signal coordination performance evaluation. Int. J. Transp. Sci. Technol. 2025, 18, 131–147. [Google Scholar] [CrossRef]
- Astarita, V.; Giofré, V.; Festa, D.; Guido, G.; Vitale, A. Floating Car Data Adaptive Traffic Signals: A Description of the First Real-Time Experiment with ‘Connected’ Vehicles. Electronics 2020, 9, 114. [Google Scholar] [CrossRef]
- Dabbas, H.; Friedrich, B. Estimating traffic demand of different transportation modes using floating smartphone data. Transp. A Transp. Sci. 2024, 1–27, in press. [Google Scholar] [CrossRef]
- Wang, F.; Xu, Y. Estimating O–D travel time matrix by Google Maps API: Implementation, advantages, and implications. Ann. GIS 2011, 17, 199–209. [Google Scholar] [CrossRef]
- Muñoz-Villamizar, A.; Solano-Charris, E.L.; AzadDisfany, M.; Reyes-Rubiano, L. Study of urban-traffic congestion based on Google Maps API: The case of Boston. IFAC-Pap. 2021, 54, 211–216. [Google Scholar] [CrossRef]
- Rodriguez, A.M.; Tiberius, C.; van Bree, R.; Geradts, Z. Google timeline accuracy assessment and error prediction. Forensic. Sci. Res. 2018, 3, 240–255. [Google Scholar] [CrossRef] [PubMed]
- Sandt, A.; McCombs, J.; Cornelison, E.; Al-Deek, H.; Carrick, G. Using Crowdsourced Data to Reduce Traffic Congestion by Improving Detection of and Response to Disabled or Abandoned Vehicles on Florida Limited-Access Facilities. Transp. Res. Rec. J. Transp. Res. Board 2023, 2677, 309–323. [Google Scholar] [CrossRef]
Database | Period | Filters | Records Retrieved | After Duplicates | Included After Screening |
---|---|---|---|---|---|
Scopus | 2000–2025 | English | 128 | 127 | 7 |
Web of Science | 2000–2025 | English | 94 | 92 | 5 |
IEEE Xplore | 2000–2025 | Conf. & Journal | 52 | 51 | 4 |
Google Scholar | 2000–2025 | English, 2000–2025; first 200 results screened | 200 | 200 | 2 |
Total | – | – | 474 | 470 | 18 |
Aspect | Final Implementation | Rationale |
---|---|---|
Search window | Extended to Aug 2025 | Capture 2025 publications |
Databases | +Google Scholar | Broader coverage |
Quality assessment | Operational relevance (not ROBIS) | Fit for engineering practice |
Synthesis | Narrative (SWiM) | Heterogeneity in metrics |
Edge case: freeway studies | Exclude | Out of scope |
Edge case: hybrid w/o metrics | Exclude | Cannot assess outcomes |
Edge case: policy/agency docs | Include, marked separately | Practical relevance |
Family | Examples (Systems) | Timing Update Method | Typical Context | Representative Cities |
---|---|---|---|---|
Fixed-time (pre-timed/coordinated) | Green-wave/TOD | Scheduled cycle & offset | Predictable corridors | Kharkiv (Ukraine) [19], Gaza/Palestine [20] |
TRPS (traffic- responsive plan selection) | TRPS (traffic-responsive plan selection) | Select among pre-plans via detectors | Limited sensing; intermittent comms | Northern Virginia (USA) [21] |
Actuated (semi/fully) | Local detector actuations | Phase extensions/recalls | Isolated or mixed-demand | Houston (USA) [22]; Anaheim (USA) [23] |
Adaptive/UTC (real-time) | SCOOT/SCATS/ACS-Lite | Continuous cycle–split–offset | Networked corridors | London (UK, SCOOT) [24]; Las Vegas (USA, SCATS) [25]; Anaheim (USA, ACS-Lite) [23] |
Centralized ATMS/UTC | City traffic control centers | Center-led supervision & retiming | Large urban areas | Anaheim (USA, ATCS FOT) [26] |
Control Variable | Allowed Under Fixed Plan | Notes |
---|---|---|
Cycle length (full cycle time) | No | Fixed by the authoritative timing plan |
Phase green splits (durations) | No | Pre-set for each fixed-time plan |
Phase sequence/order | No | Remains as in the pre-designed plan |
Yellow and all-red intervals | No | Safety-critical timings are immutable |
Phase start offsets | Yes | MARL agents may fine-tune offsets (cycle alignment) |
Minor green adjustments (<few s) | No | Only offsets are adjusted, not phase durations |
Local vehicle detection triggers | No | A fixed-time plan does not use real-time calls |
Study | Year | Method/Lever | Setting | Deployment Status |
---|---|---|---|---|
Wei et al.—CoLight [6] | 2019 | MARL—Graph Attention | SUMO, 4–100 intersections | Simulation-only |
Bouktif et al.—P-DQN [66] | 2021 | Hybrid action-space DRL | SUMO single corridor | Simulation-only |
Huang et al.—ModelLight [74] | 2021 | Meta-RL | SUMO | Simulation-only |
Fang & Sadeh (Survey) [14] | 2023 | Review of RL TSC | Literature | Simulation-only evidence |
Li et al.—Offline RL (D2TSC) [68] | 2023 | Offline RL | SUMO | Simulation-only |
Bi et al.—Fuzzy + DRL [75] | 2024 | Type-2 Fuzzy + DRL | SUMO, single junction | Simulation-only |
Jia & Ji [76] | 2025 | Multi-Agent DRL | SUMO, large networks | Simulation-only |
Zhang et al.—Masked MARL [77] | 2025 | Action-masked MARL | SUMO, 16 intersections | Simulation-only |
Dhulkefl et al. [78] | 2025 | Hybrid intelligent TSC | Matlab/Simulink | Simulation-only |
K. Othman et al. [72] | 2025 | Decentralized multi-agent RL | SUMO | Simulation-only |
Michailidis et al. (Survey) [2] | 2025 | Review of RL TSC | Literature | Simulation-only evidence |
Saadi et al. (Survey) [70] | 2025 | Review of DRL TSC | Literature | Simulation-only evidence |
Li et al.—Federated DRL [71] | 2025 | Federated DRL (PPO) | SUMO grid | Simulation-only |
Zheng et al. [10] | 2025 | Pri-DDQN hybrid agent | SUMO | Simulation-only |
Satheesh & Powell [73] | 2025 | Constrained Multi-Agent RL (MAPPO-LCE) | CityFlow | Simulation-only evidence |
Study | Setting | Control Lever(s) (Offset/Split/Cycle/Phase/Hybrid) | Safeguard Type (Mask/Shield/Bounds/Other) | Metrics (AoG, PCD, Delay, Travel Time, Queue, etc.) | Beats Baselines? |
---|---|---|---|---|---|
Wei et al.: CoLight | Large-network simulation (CityFlow; Hangzhou/Jinan/NY datasets) | Phase selection with network-level cooperation via graph attention | Not reported (no explicit mask/shield/bounds) | Avg travel time, throughput (large networks) | Yes vs. SOTA (e.g., PressLight, DQN). [6] |
Bouktif et al.: P-DQN | Simulation (SUMO) | Hybrid: discrete phase + continuous duration (P-DQN) | Not reported | Avg queue, avg travel time, waiting time | Yes (e.g., −22.2% queue; −5.78% travel time vs. baselines). [66] |
Huang et al.: ModelLight | Simulation with real-data-driven testbeds (model-based meta-RL) | Phase/split optimization (model-based & meta-learning) | Not reported | Travel time, delay | Yes vs. SOTA, with far fewer interactions. [74] |
Fang & Sadeh (Survey)—“The Real Deal” (with R. Chen) | Survey/review (no experiments) | — | — | Synthesis of evaluation metrics and deployment barriers | — (review) |
Li et al.: Offline RL (D2TSC) | Offline RL from historical field data → simulator matched to field | Phase/split (offline policy learning) | Offline-dataset constraint (implicit safety) | Travel time vs. actuated & offline RL baselines | Yes, with better real-world applicability claims. [68] |
Bi et al.: Type-2 Fuzzy + DRL | Simulation (single intersection) | Phase control (DQN with Type-2 fuzzy output) | Fuzzy rules act as bounds on actions | Reward, delay | Yes vs. DQN variants. [75] |
Jia & Ji | Simulation (large-scale) | Phase/split with spatio-temporal attention (GAT + RNN) | Not reported | Avg travel time, delay | Yes vs. fixed-time/DRL baselines. [76] |
Zhang et al.: Masked MARL | Corridor-level multi-intersection simulation | Phase (multi-agent masked SAC for corridor control) | Action masking (invalid actions masked) | Delay/efficiency (corridor) | Yes vs. strong MARL baselines (corridor-level). [77] |
Dhulkefl et al. | Simulation (SUMO) | Hybrid KNN (state classifier) + DQN (phase policy) | Not reported | Delay/queue (paper focuses on responsiveness) | Yes vs. single-model baselines (reported). [78] |
K. Othman et al. | Multimodal (transit + traffic) simulation; decentralized multi-agent | Phase/priority tuned to person-delay objective | Not reported | Person-delay (transit + general traffic) | Yes (reduces total person-delay vs. pre-timed/TSP). [72] |
Michailidis et al. (Survey) | Survey (Infrastructures, MDPI) | — | — | Review of methods, metrics, baselines, and applicability | — (review) |
Saadi et al. (Survey) | Survey (Journal of Big Data) | — | — | Coordination in ITLC; compiles metrics/baselines | — (review) |
Li et al.: Federated DRL | Federated across domains (real datasets) | Phase/split via federated PPO | Privacy/aggregation guardrails (federation) | Delay, queue, throughput | Yes vs. local & centralized baselines. [71] |
Zheng et al.: Pri-DDQN (hybrid agent) | Simulation (single intersection) | Phase & cycle (hybrid agent with prioritized DDQN) | Not reported | Waiting time, queue | Yes vs. DQN variants. [10] |
Satheesh & Powell: MAPPO-LCE | Simulation on three real-world datasets (CityFlow) | Phase/split (multi-agent PPO) under constraints | Constrained RL with Lagrange Cost Estimator; explicit GreenTime/GreenSkip/PhaseSkip constraints | Delay plus fairness/safety proxies | Yes (+12.6% vs. MAPPO; +10.3% vs. IPPO; +13.1% vs. QTRAN). [73] |
Metric | Simulation-Only (n = 15)—Improve | Mixed | Deteriorate | Pilot/Field (n = 3)—Improve | Mixed | Deteriorate |
---|---|---|---|---|---|---|
Arrivals on Green (AoG) | 8 | 1 | 1 | 2 | 0 | 0 |
Purdue Coordination Diagram (PCD) | 6 | 1 | 1 | 1 | 0 | 0 |
Delay | 9 | 2 | 2 | 2 | 1 | 0 |
Travel time | 7 | 1 | 1 | 1 | 0 | 0 |
Study | Rule Shield/Plan Authority | Action Masking | Bounded Variables | Prerequisites for Action |
---|---|---|---|---|
Wei et al.: CoLight | No explicit plan shield; full phase selection | No | None (phase choice free) | None reported |
Bouktif et al.: P-DQN | Not reported (hybrid phase + duration) | No | None; continuous duration allowed | Simulation only |
Huang et al.: ModelLight | Not explicit; model-based policy | No | Indirect bounds via model | Data-driven testbed |
Fang & Sadeh (Survey) | — (review only) | — | — | — |
Li et al.: Offline RL (D2TSC) | Implicit via an offline dataset | No | Learned policy constrained by logged data | Offline dataset (field logs) |
Bi et al.: Fuzzy + DRL | Fuzzy rules constrain outputs | No | Bounds via fuzzy membership | Simulation (single junction) |
Jia & Ji | Not reported | No | None | Simulation (large networks) |
Zhang et al.: Masked MARL | Phase order preserved | Yes | Masked invalid actions | Simulation corridor |
Dhulkefl et al. | The hybrid classifier constrains the state | No | None explicit | Simulation |
K. Othman et al.: eMARLIN-T-MM | Priority rules encoded | No | Person-delay objective guides bounds | Simulation multimodal |
Michailidis et al. (Survey) | —(review only) | — | — | — |
Saadi et al. (Survey) | —(review only) | — | — | — |
Li et al.: Federated DRL | Aggregation/federation constraints | No | Indirect bounds via federated PPO | Privacy-preserving prerequisites |
Zheng et al.: Pri-DDQN | Not reported | No | None explicit | Simulation |
Satheesh & Powell: MAPPO-LCE | Rule shield: min-green, phase skip penalties | Yes | Split/offset bounded via LCE | Constrained RL estimator |
Indonesian prototype (microcontroller) | Fixed phase/split; offset only | No | Δoffset ≤ few seconds per cycle | AoG/PCD audit required |
ACS-Lite inspired pilots (FHWA) | Plan authority fixed; only offsets adjusted | No | Offset trims only | Field ATSPM evidence |
SCATS (Bandung/Jakarta evals) | Cycle/split authority retained | No | Offset/split bounded by plan | National regulation, MKJI audits |
Objective (What to Detect) | Primary Sensor | Augmenting Sensor(s) | Edge Algorithm on Raspberry Pi (Notes) |
---|---|---|---|
Stop-bar presence & lane-by-lane counts (daytime) | Visible-light video detector (fixed camera) for real-time traffic flow monitoring [114]. | Inductive loops [115]. | Lightweight vision and tracking on Raspberry Pi for real-time vehicle detection/counting; tracking for ID persistence [116,117]; YOLO Tiny or EfficientDet Lite for PTW detection [97,118] |
Approach speed & trajectories for AoG/PCD (arrivals profiling) | Vision for per-vehicle speed/trajectory estimation [119]. | mmWave radar to stabilize speed/range under rain/dark [120]. | Kalman and Hungarian data association on Raspberry Pi-class TPUs [121,122]. |
Night/glare-robust presence & classification | Thermal infrared camera [123,124]. | RGB camera for context and class labels; RGB-thermal fusion improves detection when either alone is weak [125]. | Lightweight thermal/visible on edge devices [126]. |
Queue length/platoon length & multi-user tracking | LiDAR for precise 3D trajectories [127,128]. | Video for classification context; fusion with video assists ID and class labels [129]. | Per-frame detection and multi-object tracking (e.g., ByteTrack/SORT) on an edge host; LiDAR processing for queue estimation [116,130]. |
Corridor travel time & timing updates without dense detectors | Probe/fleet data to estimate signal control parameters (cycle/split/offset) with low penetration [131]. | Optional stop-bar video or loops to validate/bias estimates where installed [115]. | Pi in cabinet aggregate probe APIs and local sensors, compute simple metrics, and feed controller [132,133]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurniawan, F.; Agustian, H.; Dermawan, D.; Nurdin, R.; Ahmadi, N.; Dinaryanto, O. Hybrid Rule-Based and Reinforcement Learning for Urban Signal Control in Developing Cities: A Systematic Literature Review and Practice Recommendations for Indonesia. Appl. Sci. 2025, 15, 10761. https://doi.org/10.3390/app151910761
Kurniawan F, Agustian H, Dermawan D, Nurdin R, Ahmadi N, Dinaryanto O. Hybrid Rule-Based and Reinforcement Learning for Urban Signal Control in Developing Cities: A Systematic Literature Review and Practice Recommendations for Indonesia. Applied Sciences. 2025; 15(19):10761. https://doi.org/10.3390/app151910761
Chicago/Turabian StyleKurniawan, Freddy, Harliyus Agustian, Denny Dermawan, Riani Nurdin, Nurfi Ahmadi, and Okto Dinaryanto. 2025. "Hybrid Rule-Based and Reinforcement Learning for Urban Signal Control in Developing Cities: A Systematic Literature Review and Practice Recommendations for Indonesia" Applied Sciences 15, no. 19: 10761. https://doi.org/10.3390/app151910761
APA StyleKurniawan, F., Agustian, H., Dermawan, D., Nurdin, R., Ahmadi, N., & Dinaryanto, O. (2025). Hybrid Rule-Based and Reinforcement Learning for Urban Signal Control in Developing Cities: A Systematic Literature Review and Practice Recommendations for Indonesia. Applied Sciences, 15(19), 10761. https://doi.org/10.3390/app151910761