The Development of Data-Driven Algorithms and Models for Monitoring Void Transport in Liquid Composite Molding Using a 3D-Printed Porous Media
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiments
2.2. Algorithm Overview
2.3. Image Segmentation: Network Architecture
2.4. Dataset
2.5. Training
2.6. Bubble and Flow-Front Tracking
3. Results
3.1. Algorithm Evaluation
3.2. Flow-Front and Bubble Tracking Analysis
3.3. Bubble Transport Modelling
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LCM | Liquid Composite Molding |
SLA | Stereolithography |
MJF | Multi-Jet fusion |
References
- Galvez-Hernandez, P.; Gaska, K.; Kratz, J. Phase segmentation of uncured prepreg X-Ray CT micrographs. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106527. [Google Scholar] [CrossRef]
- Nguyen, D.; Davidson, P.; DeMille, K.; Ranatunga, V. Machine learning based segmentation of delamination patterns from sparse ultrasound data of barely visible impact damage in composites. J. Compos. Mater. 2025, 59, 321–330. [Google Scholar] [CrossRef]
- Meng, M.; Chua, Y.J.; Wouterson, E.; Ong, C.P.K. Ultrasonic signal classification and imaging system for composite materials via deep convolutional neural networks. Neurocomputing 2017, 257, 128–135. [Google Scholar] [CrossRef]
- Rudd, C.D.; Long, A.C.; Kendall, K.N.; Mangin, C.G.E. Liquid Moulding Technologies, 1st ed.; Woodhead Publishing Ltd.: Cambridge, UK, 1997. [Google Scholar]
- Arbter, R.; Beraud, J.M.; Binetruy, C.; Bizet, L.; Bréard, J.; Comas-Cardona, S.; Demaria, C.; Endruweit, A.; Ermanni, P.; Gommer, F.; et al. Experimental determination of the permeability of textiles: A benchmark exercise. Compos. Part A Appl. Sci. Manuf. 2011, 42, 1157–1168. [Google Scholar] [CrossRef]
- Konstantopoulos, S.; Hueber, C.; Antoniadis, I.; Summerscales, J.; Schledjewski, R. Liquid composite molding reproducibility in real-world production of fiber reinforced polymeric composites: A review of challenges and solutions. Adv. Manuf. Polym. Compos. Sci. 2019, 5, 85–99. [Google Scholar] [CrossRef]
- Agogué, R.; Shakoor, M.; Beauchêne, P.; Park, C.H. Analysis and Minimization of Race Tracking in the Resin-Transfer-Molding Process by Monte Carlo Simulation. Materials 2023, 16, 4438. [Google Scholar] [CrossRef]
- Fernández-León, J.; Keramati, K.; Garoz, D.; Baumela, L.; Miguel, C.; González, C. A Machine Learning Strategy for Race-Tracking Detection During Manufacturing of Composites by Liquid Moulding. Integr. Mater. Manuf. Innov. 2022, 11, 296–311. [Google Scholar] [CrossRef]
- Mehdikhani, M.; Gorbatikh, L.; Verpoest, I.; Lomov, S.V. Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance. J. Compos. Mater. 2019, 53, 1579–1669. [Google Scholar] [CrossRef]
- Chai, B.X.; Eisenbart, B.; Nikzad, M.; Fox, B.; Blythe, A.; Blanchard, P.; Dahl, J. Simulation-based optimisation for injection configuration design of liquid composite moulding processes: A review. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106540. [Google Scholar] [CrossRef]
- Park, M.; Tretyakov, M.V. Stochastic resin transfer molding process. SIAM-ASA J. Uncertain. Quantif. 2017, 5, 1110–1135. [Google Scholar] [CrossRef]
- Vollmer, M.; Zaremba, S.; Mertiny, P.; Drechsler, K. Edge race-tracking during film-sealed compression resin transfer molding. J. Compos. Sci. 2021, 5, 195. [Google Scholar] [CrossRef]
- Littner, L.; Protz, R.; Kunze, E.; Bernhardt, Y.; Kreutzbruck, M.; Gude, M. Flow Front Monitoring in High-Pressure Resin Transfer Molding Using Phased Array Ultrasonic Testing to Optimize Mold Filling Simulations. Materials 2024, 17, 207. [Google Scholar] [CrossRef] [PubMed]
- Nalla, A.R.; Fuqua, M.; Glancey, J.; Lelievre, B. A multi-segment injection line and real-time adaptive, model-based controller for vacuum assisted resin transfer molding. Compos. Part A Appl. Sci. Manuf. 2007, 38, 1058–1069. [Google Scholar] [CrossRef]
- Johnson, R.J.; Pitchumani, R. Simulation of active flow control based on localized preform heating in a VARTM process. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1815–1830. [Google Scholar] [CrossRef]
- Lee, J.; Duhovic, M.; May, D.; Allen, T.; Kelly, P. Physics-informed neural networks for real-time simulation of transverse Liquid Composite Moulding processes and permeability measurements. Compos. Part A Appl. Sci. Manuf. 2025, 193, 108857. [Google Scholar] [CrossRef]
- Lee, D.; Lee, I.Y.; Park, Y.B. Real-time process monitoring and prediction of flow-front in resin transfer molding using electromechanical behavior and generative adversarial network. Compos. Part B Eng. 2025, 298, 112382. [Google Scholar] [CrossRef]
- LeBel, F.; Ruiz, É.; Trochu, F. Experimental study of saturation by visible light transmission in dual-scale fibrous reinforcements during composite manufacturing. J. Reinf. Plast. Compos. 2017, 36, 1693–1711. [Google Scholar] [CrossRef]
- Bodaghi, M.; Ban, D.; Mobin, M.; Park, C.H.; Lomov, S.V.; Nikzad, M. Additively manufactured three dimensional reference porous media for the calibration of permeability measurement set-ups. Compos. Part A Appl. Sci. Manuf. 2020, 139, 106119. [Google Scholar] [CrossRef]
- Machado, J.; Bodaghi, M.; Nikzad, M.; Camanho, P.P.; Advani, S.; Correia, N. On the understanding of bubble dynamics through a calibrated textile-like porous medium using a machine learning based algorithm. Compos. Part A Appl. Sci. Manuf. 2024, 177, 107955. [Google Scholar] [CrossRef]
- Bodaghi, M.; Mobin, M.; Ban, D.; Lomov, S.V.; Nikzad, M. Surface quality of printed porous materials for permeability rig calibration. Mater. Manuf. Process. 2021, 37, 548–558. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, H. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, Munich, Germany, 5–9 October 2015; Volume 9351, pp. 234–241. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 5, 1929–1958. [Google Scholar]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-scale machine learning on heterogeneous systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; pp. 1–15. [Google Scholar]
- Kervadec, H.; Bouchtiba, J.; Desrosiers, C.; Granger, E.; Dolz, J.; Ben Ayed, I. Boundary loss for highly unbalanced segmentation. Med. Image Anal. 2021, 67, 101851. [Google Scholar] [CrossRef] [PubMed]
- Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools Prof. Program. 2000, 25, 120–123. [Google Scholar]
- Liu, S.; Liu, D.; Srivastava, G.; Połap, D.; Woźniak, M. Overview and methods of correlation filter algorithms in object tracking. Complex Intell. Syst. 2021, 7, 1895–1917. [Google Scholar] [CrossRef]
- Bolme, D.; Beveridge, J.R.; Draper, B.A.; Lui, Y.M. Visual object tracking using adaptive correlation filters. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 2544–2550. [Google Scholar] [CrossRef]
- Danelljan, M.; Häger, G.; Shahbaz Khan, F.; Felsberg, M. Accurate Scale Estimation for Robust Visual Tracking. In Proceedings of the British Machine Vision Conference 2014, Nottingham, UK, 1–5 September 2014; pp. 65.1–65.11. [Google Scholar] [CrossRef]
- King, D.E. Dlib-ml: A machine learning toolkit. J. Mach. Learn. Res. 2009, 10, 1755–1758. [Google Scholar]
- Bretherton, F.P. The motion of long bubbles in tubes. J. Fluid Mech. 1961, 10, 166. [Google Scholar] [CrossRef]
- Kang, K.; Koelling, K. Void transport in resin transfer molding. Polym. Compos. 2004, 25, 417–432. [Google Scholar] [CrossRef]
- Gangloff, J.J.; Hwang, W.R.; Advani, S.G. Characterization of bubble mobility in channel flow with fibrous porous media walls. Int. J. Multiph. Flow 2014, 60, 76–86. [Google Scholar] [CrossRef]
Manufacturing Process | Ra [µm] |
---|---|
MJF | 6.821 |
SLA | 1.955 |
Viscosity [Pa.s] | Density [kg/m3] | Surface Tension [N/m] |
---|---|---|
0.071 | 875 | 0.033 |
Porous Media Type | Number of Bubbles | Bubble Area | Bubble Perimeter | Bubble Centroid | Flow-Front Position |
---|---|---|---|---|---|
SLA | 13.6% | 7.3% | 4.2% | 0.1% | 0.0% |
MJF | 9.6% | 13.8% | 6.7% | 0.5% | 0.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, J.; Bodaghi, M.; Advani, S.; Correia, N. The Development of Data-Driven Algorithms and Models for Monitoring Void Transport in Liquid Composite Molding Using a 3D-Printed Porous Media. Appl. Sci. 2025, 15, 10690. https://doi.org/10.3390/app151910690
Machado J, Bodaghi M, Advani S, Correia N. The Development of Data-Driven Algorithms and Models for Monitoring Void Transport in Liquid Composite Molding Using a 3D-Printed Porous Media. Applied Sciences. 2025; 15(19):10690. https://doi.org/10.3390/app151910690
Chicago/Turabian StyleMachado, João, Masoud Bodaghi, Suresh Advani, and Nuno Correia. 2025. "The Development of Data-Driven Algorithms and Models for Monitoring Void Transport in Liquid Composite Molding Using a 3D-Printed Porous Media" Applied Sciences 15, no. 19: 10690. https://doi.org/10.3390/app151910690
APA StyleMachado, J., Bodaghi, M., Advani, S., & Correia, N. (2025). The Development of Data-Driven Algorithms and Models for Monitoring Void Transport in Liquid Composite Molding Using a 3D-Printed Porous Media. Applied Sciences, 15(19), 10690. https://doi.org/10.3390/app151910690