Assessment of Antioxidant, Antiproliferative and Proapoptotic Potential of Aqueous Extracts of Chroococcus sp. R-10
Abstract
1. Introduction
2. Materials and Methods
2.1. Cyanobacterial Strain Cultivation
2.2. Extract Preparation
2.3. UHPLC Analysis
2.4. Determination of the Total Polyphenol Content
2.5. Antioxidant Potential
2.5.1. ABTS Radical Scavenging Activity (ABTS•+)
2.5.2. DPPH Radical Scavenging Assay (DPPH•)
2.5.3. NBT Radical Scavenging Assay
2.5.4. Cupric-Reducing Antioxidant Capacity (CUPRAC)
2.5.5. Ferric-Reducing Antioxidant Power (FRAP)
2.6. Cell Line and Cultivation Condition
2.7. Cell Viability Assay
2.8. FACS Analysis of Cell Cycle
2.9. Fluorescent Microscopy
2.10. Statistical Analysis
3. Results
3.1. Chemical Composition Analysis
3.2. Evaluation of Antioxidant Activity
3.3. Anticancer Activity
3.3.1. Antiproliferative Activity
3.3.2. Cell Cycle Analysis
3.3.3. Fluorescence Microscopy Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chu, W.L.; Phang, S.M. Microalgae and cyanobacteria as a potential source of anticancer compounds. In Handbook of Algal Technologies and Phytochemicals, 1st ed.; Ravishankar, G., Ambati, R.R., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 185–205. [Google Scholar]
- Fayyad, R.J.; Ali, A.N.M.; Dwaish, A.S.; Al-Abboodi, A.K.A. Anticancer activity of Spirulina platensis methanolic extracts against L20B and MCF7 human cancer cell lines. Plant Arch. 2019, 19, 1419–1426. [Google Scholar]
- Mondal, A.; Bose, S.; Banerjee, S.; Patra, J.K.; Malik, J.; Mandal, S.K.; Bishayee, A. Marine cyanobacteria and microalgae metabolites—A rich source of potential anticancer drugs. Mar. Drugs 2020, 18, 476. [Google Scholar] [CrossRef] [PubMed]
- Shahid, A.; Siddiqui, A.J.; Musharraf, S.G.; Liu, C.h.; Malik, S.; Syafiuddin, A.; Boopathy, R.; Tarbiah, N.I.; Gull, M.; Mehmood, M.A. Untargeted metabolomics of the alkaliphilic cyanobacterium Plectonema terebrans elucidated novel stress-responsive metabolic modulations. J. Proteom. 2022, 252, 104447. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, R.E.; Hirsch, C.F.; Sesin, D.F.; Flor, J.E.; Chartrain, M. Pharmaceuticals from cultured algae. J. Ind. Microbiol. Biotechnol. 1990, 5, 113–123. [Google Scholar] [CrossRef]
- Ma, D.; Zou, B.; Cai, G.; Hu, X.; Liu, J.O. Total synthesis of the cyclodepsipeptideapratoxin A and its analogues and assessment of their biological activities. Chem. Eur. J. 2006, 12, 7615–7626. [Google Scholar] [CrossRef]
- Luesch, H.; Yoshida, W.Y.; Moore, R.E.; Paul, V.J. New apratoxins of marine cyanobacterial origin from Guam and Palau. Bioorg. Med. Chem. 2002, 10, 1973–1978. [Google Scholar] [CrossRef]
- Malve, H. Exploring the ocean for new drug developments: Marine pharmacology. J. Pharm. Bioallied Sci. 2016, 8, 83–91. [Google Scholar] [CrossRef]
- Catassi, A.; Cesario, A.; Arzani, D.; Menichini, P.; Alama, A.; Bruzzo, C.; Imperatori, A.; Rotolo, N.; Granone, P.; Russo, P. Characterization of apoptosis induced by marine natural products in non-small cell lung cancer A549 cells. Cell. Mol. Life Sci. 2006, 63, 2377–2386. [Google Scholar] [CrossRef]
- Mooberry, S.L.; Busquets, L.; Tien, G. Induction of apoptosis by cryptophycin 1, a new antimicrotubule agent. Int. J. Cancer 1997, 73, 440–448. [Google Scholar] [CrossRef]
- Weiss, C.; Figueras, E.; Borbely, A.N.; Sewald, N. Cryptophycins: Cytotoxic cyclodepsipeptides with potential for tumor targeting. J. Pept. Sci. 2017, 23, 514–531. [Google Scholar] [CrossRef]
- Drew, L.; Fine, R.L.; Do, T.N.; Douglas, G.P.; Petrylak, D.P. The novel antimicrotubule agent cryptophycin 52 (LY355703) induces apoptosis via multiple pathways in human prostate cancer cells. Clin. Cancer Res. 2002, 8, 3871–3879. [Google Scholar]
- Kang, H.K.; Choi, M.C.; Seo, C.H.; Park, Y. Therapeutic properties and biological benefits of marine-derived anticancer peptides. Int. J. Mol. Sci. 2018, 19, 919. [Google Scholar] [CrossRef]
- Panjiar, N.; Mishra, S.; Yadav, A.N.; Verma, P. Functional foods from cyanobacteria: An emerging source for functional food products of pharmaceutical importance. In Microbial Functional Foods and Nutraceuticals, 1st ed.; Gupta, V.K., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2017; pp. 21–37. [Google Scholar]
- Singh, R.; Parihar, P.; Singh, M.; Bajguz, A.; Kumar, J.; Singh, S.; Prasad, S.M. Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: Current status and future prospects. Front. Microbiol. 2017, 8, 515. [Google Scholar] [CrossRef]
- Spínola, M.P.; Mendes, A.R.; Prates, J.A. Chemical composition, bioactivities, and applications of Spirulina (Limnospira platensis) in food, feed, and medicine. Foods 2024, 13, 3656. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, M. Microalgae nutraceuticals. Foods 2016, 5, 54. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.; Meenatchi, R.; Pachillu, K.; Bansal, S.; Brindangnanam, P.; Arockiaraj, J.; Selvin, J. Identification and characterization of the novel bioactive compounds from microalgae and cyanobacteria for pharmaceutical and nutraceutical applications. J. Basic Microbiol. 2022, 62, 999–1029. [Google Scholar] [CrossRef] [PubMed]
- Vasileva, I.; Alexandrov, S.; Peeva, V.; Ivanova, A.; Ivanova, J. Optimizing the production of value-added substances derived from Chroococcus sp. R-10 (Cyanoprokaryota). Comptes Rendus L’académie Bulg. Sci. 2021, 74, 1626–1634. [Google Scholar]
- Vasileva, I.; Toshkova-Yotova, T.; Georgieva, Z.; Karcheva, Z.; Petrova, D.; Chaneva, G.; Yocheva, L. Effect of temperature and light on the biochemical profile and antimicrobial activity of Chroococcus sp. R-10 (Cyanoprocaryota). Oxid. Commun. 2021, 44, 723–736. [Google Scholar]
- Vasileva, I.; Toshkova-Yotova, T.; Georgieva, A.; Toshkova, R.; Ivanova, J. A newly isolated stain of Chroococcus sp.: Biotechnological potential & antitumor properties. Acta Microbiol. Bulg. 2025, 41, 13–18. [Google Scholar]
- Aiba, S.; Ogawa, T. Assessment of growth yield of a blue-green alga, Spirulina platensis, in axenic and continuous culture. Microbiology 1977, 102, 179–182. [Google Scholar] [CrossRef]
- The European Pharmacopoeia Commission; European Directorate for the Quality of Medicines & HealthCare. European Pharmacopoeia; Council of Europe: Strasbourg, France, 2010; Volume 1. [Google Scholar]
- Raynova, Y.; Marchev, A.; Doumanova, L.; Pavlov, A.; Idakieva, K. Antioxidant Activity of Helix aspersa maxima (Gastropod) Hemocyanin. Acta Microbiol. Bulg. 2015, 31, 127–131. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Hachicha, R.; Elleuch, F.; Ben Hlima, H.; Dubessay, P.; de Baynast, H.; Delattre, C.; Pierre, G.; Hachicha, R.; Abdelkafi, S.; Michaud, P.; et al. Biomolecules from microalgae and cyanobacteria: Applications and market survey. Appl. Sci. 2022, 12, 1924. [Google Scholar] [CrossRef]
- Goshtasbi, H.; Safary, A.; Movafeghi, A.; Barar, J.; Akbarzadeh-Khiavi, M.; Omidi, Y. Anticancer impacts of the unicellular cyanobacterium Chroococcus turgidus bioactive compounds in colorectal adenocarcinoma. BioImpacts BI 2025, 15, 30867. [Google Scholar] [CrossRef]
- Murad, W.; Amin, A.; Khan, M.H.; Mahmood, N.; Ahmad, M. Assessment of antimicrobial, antialgal and cytotoxic activities of crude extracts from rhizospheric and freshwater cyanobacterial strains. Adv. Life Sci. 2022, 9, 169–176. [Google Scholar] [CrossRef]
- Chinnu, K.; Mukund, S.; Muthukumaran, M.; Sivasubramanian, V. Anticancer activity of isolated beta-glucan from Chrocccoccus turgidus (Kützing) Nägeli. J. Algal Biomass Util. 2015, 6, 43–55. [Google Scholar]
- El Semary, N.A.; Fouda, M. Anticancer activity of Cyanothece sp. strain extracts from Egypt: First record. Asian Pac. J. Trop. Biomed. 2015, 5, 992–995. [Google Scholar] [CrossRef]
- Karan, T.; Aydin, A. Anticancer potential and cytotoxic effect of some freshwater cyanobacteria. Trop. J. Pharm. Res. 2018, 17, 2183–2188. [Google Scholar] [CrossRef]
- Liu, M.; Guo, J.; Zhao, J.; Li, H.; Feng, X.; Liu, H.; Zhang, H.; Jia, X.; Wei, R.; Li, F.; et al. Activation of NRF2 by celastrol increases antioxidant functions and prevents the progression of osteoarthritis in mice. Chin. J. Nat. Med. 2024, 22, 137–145. [Google Scholar] [CrossRef]
- Jin, P.; Feng, X.D.; Huang, C.S.; Li, J.; Wang, H.; Wang, X.M.; Li, L.; Ma, L.Q. Oxidative stress and cellular senescence: Roles in tumor progression and therapeutic opportunities. MedComm–Oncology 2024, 3, e70007. [Google Scholar] [CrossRef]
- Wijesekara, W.A.M.A.; Manage, P.M. In vitro screening of, antibacterial antifungal and cytotoxicity activities in crude extract of freshwater cyanobacterium Oscillatoria sp. J. Trop. For. Environ. 2017, 7, 24–31. [Google Scholar] [CrossRef]
Chroococcus sp. R-10 Extract | TPC (µg GAE/mg) | ABTS (IC50 µg/mL) | DPPH (IC50 µg/mL) | NBT (IC50 µg/mL) |
---|---|---|---|---|
LT | 6.91 ± 0.36 | 41.17 ± 1.85 | 1273 ± 11.14 | 428.8 ± 4.18 |
HT | 6.35 ± 0.06 | 47.49 ± 1.60 | 1584 ± 26.73 | 441.2 ± 6.61 |
Ascorbic acid | - | 40.54 ± 1.26 | 41.42 ± 1.87 | 5.42 ± 0.34 |
Cell Line | IC50 ± SD (μg/mL) | |
---|---|---|
LT Extract | HT Extract | |
MCF-10A | >2000 | >2000 |
HCT | 1278 ± 132 | 1403 ± 150 |
MCF-7 | 317.5 ± 28 | 222.5 ± 19 |
MDA-MB-231 | 226.7 ± 8 | 232.0 ± 4 |
HepG2 | 685 ± 19 | 817.5 ± 43 |
A549 | 567.5 ± 34 | 567.5 ± 33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulikovska, I.; Toshkova-Yotova, T.; Tsvetanova, E.; Djeliova, V.; Lozanova, V.; Vasileva, A.; Ivanov, I.; Toshkova, R.; Georgieva, A. Assessment of Antioxidant, Antiproliferative and Proapoptotic Potential of Aqueous Extracts of Chroococcus sp. R-10. Appl. Sci. 2025, 15, 10628. https://doi.org/10.3390/app151910628
Sulikovska I, Toshkova-Yotova T, Tsvetanova E, Djeliova V, Lozanova V, Vasileva A, Ivanov I, Toshkova R, Georgieva A. Assessment of Antioxidant, Antiproliferative and Proapoptotic Potential of Aqueous Extracts of Chroococcus sp. R-10. Applied Sciences. 2025; 15(19):10628. https://doi.org/10.3390/app151910628
Chicago/Turabian StyleSulikovska, Inna, Tanya Toshkova-Yotova, Elina Tsvetanova, Vera Djeliova, Vesela Lozanova, Anelia Vasileva, Ivaylo Ivanov, Reneta Toshkova, and Ani Georgieva. 2025. "Assessment of Antioxidant, Antiproliferative and Proapoptotic Potential of Aqueous Extracts of Chroococcus sp. R-10" Applied Sciences 15, no. 19: 10628. https://doi.org/10.3390/app151910628
APA StyleSulikovska, I., Toshkova-Yotova, T., Tsvetanova, E., Djeliova, V., Lozanova, V., Vasileva, A., Ivanov, I., Toshkova, R., & Georgieva, A. (2025). Assessment of Antioxidant, Antiproliferative and Proapoptotic Potential of Aqueous Extracts of Chroococcus sp. R-10. Applied Sciences, 15(19), 10628. https://doi.org/10.3390/app151910628