The Role of Artificial Intelligence and Machine Learning in Advancing Civil Engineering: A Comprehensive Review
Abstract
1. Introduction
2. Key Challenges in Civil Engineering Leading to AI Adoption
2.1. Construction and Demolition (C&D) Waste
2.2. Carbon Emissions and Energy Consumption
2.3. Aging Infrastructure and Maintenance
2.4. Water Management and Pollution Control
2.5. Urbanisation and Land Use Pressure
2.6. Climate Change and Resilience
2.7. Civil-Specific Challenges in AI/ML Implementation
- Safety-critical decision environments: Unlike other fields, AI errors in civil engineering (e.g., misclassification of structural cracks or slope stability failures) can result in catastrophic consequences for public safety, requiring stricter validation and redundancy than typical AI applications.
- Long service life and lifecycle uncertainty: Civil infrastructure often spans decades. Models trained on short-term datasets may not generalise to long-term degradation, creep, or impacts of climate change.
- Integration with design codes: Current design codes (Eurocodes, ACI) provide no provisions for AI-based predictions. Therefore, AI outcomes must be reconciled with conservative physics-based approaches before regulatory acceptance.
- Heterogeneity of data sources: Unlike domains with standardised datasets (e.g., ImageNet in computer vision), civil data are fragmented (lab vs. field vs. sensor), non-standardised, and site-specific, which hampers model transferability.
- Liability and professional accountability: Engineers remain legally responsible for design decisions. This constrains the practical use of “black-box” AI models unless explainability methods (e.g., SHAP, LIME) can be shown to align with physical reasoning and code-based checks.
3. Bibliometrics of AI and ML in Civil Engineering
4. Overview of AI and ML in Engineering
4.1. Definitions and Techniques (Supervised, Unsupervised, Deep Learning)
- SVM: Particularly effective for classification problems such as soil type identification and structural damage classification. SVMs excel in handling high-dimensional data and nonlinear relationships through kernel functions [79].
- RF: An ensemble method that combines multiple DTs, providing robust predictions for both regression and classification tasks. This technique has shown exceptional performance in predicting concrete strength, structural health monitoring, and geotechnical parameter estimation [80].
- Neural Networks: Multi-layered perceptrons capable of approximating complex nonlinear relationships. Traditional neural networks have been successfully applied to structural response prediction, material property modelling, and optimisation problems [81]. Unsupervised learning techniques focus on discovering hidden patterns and structures within unlabelled datasets, making them invaluable for exploratory data analysis and feature extraction in civil engineering:
- K-means Clustering: Widely used for grouping similar structural elements, identifying failure patterns, and segmenting infrastructure assets based on condition states [82].
- Principal Component Analysis (PCA): Essential for dimensionality reduction and feature extraction, particularly useful in analysing large datasets from structural health monitoring systems and reducing computational complexity [83].
- Hierarchical Clustering: Effective for creating taxonomies of structural systems, organising maintenance schedules, and identifying relationships between different infrastructure components [84]. Deep learning represents the most recent advancement in AI, utilising deep neural networks with multiple hidden layers to automatically extract hierarchical features from raw data. This approach has revolutionised computer vision applications in civil engineering:
- CNNs: Specifically designed for image processing tasks, CNNs have become the gold standard for automated crack detection, structural damage assessment, and quality control in construction [85].
- RNNs and LSTM: Particularly suited for time-series data analysis, these architectures excel in predicting structural responses, monitoring temporal changes in infrastructure condition, and analysing dynamic loading patterns [86].
- GANs: Emerging applications in generating synthetic data for training purposes, creating realistic structural failure scenarios for testing, and augmenting limited datasets common in civil engineering research [78].
4.2. AI vs. Traditional Modelling Approaches
4.3. Tools, Platforms, and Datasets
5. Applications in Sustainable Materials
5.1. Sustainable Binder Alternatives
5.2. AI in Sustainable Concrete
5.3. AI in Sustainable Mix Design Optimisation
5.4. ML in the Recycling and Reuse of Construction Waste
5.5. Scalability of AI in Resource Constrained Environments
6. Applications in Structural Engineering
6.1. Structural Health Monitoring
6.2. Damage Detection and Structural Diagnostics
6.3. Load and Response Prediction
6.4. Optimisation of Structural Design for Sustainability
6.5. Risk Assessment and Resilience
6.6. Automated Construction and Robotics
6.7. Advanced Structural Analysis and Design
7. Applications in Geotechnical and Environmental Engineering
7.1. Slope Stability Analysis Using ML
7.2. AI and ML Applications in Groundwater Modelling
7.3. AI in Flood Prediction and Resilience Modelling
7.4. AI in Soil Classification and Texture Prediction
8. Applications of AI in Transportation and Infrastructure
8.1. Pavement Condition Monitoring and Maintenance
8.2. Bridge SHM
8.3. Traffic Flow Prediction and Management
8.4. Intelligent Transportation Systems (ITS)
8.5. Urban Mobility and Infrastructure Planning
8.6. Comparison of AI Techniques in Transportation and Infrastructure
9. Intrinsic Connections Across Civil Engineering Domains
10. Challenges and Limitations
10.1. Data Limitations and Fragmentation
10.2. Model Interpretability and Trust
10.3. Regulatory and Code Compliance Gaps
10.4. Computational Complexity and Cost
10.5. Generalisation and Overfitting and Physical Inconsistencies
10.6. Integration and Real-Time Responsiveness
10.7. Regulatory Acceptance and Integration with Codes
11. Future Research Directions
12. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IEEE-USA. Board of Directors Artificial Intelligence Research, Development and Regulation. 2017. Available online: https://globalpolicy.ieee.org/wp-content/uploads/2017/10/IEEE17003.pdf (accessed on 15 July 2025).
- Feroz, A.K.; Zo, H.; Chiravuri, A. Digital Transformation and Environmental Sustainability: A Review and Research Agenda. Sustainability 2021, 13, 1530. [Google Scholar] [CrossRef]
- Apurva Pamidimukkala; Sharareh Kermanshachi Impact of COVID-19 on field and office workforce in construction industry Impact of COVID-19 on field and office workforce in construction industry. Proj. Leadersh. Soc. 2021, 2, 100018. [CrossRef]
- Alsharef, A.; Banerjee, S.; Uddin, S.M.J.; Albert, A.; Jaselskis, E. Early Impacts of the COVID-19 Pandemic on the United States Construction Industry. Int. J. Environ. Res. Public Health 2021, 18, 1559. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.A.; Zhumabekova, A.; Paul, S.C.; Kim, J.R. A Review of 3D Printing in Construction and its Impact on the Labor Market. Sustainability 2020, 12, 8492. [Google Scholar] [CrossRef]
- Lee, J.; Cho, W.; Kang, D.; Lee, J. Simplified Methods for Generative Design That Combine Evaluation Techniques for Automated Conceptual Building Design. Appl. Sci. 2023, 13, 12856. [Google Scholar] [CrossRef]
- Bucher, M.J.J.; Kraus, M.A.; Rust, R.; Tang, S. Performance-Based Generative Design for Parametric Modeling of Engineering Structures Using Deep Conditional Generative Models. Autom. Constr. 2023, 156, 105128. [Google Scholar] [CrossRef]
- Sun, H.; Burton, H.V.; Huang, H. Machine learning applications for building structural design and performance assessment: State-of-the-art review. J. Build. Eng. 2021, 33, 101816. [Google Scholar] [CrossRef]
- Chojaczyk, A.A.; Teixeira, A.P.; Neves, L.C.; Cardoso, J.B.; Guedes Soares, C. Review and application of Artificial Neural Networks models in reliability analysis of steel structures. Struct. Saf. 2015, 52, 78–89. [Google Scholar] [CrossRef]
- Toh, G.; Park, J. Review of Vibration-Based Structural Health Monitoring Using Deep Learning. Appl. Sci. 2020, 10, 1680. [Google Scholar] [CrossRef]
- Flah, M.; Nunez, I.; Ben Chaabene, W.; Nehdi, M.L. Machine Learning Algorithms in Civil Structural Health Monitoring: A Systematic Review. Arch. Comput. Methods Eng. 2021, 28, 2621–2643. [Google Scholar] [CrossRef]
- Motaghed, S.; Zadeh, M.S.S.; Khooshecharkh, A.; Askari, M. Implementation of AI for The Prediction of Failures of Reinforced Concrete Frames. Int. J. Reliab. Risk Saf. Theory Appl. 2022, 5, 1–7. [Google Scholar] [CrossRef]
- Naser, M.Z. Mechanistically Informed Machine Learning and Artificial Intelligence in Fire Engineering and Sciences. Fire Technol. 2021, 57, 2741–2784. [Google Scholar] [CrossRef]
- Falcone, R.; Lima, C.; Martinelli, E. Soft computing techniques in structural and earthquake engineering: A literature review. Eng. Struct. 2020, 207, 110269. [Google Scholar] [CrossRef]
- Aldashti, A.A. How Artificial Intelligence (AI) is Being Utilized in Structural Engineering. Int. J. Nov. Res. Eng. Sci. 2025, 12, 14–19. [Google Scholar] [CrossRef]
- Thai, H. Machine learning for structural engineering: A state-of-the-art review. Structures 2022, 38, 448–491. [Google Scholar] [CrossRef]
- Koya, B.P.; Aneja, S.; Gupta, R.; Valeo, C. Comparative analysis of different machine learning algorithms to predict mechanical properties of concrete. Mech. Adv. Mater. Struct. 2022, 29, 4032–4043. [Google Scholar] [CrossRef]
- Bui, D.; Nguyen, T.; Chou, J.; Nguyen-Xuan, H.; Ngo, T.D. A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete. Constr. Build. Mater. 2018, 180, 320–333. [Google Scholar] [CrossRef]
- Sultana, N.; Zakir Hossain, S.M.; Alam, M.S.; Islam, M.S.; Abtah, M.A.A. Soft computing approaches for comparative prediction of the mechanical properties of jute fiber reinforced concrete. Adv. Eng. Softw. 2020, 149, 102887. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, X.; Yu, Y.; Xie, T.; Yang, G.; Xue, J. Parametric sensitivity analysis and modelling of mechanical properties of normal- and high-strength recycled aggregate concrete using grey theory, multiple nonlinear regression and artificial neural networks. Constr. Build. Mater. 2019, 211, 479–491. [Google Scholar] [CrossRef]
- Eftekhar Afzali, S.A.; Shayanfar, M.A.; Ghanooni-Bagha, M.; Golafshani, E.; Ngo, T. The use of machine learning techniques to investigate the properties of metakaolin-based geopolymer concrete. J. Clean. Prod. 2024, 446, 141305. [Google Scholar] [CrossRef]
- de-Prado-Gil, J.; Palencia, C.; Silva-Monteiro, N.; Martínez-García, R. To predict the compressive strength of self compacting concrete with recycled aggregates utilizing ensemble machine learning models To predict the compressive strength of self compacting concrete with recycled aggregates utilizing ensemble machine learning models. Case Stud. Constr. Mater. 2022, 16, e01046. [Google Scholar] [CrossRef]
- İnan, T.; Narbaev, T.; Hazir, Ö. A Machine Learning Study to Enhance Project Cost Forecasting. IFAC PapersOnLine 2022, 55, 3286–3291. [Google Scholar] [CrossRef]
- Gondia, A.; Moussa, A.; Ezzeldin, M.; El-Dakhakhni, W. Machine learning-based construction site dynamic risk models. Technol. Forecast. Soc. Change 2023, 189, 122347. [Google Scholar] [CrossRef]
- Lagos, C.I.; Herrera, R.F.; Mac Cawley, A.F.; Alarcón, L.F. Predicting construction schedule performance with last planner system and machine learning. Autom. Constr. 2024, 167, 105716. [Google Scholar] [CrossRef]
- Cao, J.; Peng, T.; Liu, X.; Dong, W.; Duan, R.; Yuan, Y.; Wang, W.; Cui, S. Resource Allocation for Ultradense Networks with Machine-Learning-Based Interference Graph Construction. IEEE Internet Things J. 2020, 7, 2137–2151. [Google Scholar] [CrossRef]
- Waqar, A. Intelligent decision support systems in construction engineering: An artificial intelligence and machine learning approaches. Expert Syst. Appl. 2024, 249, 123503. [Google Scholar] [CrossRef]
- Safarzadegan Gilan, S.; Sebt, M.H.; Shahhosseini, V. Computing with words for hierarchical competency based selection of personnel in construction companies. Appl. Soft Comput. 2012, 12, 860–871. [Google Scholar] [CrossRef]
- Sadatnya, A.; Sadeghi, N.; Sabzekar, S.; Khanjani, M.; Tak, A.N.; Taghaddos, H. Machine learning for construction crew productivity prediction using daily work reports. Autom. Constr. 2023, 152, 104891. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S. Construction Site Safety Management: A Computer Vision and Deep Learning Approach. Sensors 2023, 23, 944. [Google Scholar] [CrossRef]
- Siebert, J.; Joeckel, L.; Heidrich, J.; Trendowicz, A.; Nakamichi, K.; Ohashi, K.; Namba, I.; Yamamoto, R.; Aoyama, M. Construction of a quality model for machine learning systems. Softw. Qual. J. 2022, 30, 307–335. [Google Scholar] [CrossRef]
- Feroz Khan, A.B.; Ivan, P. Integrating Machine Learning and Deep Learning in Smart Cities for Enhanced Traffic Congestion Management: An Empirical Review. J. Urban Dev. Manag. 2023, 2, 211–221. [Google Scholar] [CrossRef]
- Karami, Z.; Kashef, R. Smart transportation planning: Data, models, and algorithms Smart transportation planning: Data, models, and algorithms. Transp. Eng. 2020, 2, 100013. [Google Scholar] [CrossRef]
- Zhang, P.; Yin, Z.; Jin, Y. Machine Learning-Based Modelling of Soil Properties for Geotechnical Design: Review, Tool Development and Comparison. Arch. Comput. Methods Eng. 2022, 29, 1229–1245. [Google Scholar] [CrossRef]
- Wang, H. Study of AI Based Methods for Characterization of Geotechnical Site Investigation Data. 2020. Available online: https://dp.la/item/d050cb941ff4b9a994db14cf35ef8711 (accessed on 15 July 2025).
- Nanehkaran, Y.A.; Licai, Z.; Chengyong, J.; Chen, J.; Anwar, S.; Azarafza, M.; Derakhshani, R. Comparative Analysis for Slope Stability by Using Machine Learning Methods. Appl. Sci. 2023, 13, 1555. [Google Scholar] [CrossRef]
- Khajehzadeh, M.; Keawsawasvong, S.; Kamchoom, V.; Shi, C.; Khajehzadeh, A. Developing effective optimized machine learning approaches for settlement prediction of shallow foundation Developing effective optimized machine learning approaches for settlement prediction of shallow foundation. Heliyon 2024, 10, e36714. [Google Scholar] [CrossRef]
- Zhu, L.; Husny, Z.J.B.M.; Samsudin, N.A.; Xu, H.; Han, C. Deep learning method for minimizing water pollution and air pollution in urban environment. Urban Clim. 2023, 49, 101486. [Google Scholar] [CrossRef]
- Rao, A.; Talan, A.; Abbas, S.; Dev, D.; Taghizadeh-Hesary, F. The role of natural resources in the management of environmental sustainability: Machine learning approach. Resour. Policy 2023, 82, 103548. [Google Scholar] [CrossRef]
- Liu, Z.L. Artificial Intelligence for Engineers: Basics and Implementations, 1st ed.; Springer: Cham, Switzerland, 2025. [Google Scholar]
- Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 4th ed.; Pearson: London, UK, 2021; p. 1168. [Google Scholar]
- Iqbal, S.; Arslan, M.; Room, S.; Mahmood, K. Effect of Brick Powder and Stone Dust on Mechanical Properties of Self-Compacting Concrete. SN Appl. Sci. 2019, 1, 1405. [Google Scholar]
- Coskuner, G.; Jassim, M.S.; Zontul, M.; Karateke, S. Application of artificial intelligence neural network modeling to predict the generation of domestic, commercial and construction wastes. Waste Manag. Res. 2021, 39, 499–507. [Google Scholar] [CrossRef]
- Kabirifar, K.; Mojtahedi, M.; Changxin Wang, C.; Tam, V.W.Y. Effective construction and demolition waste management assessment through waste management hierarchy; a case of Australian large construction companies. J. Clean. Prod. 2021, 312, 127790. [Google Scholar] [CrossRef]
- Wang, J.; Wu, H.; Tam, V.W.Y.; Zuo, J. Considering life-cycle environmental impacts and society’s willingness for optimizing construction and demolition waste management fee: An empirical study of China. J. Clean. Prod. 2019, 206, 1004–1014. [Google Scholar] [CrossRef]
- Lakhouit, A.; Shaban, M. Exploring sustainable solutions with machine learning algorithms: A focus on construction waste management. Clean Techn. Environ. Policy 2025, 27, 1297–1310. [Google Scholar] [CrossRef]
- Lakhouit, A.; Shaban, M.; Alatawi, A.; Abbas, S.Y.H.; Asiri, E.; Al Juhni, T.; Elsawy, M. Machine-learning approaches in geo-environmental engineering: Exploring smart solid waste management. J. Environ. Manag. 2023, 330, 117174. [Google Scholar] [CrossRef] [PubMed]
- Samal, C.G.; Biswal, D.R.; Udgata, G.; Pradhan, S.K. Estimation, Classification, and Prediction of Construction and Demolition Waste Using Machine Learning for Sustainable Waste Management: A Critical Review. Constr. Mater. 2025, 5, 10. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, J.; Xu, X. Machine learning in construction and demolition waste management: Progress, challenges, and future directions. Autom. Constr. 2024, 162, 105380. [Google Scholar] [CrossRef]
- Iqbal, S.; Zaheer, M.; Room, S. Mechanical & microstructural properties of self-compacting concrete by partial replacement of cement with marble powder and sand with rice husk ash. Sci. Int. Q. Res. J. 2023, 4, 82–99. [Google Scholar]
- Monteiro, P.J.M.; Miller, S.A.; Horvath, A. Towards sustainable concrete. Nat. Mater. 2017, 16, 698–699. [Google Scholar] [CrossRef]
- Room, S.; Bahadori-Jahromi, A. Hydration Kinetics of Biochar-Enhanced Cement Composites: A Mini-Review. Buildings 2025, 15, 2520. [Google Scholar] [CrossRef]
- Bhatt, H.; Davawala, M.; Joshi, T.; Shah, M.; Unnarkat, A. Forecasting and mitigation of global environmental carbon dioxide emission using machine learning techniques. Clean. Chem. Eng. 2023, 5, 100095. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, L.; Wu, L. Forecasting the carbon dioxide emissions in 53 countries and regions using a non-equigap grey model. Environ. Sci. Pollut. Res. 2021, 28, 15659–15672. [Google Scholar] [CrossRef]
- Hamrani, A.; Akbarzadeh, A.; Madramootoo, C.A. Machine learning for predicting greenhouse gas emissions from agricultural soils. Sci. Total Environ. 2020, 741, 140338. [Google Scholar] [CrossRef] [PubMed]
- Mardani, A.; Streimikiene, D.; Nilashi, M.; Arias Aranda, D.; Loganathan, N.; Jusoh, A. Energy Consumption, Economic Growth, and CO2 Emissions in G20 Countries: Application of Adaptive Neuro-Fuzzy Inference System. Energies 2018, 11, 2771. [Google Scholar] [CrossRef]
- Zhang, Y.; Teoh, B.K.; Wu, M.; Chen, J.; Zhang, L. Data-driven estimation of building energy consumption and GHG emissions using explainable artificial intelligence. Energy 2023, 262, 125468. [Google Scholar] [CrossRef]
- AlOmar, M.K.; Hameed, M.M.; Al-Ansari, N.; Mohd Razali, S.F.; AlSaadi, M.A. Short-, Medium-, and Long-Term Prediction of Carbon Dioxide Emissions using Wavelet-Enhanced Extreme Learning Machine. Civ. Eng. J. 2023, 9, 815–834. [Google Scholar] [CrossRef]
- Munawar, H.; Ullah, F.; Shahzad, D.; Heravi, A.; Qayyum, S.; Akram, J. Civil Infrastructure Damage and Corrosion Detection: An Application of Machine Learning. Buildings 2022, 12, 156. [Google Scholar] [CrossRef]
- Assaad, R.; El-adaway, I.H. Bridge Infrastructure Asset Management System: Comparative Computational Machine Learning Approach for Evaluating and Predicting Deck Deterioration Conditions. J. Infrastruct. Syst. 2020, 26, 04020032. [Google Scholar] [CrossRef]
- Munawar, H.S.; Hammad, A.W.A.; Waller, S.T.; Islam, M.R. Modern Crack Detection for Bridge Infrastructure Maintenance Using Machine Learning. Hum. Centric Intell. Syst. 2022, 2, 95–112. [Google Scholar] [CrossRef]
- Lee, J.S.; Hwang, S.H.; Choi, I.Y.; Kim, I.K. Prediction of Track Deterioration Using Maintenance Data and Machine Learning Schemes. J. Transp. Eng. Part A Syst. 2018, 144, 04018045. [Google Scholar] [CrossRef]
- Priyadarshini, I.; Alkhayyat, A.; Obaid, A.J.; Sharma, R. Water pollution reduction for sustainable urban development using machine learning techniques. Cities 2022, 130, 103970. [Google Scholar] [CrossRef]
- Labadie, J.W. Advances in Water Resources Systems Engineering: Applications of Machine Learning. In Modern Water Resources Engineering; Singh, V.P., Ed.; Humana Press: New York, NY, USA, 2014; Volume 15, pp. 467–523. [Google Scholar]
- Aslam, B.; Maqsoom, A.; Cheema, A.H.; Ullah, F.; Alharbi, A.; Imran, M. Water quality management using hybrid machine learning and data mining algorithms: An indexing approach. IEEE Access 2022, 10, 119692–119705. [Google Scholar] [CrossRef]
- Jibrin, A.M.; Al-Suwaiyan, M.; Aldrees, A.; Dan’azumi, S.; Usman, J.; Abba, S.I.; Yassin, M.A.; Scholz, M.; Sammen, S.S. Machine learning predictive insight of water pollution and groundwater quality in the Eastern Province of Saudi Arabia. Sci. Rep. 2024, 14, 20031. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Q. Application of Machine Learning in Urban Land Use. In Deep Learning for Multimedia Processing Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2024; pp. 246–283. [Google Scholar]
- Wang, J.; Bretz, M.; Dewan, M.A.A.; Delavar, M.A. Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects. Sci. Total Environ. 2022, 822, 153559. [Google Scholar] [CrossRef]
- Mostafa, E.; Li, X.; Sadek, M.; Dossou, J.F. Monitoring and Forecasting of Urban Expansion Using Machine Learning-Based Techniques and Remotely Sensed Data: A Case Study of Gharbia Governorate, Egypt. Remote Sens. 2021, 13, 4498. [Google Scholar] [CrossRef]
- Giang, N.H.; Wang, Y.; Hieu, T.D.; Ngu, N.H.; Dang, T. Estimating Land-Use Change Using Machine Learning: A Case Study on Five Central Coastal Provinces of Vietnam. Sustainability 2022, 14, 5194. [Google Scholar] [CrossRef]
- Ladi, T.; Jabalameli, S.; Sharifi, A. Applications of machine learning and deep learning methods for climate change mitigation and adaptation. Environ. Plan. B Urban Anal. City Sci. 2022, 49, 1314–1330. [Google Scholar] [CrossRef]
- Nyangon, J. Climate-Proofing Critical Energy Infrastructure: Smart Grids, Artificial Intelligence, and Machine Learning for Power System Resilience against Extreme Weather Events. J. Infrastruct. Syst. 2024, 30, 03124001. [Google Scholar] [CrossRef]
- Fiorini, L.; Conti, A.; Pellis, E.; Bonora, V.; Masiero, A.; Tucci, G. Machine Learning-Based Monitoring for Planning Climate-Resilient Conservation of Built Heritage. Drones 2024, 8, 249. [Google Scholar] [CrossRef]
- Elwahsh, H.; Allakany, A.; Alsabaan, M.; Ibrahem, M.I.; El-Shafeiy, E. A Deep Learning Technique to Improve Road Maintenance Systems Based on Climate Change. Appl. Sci. 2023, 13, 8899. [Google Scholar] [CrossRef]
- Lin, K.; Zhou, T.; Gao, X.; Li, Z.; Duan, H.; Wu, H.; Lu, G.; Zhao, Y. Deep convolutional neural networks for construction and demolition waste classification: VGGNet structures, cyclical learning rate, and knowledge transfer. J. Environ. Manag. 2022, 318, 115501. [Google Scholar] [CrossRef]
- Chadegani, A.A.; Salehi, H.; Yunus, M.M.; Farhadi, H.; Fooladi, M.; Farhadi, M.; Ebrahim, N.A. A Comparison between Two Main Academic Literature Collections: Web of Science and Scopus Databases. Asian Soc. Sci. 2013, 9, 18–26. [Google Scholar] [CrossRef]
- Room, S.; Bahadori-Jahromi, A. Biochar-Enhanced Carbon-Negative and Sustainable Cement Composites: A Scientometric Review. Sustainability 2024, 16, 10162. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems (NeurIPS 2014), Montreal, QC, Canada, 8–13 December 2014; MIT Press: Cambridge, MA, USA, 2014; pp. 2672–2680. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-Vector Networks. 1995. Available online: https://link.springer.com/article/10.1007/BF00994018 (accessed on 15 July 2025).
- Breiman, L. Random Forests. 2001. Available online: https://link.springer.com/article/10.1023/a:1010933404324 (accessed on 15 July 2025).
- Haykin, S.S. Neural Networks and Learning Machines, 3rd ed.; Pearson Education: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Macqueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statisticsand Probability, Berkeley, CA, USA, 21 June–18 July 1965; pp. 281–297. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar] [CrossRef]
- Ahn, H.; Chang, T. A Similarity-Based Hierarchical Clustering Method for Manufacturing Process Models. Sustainability 2019, 11, 2560. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Liu, H.; Su, H.; Sun, L.; Dias-da-Costa, D. State-of-the-art review on the use of AI-enhanced computational mechanics in geotechnical engineering. Artif. Intell. Rev. 2024, 57, 196. [Google Scholar] [CrossRef]
- Pan, I.; Mason, L.R.; Matar, O.K. Data-centric Engineering: Integrating simulation, machine learning and statistics. Challenges and opportunities. Chem. Eng. Sci. 2022, 249, 117271. [Google Scholar] [CrossRef]
- Benaroya, H.; Rehak, M. Finite Element Methods in Probabilistic Structural Analysis: A Selective Review. Appl. Mech. Rev. 1988, 41, 201–213. [Google Scholar] [CrossRef]
- Mangado, N.; Piella, G.; Noailly, J.; Pons-Prats, J.; Ballester, M.Á.G. Analysis of Uncertainty and Variability in Finite Element Computational Models for Biomedical Engineering: Characterization and Propagation. Front. Bioeng. Biotechnol. 2016, 4, 85. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Taylor, R.L.; Govindjee, S. The Finite Element Method: Its Basis and Fundamentals, 8th ed.; Butterworth-Heinemann: Chantilly, VA, USA, 2025. [Google Scholar]
- Jain, R.; Singh, S.K.; Palaniappan, D.; Parmar, K. Data-Driven Civil Engineering: Applications of Artificial Intelligence, Machine Learning, and Deep Learning. Turk. J. Eng. TUJE 2025, 9, 354–377. [Google Scholar] [CrossRef]
- Sarfarazi, S.; Mascolo, I.; Modano, M.; Guarracino, F. Application of Artificial Intelligence to Support Design and Analysis of Steel Structures. Metals 2025, 15, 408. [Google Scholar] [CrossRef]
- Asadi, S.; Jimeno-Sáez, P.; López-Ballesteros, A.; Senent-Aparicio, J. Comparison and integration of physical and interpretable AI-driven models for rainfall-runoff simulation. Results Eng. 2024, 24, 103048. [Google Scholar] [CrossRef]
- Naser, M.Z. A look into how machine learning is reshaping engineering models: The rise of analysis paralysis, optimal yet infeasible solutions, and the inevitable Rashomon paradox. Mach. Learn. Comput. Sci. Eng. 2025, 1, 19. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Costa, C.J.; Aparicio, M.; Aparicio, S.; Aparicio, J.T. The Democratization of Artificial Intelligence: Theoretical Framework. Appl. Sci. 2024, 14, 8236. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar] [CrossRef]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow; USENIX Association: Berkeley, CA, USA, 2016; pp. 265–283. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An imperative style, high-performance deep learning library. arXiv 2019, arXiv:1912.01703. [Google Scholar] [CrossRef]
- van der Walt, S.; Colbert, S.C.; Varoquaux, G. The NumPy Array: A Structure for Efficient Numerical Computation. Comput. Sci. Eng. 2011, 13, 22–30. [Google Scholar] [CrossRef]
- Papazafeiropoulos, G.; Muñiz-Calvente, M.; Martínez-Pañeda, E. Abaqus2Matlab: A suitable tool for finite element post-processing. Adv. Eng. Softw. 2017, 105, 9–16. [Google Scholar] [CrossRef]
- Patel, D.; Raut, G.; Cheetirala, S.N.; Nadkarni, G.N.; Freeman, R.; Glicksberg, B.S.; Klang, E.; Timsina, P. Cloud Platforms for Developing Generative AI Solutions: A Scoping Review of Tools and Services. arXiv 2024, arXiv:2412.06044. [Google Scholar] [CrossRef]
- Inman, D.J. Damage Prognosis for Aerospace, Civil and Mechanical Systems; Wiley: Chichester, UK, 2005. [Google Scholar]
- Yeh, I.C. Modeling of strength of high-performance concrete using artificial neural networks. Cem. Concr. Res. 1998, 28, 1797–1808. [Google Scholar] [CrossRef]
- U.S. Geological Survey (USGS). USGS Groundwater Data for the Nation. National Water Information System. Available online: https://waterdata.usgs.gov/nwis/gw (accessed on 15 July 2025).
- Soller, D.R.; Berg, T.M. The U.S. National Geologic Map Database Project: Overview & Progress. In The Current Role of Geological Mapping in Geosciences; Springer: Dordrecht, The Netherlands, 2005; pp. 245–277. [Google Scholar]
- Cronin, B. Federal Highway Administration (FHWA) Update. IEEE Trans. Intell. Transp. Syst. 2024, 25, 54–70. [Google Scholar] [CrossRef]
- Tumrate, C.S.; Mishra, D. Concrete surface crack detection system through OpenCV library. AIP Conf. Proc. 2024, 2835, 020009. [Google Scholar] [CrossRef]
- Hoskere, V.; Narazaki, Y.; Hoang, T.; Spencer, B., Jr. Vision-based Structural Inspection using Multiscale Deep Convolutional Neural Networks. arXiv 2018, arXiv:1805.01055. [Google Scholar] [CrossRef]
- Naik, A.; Samant, L. Correlation Review of Classification Algorithm Using Data Mining Tool: WEKA, Rapidminer, Tanagra, Orange and Knime. Procedia Comput. Sci. 2016, 85, 662–668. [Google Scholar] [CrossRef]
- König, J.; Jenkins, M.; Mannion, M.; Barrie, P.; Morison, G. What’s Cracking? A Review and Analysis of Deep Learning Methods for Structural Crack Segmentation, Detection and Quantification. arXiv 2022, arXiv:2202.03714. [Google Scholar] [CrossRef]
- York, I.N.; Europe, I. Concrete needs to lose its colossal carbon footprint. Nature 2021, 597, 593–594. [Google Scholar] [CrossRef]
- Singh, N.B.; Middendorf, B. Geopolymers as an alternative to Portland cement: An overview. Constr. Build. Mater. 2020, 237, 117455. [Google Scholar] [CrossRef]
- Mehra, P.; Thomas, B.S.; Kumar, S.; Gupta, R.C. Jarosite added concrete along with fly ash: Properties and characteristics in fresh state. Perspect. Sci. 2016, 8, 69–71. [Google Scholar] [CrossRef]
- Zawrah, M.F.; Gado, R.A.; Feltin, N.; Ducourtieux, S.; Devoille, L. Recycling and utilization assessment of waste fired clay bricks (Grog) with granulated blast-furnace slag for geopolymer production. Process Saf. Environ. Prot. 2016, 103, 237–251. [Google Scholar] [CrossRef]
- Nassar, R.; Saeed, D.; Ghebrab, T.; Room, S.; Deifalla, A.; Al Amara, K. Heat of hydration, water sorption and microstructural characteristics of paste and mortar mixtures produced with powder waste glass. Cogent Eng. 2024, 11, 2297466. [Google Scholar] [CrossRef]
- Nassar, R.; Room, S. Strength, Durability, and Microstructural Characteristics of Binary Concrete Mixes Developed with Ultrafine Rice Husk Ash as Partial Substitution of Binder. Civ. Eng. Archit. 2025, 13, 595. [Google Scholar] [CrossRef]
- Iqbal, S.; Irshad, M.; Room, S.; Mahmood, K.; Iqbal, Q. Performance Evaluation of Self-Compacting Concrete Using Bagasse Ash and Granine as Partial Replacement of Cement and Sand. Tech. J. Univ. Eng. Technol. Taxila 2020, 25, 1–8. [Google Scholar]
- Skariah Thomas, B.; Yang, J.; Bahurudeen, A.; Chinnu, S.N.; Abdalla, J.A.; Hawileh, R.A.; Hamada, H.M. Geopolymer concrete incorporating recycled aggregates: A comprehensive review. Clean. Mater. 2022, 3, 100056. [Google Scholar] [CrossRef]
- Evision. Institute for Sustainable Infrastructure ISI. 2024. Available online: https://sustainableinfrastructure.org/envision/about/ (accessed on 15 July 2025).
- Global Infrastructure and Environmental Services Firm. Aecom. 2024. Available online: https://aecom.com/ (accessed on 15 July 2025).
- Khalaf, A.A.; Kopecskó, K.; Merta, I. Prediction of the compressive strength of fly ash geopolymer concrete by an optimised neural network model. Polymers 2022, 14, 1423. [Google Scholar] [CrossRef] [PubMed]
- Dao, D.V.; Ly, H.; Trinh, S.H.; Le, T.; Pham, B.T. Artificial intelligence approaches for prediction of compressive strength of geopolymer concrete. Materials 2019, 12, 983. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, R.; Lu, Y.; Huang, J. Prediction of compressive strength of geopolymer concrete landscape design: Application of the novel hybrid RF–GWO–XGBoost algorithm. Buildings 2024, 14, 591. [Google Scholar] [CrossRef]
- Ahmad, A.; Ahmad, W.; Chaiyasarn, K.; Ostrowski, K.A.; Aslam, F.; Zajdel, P.; Joyklad, P. Prediction of geopolymer concrete compressive strength using novel machine learning algorithms. Polymers 2021, 13, 3389. [Google Scholar] [CrossRef]
- Gupta, P.; Gupta, N.; Saxena, K.K. Predicting compressive strength of geopolymer concrete using machine learning. Innov. Emerg. Technol. 2023, 10, 2350003. [Google Scholar] [CrossRef]
- Shi, X.; Chen, S.; Wang, Q.; Lu, Y.; Ren, S.; Huang, J. Mechanical framework for geopolymer gels construction: An optimized LSTM technique to predict compressive strength of fly ash-based geopolymer gels concrete. Gels 2024, 10, 148. [Google Scholar] [CrossRef]
- Gad, M.A.; Nikbakht, E.; Ragab, M.G. Predicting the compressive strength of engineered geopolymer composites using automated machine learning. Constr. Build. Mater. 2024, 442, 137509. [Google Scholar] [CrossRef]
- Ansari, S.S.; Ibrahim, S.M.; Hasan, S.D. Conventional and ensemble machine learning models to predict the compressive strength of fly ash based geopolymer concrete. Mater. Today Proc. 2023, in press. [Google Scholar]
- Huynh, A.T.; Nguyen, Q.D.; Xuan, Q.L.; Magee, B.; Chung, T.; Tran, K.T.; Nguyen, K.T. A machine learning-assisted numerical predictor for compressive strength of geopolymer concrete based on experimental data and sensitivity analysis. Appl. Sci. 2020, 10, 7726. [Google Scholar] [CrossRef]
- Golafshani, E.; Khodadadi, N.; Ngo, T.; Nanni, A.; Behnood, A. Modelling the compressive strength of geopolymer recycled aggregate concrete using ensemble machine learning. Adv. Eng. Softw. 2024, 191, 103611. [Google Scholar] [CrossRef]
- Marathe, S.; Rodrigues, A.P. Intelligent models for prediction of compressive strength of geopolymer pervious concrete hybridized with agro-industrial and construction-demolition wastes. Stud. Geotech. Mech. 2024, 10, 1–28. [Google Scholar] [CrossRef]
- Liang, W.; Yin, W.; Zhong, Y.; Tao, Q.; Li, K.; Zhu, Z.; Zou, Z.; Zeng, Y.; Yuan, S.; Chen, H. Mixed artificial intelligence models for compressive strength prediction and analysis of fly ash concrete. Adv. Eng. Softw. 2023, 185, 103532. [Google Scholar] [CrossRef]
- Li, Y.; Shen, J.; Lin, H.; Li, Y. Optimization design for alkali-activated slag-fly ash geopolymer concrete based on artificial intelligence considering compressive strength, cost, and carbon emission. J. Build. Eng. 2023, 75, 106929. [Google Scholar] [CrossRef]
- Alawi Al-Naghi, A.A.; Ahmad, A.; Amin, M.N.; Algassem, O.; Alnawmasi, N. Sustainable optimisation of GGBS-based concrete: De-risking mix design through predictive machine learning models. Case Stud. Constr. Mater. 2025, 23, e04900. [Google Scholar] [CrossRef]
- The Department for Environment, Food & Rural Affairs, UK, Statistics on Waste. 2025. Available online: https://www.gov.uk/government/statistics/uk-waste-data (accessed on 15 July 2025).
- Bisciotti, A.; Brombin, V.; Song, Y.; Bianchini, G.; Cruciani, G. Classification and predictive leaching risk assessment of construction and demolition waste using multivariate statistical and machine learning analyses. Waste Manag. 2025, 196, 60–70. [Google Scholar] [CrossRef]
- Yong, Q.; Wu, H.; Wang, J.; Chen, R.; Yu, B.; Zuo, J.; Du, L. Automatic identification of illegal construction and demolition waste landfills: A computer vision approach. Waste Manag. 2023, 172, 267–277. [Google Scholar] [CrossRef]
- Golafshani, E.M.; Behnood, A.; Kim, T.; Ngo, T.; Kashani, A. A framework for low-carbon mix design of recycled aggregate concrete with supplementary cementitious materials using machine learning and optimization algorithms. Structures 2024, 61, 106143. [Google Scholar] [CrossRef]
- Zhang, B.; Pan, L.; Chang, X.; Wang, Y.; Liu, Y.; Jie, Z.; Ma, H.; Shi, C.; Guo, X.; Xue, S. Sustainable mix design and carbon emission analysis of recycled aggregate concrete based on machine learning and big data methods. J. Clean. Prod. 2025, 489, 144734. [Google Scholar] [CrossRef]
- Liu, K.; Zheng, J.; Dong, S.; Xie, W.; Zhang, X. Mixture optimization of mechanical, economical, and environmental objectives for sustainable recycled aggregate concrete based on machine learning and metaheuristic algorithms. J. Build. Eng. 2023, 63, 105570. [Google Scholar] [CrossRef]
- Peng, Y.; Unluer, C. Modeling the mechanical properties of recycled aggregate concrete using hybrid machine learning algorithms. Resour. Conserv. Recycl. 2023, 190, 106812. [Google Scholar] [CrossRef]
- Ge, K.; Wang, C.; Guo, Y.T.; Tang, Y.S.; Hu, Z.Z.; Chen, H.B. Fine-tuning vision foundation model for crack segmentation in civil infrastructures. Constr. Build. Mater. 2024, 431, 136573. [Google Scholar] [CrossRef]
- Munasinghe, T.; Pasindu, H.R. Sensing and mapping for better roads: Initial plan for using federated learning and implementing a digital twin to identify the road conditions in a developing country—Sri Lanka. arXiv 2021, arXiv:2107.14551. [Google Scholar]
- Plevris, V.; Papazafeiropoulos, G. AI in Structural Health Monitoring for Infrastructure Maintenance and Safety. Infrastructures 2024, 9, 225. [Google Scholar] [CrossRef]
- Farrar, C.R.; Worden, K. Structural Health Monitoring: A Machine Learning Perspective, 1st ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2012. [Google Scholar]
- Li, S.; Coraddu, A.; Brennan, F. A Framework for Optimal Sensor Placement to Support Structural Health Monitoring. J. Mar. Sci. Eng. 2022, 10, 1819. [Google Scholar] [CrossRef]
- Hassani, S.; Dackermann, U. A Systematic Review of Optimization Algorithms for Structural Health Monitoring and Optimal Sensor Placement. Sensors 2023, 23, 3293. [Google Scholar] [CrossRef] [PubMed]
- Ostachowicz, W.; Soman, R.; Malinowski, P. Optimization of sensor placement for structural health monitoring: A review. Struct. Health Monit. 2019, 18, 963–988. [Google Scholar] [CrossRef]
- Yi, T.; Li, H.; Gu, M. Optimal Sensor Placement for Health Monitoring of High-Rise Structure Based on Genetic Algorithm. Math. Probl. Eng. 2011, 2011, 395101. [Google Scholar] [CrossRef]
- Ali, R.; Kang, D.; Suh, G.; Cha, Y. Real-time multiple damage mapping using autonomous UAV and deep faster region-based neural networks for GPS-denied structures. Autom. Constr. 2021, 130, 103831. [Google Scholar] [CrossRef]
- Cha, Y.; Choi, W.; Büyüköztürk, O. Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks. Comput.-Aided Civil. Infrastruct. Eng. 2017, 32, 361–378. [Google Scholar] [CrossRef]
- Cira, C.; Manso-Callejo, M.; Yokoya, N.; Sălăgean, T.; Badea, A. Impact of Tile Size and Tile Overlap on the Prediction Performance of Convolutional Neural Networks Trained for Road Classification. Remote Sens. 2024, 16, 2818. [Google Scholar] [CrossRef]
- Ewald, V.; Groves, R.M.; Benedictus, R. DeepSHM: A Deep Learning Approach for Structural Health Monitoring Based on Guided Lamb Wave Technique; SPIE: Paris, France, 2019; p. 109700H–16. [Google Scholar]
- Maeda, H.; Sekimoto, Y.; Seto, T.; Kashiyama, T.; Omata, H. Road Damage Detection Using Deep Neural Networks with Images Captured Through a Smartphone. arXiv 2018, arXiv:1801.09454. [Google Scholar] [CrossRef]
- Sony, S.; Dunphy, K.; Sadhu, A.; Capretz, M. A systematic review of convolutional neural network-based structural condition assessment techniques. Eng. Struct. 2021, 226, 111347. [Google Scholar] [CrossRef]
- Lavadiya, D.N.; Dorafshan, S. Deep learning models for analysis of non-destructive evaluation data to evaluate reinforced concrete bridge decks: A survey. Eng. Rep. 2025, 7, e12608. [Google Scholar] [CrossRef]
- Dorafshan, S.; Azari, H. Deep learning models for bridge deck evaluation using impact echo. Constr. Build. Mater. 2020, 263, 120109. [Google Scholar] [CrossRef]
- Mostafa, K.; Zisis, I.; Moustafa, M.A. Machine Learning Techniques in Structural Wind Engineering: A State-of-the-Art Review. Appl. Sci. 2022, 12, 5232. [Google Scholar] [CrossRef]
- Gopakumar, V.; Gray, A.; Zanisi, L.; Nunn, T.; Giles, D.; Kusner, M.J.; Pamela, S.; Deisenroth, M.P. Calibrated Physics-Informed Uncertainty Quantification. arXiv 2025, arXiv:2502.04406. [Google Scholar] [CrossRef]
- Paknahad, C.; Tohidi, M.; Bahadori-Jahromi, A. Improving the Sustainability of Reinforced Concrete Structures Through the Adoption of Eco-Friendly Flooring Systems. Sustainability 2025, 17, 2915. [Google Scholar] [CrossRef]
- Ge, X.; Goodwin, R.T.; Gregory, J.R.; Kirchain, R.E.; Maria, J.; Varshney, L.R. Accelerated Discovery of Sustainable Building Materials. arXiv 2019, arXiv:1905.08222. [Google Scholar] [CrossRef]
- Mahjoubi, S.; Barhemat, R.; Meng, W.; Bao, Y. Review of AI-assisted design of low-carbon cost-effective concrete toward carbon neutrality. Artif. Intell. Rev. 2025, 58, 225. [Google Scholar] [CrossRef]
- Meddage, D.P.P.; Fonseka, I.; Mohotti, D.; Wijesooriya, K.; Lee, C.K. An explainable machine learning approach to predict the compressive strength of graphene oxide-based concrete. Constr. Build. Mater. 2024, 449, 138346. [Google Scholar] [CrossRef]
- Asadi, E.; da Silva, M.G.; Antunes, C.H.; Dias, L. Multi-objective optimization for building retrofit strategies: A model and an application. Energy Build. 2012, 44, 81–87. [Google Scholar] [CrossRef]
- Stephan, A.; Stephan, L. Life cycle energy and cost analysis of embodied, operational and user-transport energy reduction measures for residential buildings. Appl. Energy 2016, 161, 445–464. [Google Scholar] [CrossRef]
- Hammond, G.; Jones, C. Embodied Carbon: The Inventory of Carbon and Energy (ICE)—A BSRIA Guide; BSRIA BG 10/201. 2011. Available online: https://greenbuildingencyclopaedia.uk/wp-content/uploads/2014/07/Full-BSRIA-ICE-guide.pdf (accessed on 15 July 2025).
- Boje, C.; Hahn Menacho, Á.J.; Marvuglia, A.; Benetto, E.; Kubicki, S.; Schaubroeck, T.; Navarrete Gutiérrez, T. A framework using BIM and digital twins in facilitating LCSA for buildings. J. Build. Eng. 2023, 76, 107232. [Google Scholar] [CrossRef]
- Boje, C.; Guerriero, A.; Kubicki, S.; Rezgui, Y. Towards a semantic Construction Digital Twin: Directions for future research. Autom. Constr. 2020, 114, 103179. [Google Scholar] [CrossRef]
- Hughes, A.J.; Barthorpe, R.J.; Dervilis, N.; Farrar, C.R.; Worden, K. A probabilistic risk-based decision framework for structural health monitoring. Mech. Syst. Signal Process. 2021, 150, 107339. [Google Scholar] [CrossRef]
- Khalid, J.; Chuanmin, M.; Altaf, F.; Shafqat, M.M.; Khan, S.K.; Ashraf, M.U. AI-Driven Risk Management and Sustainable Decision-Making: Role of Perceived Environmental Responsibility. Sustainability 2024, 16, 6799. [Google Scholar] [CrossRef]
- Kareem, S.A. Additive manufacturing of concrete in construction: Potentials and challenges of 3D concrete printing. Int. J. Civ. Eng. Constr. 2022, 1, 13–16. [Google Scholar] [CrossRef]
- Bock, T. The future of construction automation: Technological disruption and the upcoming ubiquity of robotics. Autom. Constr. 2015, 59, 113–121. [Google Scholar] [CrossRef]
- Shu, Y.; He, C.; Qiao, L.; Xiao, B.; Li, W. Vibration Control with Reinforcement Learning Based on Multi-Reward Lightweight Networks. Appl. Sci. 2024, 14, 3853. [Google Scholar] [CrossRef]
- Gheni, E.Z.; Al-Khafaji, H.M.H.; Alwan, H.M. A deep reinforcement learning framework to modify LQR for an active vibration control applied to 2D building models. Open Eng. 2024, 14, 845–856. [Google Scholar] [CrossRef]
- Eshkevari, S.S.; Eshkevari, S.S.; Sen, D.; Pakzad, S.N. RL-Controller: A reinforcement learning framework for active structural control. arXiv 2021, arXiv:2103.07616. [Google Scholar] [CrossRef]
- Suman, S.; Khan, S.Z.; Das, S.K.; Chand, S.K. Slope stability analysis using artificial intelligence techniques. Nat. Hazards 2016, 84, 727–748. [Google Scholar] [CrossRef]
- Keshtegar, B.; Alfouneh, M. SVR-TO-APMA: Hybrid efficient modelling and topology framework for stable topology optimization with accelerated performance measure approach. Comput. Methods Appl. Mech. Eng. 2023, 404, 115762. [Google Scholar] [CrossRef]
- Jayasinghe, A.; Orr, J.; Ibell, T.; Boshoff, W.P. Minimising embodied carbon in reinforced concrete beams. Eng. Struct. 2021, 242, 112590. [Google Scholar] [CrossRef]
- Nguyen, T.; Vu, A. Application of Artificial Intelligence for Structural Optimization. In Modern Mechanics and Applications; Springer: Singapore, 2021; pp. 1052–1064. [Google Scholar]
- Manmatharasan, P.; Bitsuamlak, G.; Grolinger, K. AI-driven design optimization for sustainable buildings: A systematic review. Energy Build. 2025, 332, 115440. [Google Scholar] [CrossRef]
- Ni, S.H.; Lu, P.C.; Juang, C.H. A fuzzy neural network approach to evaluation of slope failure potential. Comput. Aided Civil. Infrastruct. Eng. 1996, 11, 59–66. [Google Scholar] [CrossRef]
- Moayedi, H.; Tien Bui, D.; Kalantar, B.; Kok Foong, L. Machine-learning-based classification approaches toward recognizing slope stability failure. Appl. Sci. 2019, 9, 4638. [Google Scholar] [CrossRef]
- Wang, H.; Moayedi, H.; Kok Foong, L. Genetic algorithm hybridized with multilayer perceptron to have an economical slope stability design. Eng. Comput. 2021, 37, 3067–3078. [Google Scholar] [CrossRef]
- Bui, D.T.; Hoang, N.; Nguyen, H.; Tran, X. Spatial prediction of shallow landslide using Bat algorithm optimized machine learning approach: A case study in Lang Son Province, Vietnam. Adv. Eng. Inform. 2019, 42, 100978. [Google Scholar]
- Dar, L.A.; Shah, M.Y. Deep-seated slope stability analysis and development of simplistic FOS evaluation models for stone column-supported embankments. Transp. Infrastruct. Geotechnol. 2021, 8, 203–227. [Google Scholar] [CrossRef]
- Moayedi, H.; Nguyen, H.; Rashid, A.S.A. Novel metaheuristic classification approach in developing mathematical model-based solutions predicting failure in shallow footing. Eng. Comput. 2021, 37, 223–230. [Google Scholar] [CrossRef]
- Meng, J.; Mattsson, H.; Laue, J. Three-dimensional slope stability predictions using artificial neural networks. Int. J. Numer. Anal. Methods Geomech. 2021, 45, 1988–2000. [Google Scholar] [CrossRef]
- Ahangari Nanehkaran, Y.; Pusatli, T.; Chengyong, J.; Chen, J.; Cemiloglu, A.; Azarafza, M.; Derakhshani, R. Application of machine learning techniques for the estimation of the safety factor in slope stability analysis. Water 2022, 14, 3743. [Google Scholar] [CrossRef]
- Kardani, N.; Zhou, A.; Nazem, M.; Shen, S. Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data. J. Rock Mech. Geotech. Eng. 2021, 13, 188–201. [Google Scholar] [CrossRef]
- Lei, D.; Zhang, Y.; Lu, Z.; Lin, H.; Fang, B.; Jiang, Z. Slope stability prediction using principal component analysis and hybrid machine learning approaches. Appl. Sci. 2024, 14, 6526. [Google Scholar] [CrossRef]
- Huang, F.; Xiong, H.; Chen, S.; Lv, Z.; Huang, J.; Chang, Z.; Catani, F. Slope stability prediction based on a long short-term memory neural network: Comparisons with convolutional neural networks, support vector machines and random forest models. Int. J. Coal Sci. Technol. 2023, 10, 18. [Google Scholar] [CrossRef]
- Bardhan, A.; Samui, P. Probabilistic slope stability analysis of Heavy-haul freight corridor using a hybrid machine learning paradigm. Transp. Geotech. 2022, 37, 100815. [Google Scholar] [CrossRef]
- Yadav, D.K.; Chattopadhyay, S.; Tripathy, D.P.; Mishra, P.; Singh, P. Enhanced slope stability prediction using ensemble machine learning techniques. Sci. Rep. 2025, 15, 7302. [Google Scholar] [CrossRef]
- Karir, D.; Ray, A.; Bharati, A.K.; Chaturvedi, U.; Rai, R.; Khandelwal, M. Stability prediction of a natural and man-made slope using various machine learning algorithms. Transp. Geotech. 2022, 34, 100745. [Google Scholar] [CrossRef]
- Kasa, A.; Mohd, S.F. Performance Prediction Evaluation of Machine Learning Models for Slope Stability Analysis: A Comparison Between ANN, ANN-ICA and ANFIS. J. Electr. Syst. 2024, 20, 4364–4374. [Google Scholar]
- Kumari, P.; Sabri, M.S.; Samui, P.; Verma, A.K. Application of Intelligence System: ANN and ANFIS for Enhanced Slope Stability Analysis. In Proceedings of the International Conference on Geotechnical Issues in Energy, Infrastructure and Disaster Management, Patna, India, 18–20 January 2024; Springer: Berlin/Heidelberg, Germany, 2024; pp. 229–242. [Google Scholar]
- Lei, D.; Zhang, Y.; Lu, Z.; Lin, H.; Jiang, Z. Predicting Factor of Safety of Slope Using an Improved Support Vector Machine Regression Model. Mathematics 2024, 12, 3254. [Google Scholar] [CrossRef]
- Tien Bui, D.; Moayedi, H.; Gör, M.; Jaafari, A.; Foong, L.K. Predicting slope stability failure through machine learning paradigms. ISPRS Int. J. Geo-Inf. 2019, 8, 395. [Google Scholar] [CrossRef]
- Qadir, M.; Sharma, B.R.; Bruggeman, A.; Choukr-Allah, R.; Karajeh, F. Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries. Agric. Water Manag. 2007, 87, 2–22. [Google Scholar] [CrossRef]
- Barnett, B.; Townley, L.R.; Post, V.; Evans, R.E.; Hunt, R.J.; Peeters, L.; Richardson, S.; Werner, A.D.; Knapton, A.; Boronkay, A. Australian Groundwater Modelling Guidelines; Waterlines Report; National Water Commission: Parkes, ACT, Australia, 2012. [Google Scholar]
- Bhagat, S.K.; Tung, T.M.; Yaseen, Z.M. Development of artificial intelligence for modeling wastewater heavy metal removal: State of the art, application assessment and possible future research. J. Clean. Prod. 2020, 250, 119473. [Google Scholar] [CrossRef]
- Zounemat-Kermani, M.; Kisi, O.; Piri, J.; Mahdavi-Meymand, A. Assessment of artificial intelligence–based models and metaheuristic algorithms in modeling evaporation. J. Hydrol. Eng. 2019, 24, 04019033. [Google Scholar] [CrossRef]
- Tao, H.; Hameed, M.M.; Marhoon, H.A.; Zounemat-Kermani, M.; Heddam, S.; Kim, S.; Sulaiman, S.O.; Tan, M.L.; Sa’adi, Z.; Mehr, A.D.; et al. Groundwater level prediction using machine learning models: A comprehensive review. Neurocomputing 2022, 489, 271–308. [Google Scholar] [CrossRef]
- Lohani, A.K.; Krishan, G. Groundwater level simulation using artificial neural network in southeast Punjab, India. J. Geol. Geosci. 2015, 4, 206. [Google Scholar]
- Derbela, M.; Nouiri, I. Intelligent approach to predict future groundwater level based on artificial neural networks (ANN). Euro-Mediterr. J. Environ. Integr. 2020, 5, 51. [Google Scholar] [CrossRef]
- Iqbal, M.; Ali Naeem, U.; Ahmad, A.; Rehman, H.; Ghani, U.; Farid, T. Relating groundwater levels with meteorological parameters using ANN technique. Measurement 2020, 166, 108163. [Google Scholar] [CrossRef]
- Guzman, S.M.; Paz, J.O.; Tagert, M.L.M.; Mercer, A. Artificial Neural Networks and Support Vector Machines: Contrast Study for Groundwater Level Prediction. In Proceedings of the 2015 ASABE Annual International Meeting, New Orleans, LA, USA, 26–29 July 2015; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2015; p. 1. [Google Scholar]
- Bhowmik, T.; Sarkar, S.; Sen, S.; Mukherjee, A. Application of machine learning in delineating groundwater contamination at present times and in climate change scenarios. Curr. Opin. Environ. Sci. Health 2024, 39, 100554. [Google Scholar] [CrossRef]
- Gachon, P.; Coulibaly, P.; Arain, M.A.; Wazneh, H. Evaluating the Dependence between Temperature and Precipitation to Better Estimate the Risks of Concurrent Extreme Weather Events. Adv. Meteorol. 2020, 2020, 8763631. [Google Scholar] [CrossRef]
- Khoshkonesh, A.; Nazari, R.; Nikoo, M.R.; Karimi, M. Enhancing flood risk assessment in urban areas by integrating hydrodynamic models and machine learning techniques. Sci. Total Environ. 2024, 952, 175859. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, Z.; Wang, H.; Li, X.; Shi, X.; Xiao, J.; Yang, Z.; Sun, M.; Li, X.; Jia, H. Artificial intelligence-incorporated prediction for urban flooding processes in the past 20 years: A critical review. Environ. Model. Softw. 2025, 192, 106525. [Google Scholar] [CrossRef]
- Park, S.; Sohn, W.; Piao, Y.; Lee, D. Adaptation strategies for future coastal flooding: Performance evaluation of green and grey infrastructure in South Korea. J. Environ. Manag. 2023, 334, 117495. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Sun, Y.; Han, Z.; Soomro, S.; Wu, Q.; Tan, B.; Hu, C. flood forecasting based on machine learning pattern recognition and dynamic migration of parameters. J. Hydrol. Reg. Stud. 2023, 47, 101406. [Google Scholar] [CrossRef]
- Hayder, I.M.; Al-Amiedy, T.A.; Ghaban, W.; Saeed, F.; Nasser, M.; Al-Ali, G.A.; Younis, H.A. An Intelligent Early Flood Forecasting and Prediction Leveraging Machine and Deep Learning Algorithms with Advanced Alert System. Processes 2023, 11, 481. [Google Scholar] [CrossRef]
- Hou, J.; Zhou, N.; Chen, G.; Huang, M.; Bai, G. Rapid forecasting of urban flood inundation using multiple machine learning models. Nat. Hazards 2021, 108, 2335–2356. [Google Scholar] [CrossRef]
- Ighile, E.H.; Shirakawa, H.; Tanikawa, H. Application of GIS and Machine Learning to Predict Flood Areas in Nigeria. Sustainability 2022, 14, 5039. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Islam, A.; Bera, B.; Shit, P.K. A comparison of performance measures of three machine learning algorithms for flood susceptibility mapping of river Silabati (tropical river, India). Phys. Chem. Earth Parts A/B/C 2022, 127, 103198. [Google Scholar] [CrossRef]
- Aydın, Y.; Işıkdağ, Ü.; Bekdaş, G.; Nigdeli, S.M.; Geem, Z.W. Use of Machine Learning Techniques in Soil Classification. Sustainability 2023, 15, 2374. [Google Scholar] [CrossRef]
- Feng, L.; Khalil, U.; Aslam, B.; Ghaffar, B.; Tariq, A.; Jamil, A.; Farhan, M.; Aslam, M.; Soufan, W. Evaluation of soil texture classification from orthodox interpolation and machine learning techniques. Environ. Res. 2024, 246, 118075. [Google Scholar] [CrossRef]
- Barman, U.; Choudhury, R.D. Soil texture classification using multi class support vector machine. Inf. Process. Agric. 2020, 7, 318–332. [Google Scholar] [CrossRef]
- Kaya, F.; Başayiğit, L.; Keshavarzi, A.; Francaviglia, R. Digital mapping for soil texture class prediction in northwestern Türkiye by different machine learning algorithms. Geoderma Reg. 2022, 31, e00584. [Google Scholar] [CrossRef]
- Wu, W.; Li, A.; He, X.; Ma, R.; Liu, H.; Lv, J. A comparison of support vector machines, artificial neural network and classification tree for identifying soil texture classes in southwest China. Comput. Electron. Agric. 2018, 144, 86–93. [Google Scholar] [CrossRef]
- Natalia, T.; Kumar Joshi, S.; Dixit, S.; Kanakadurga Bella, H.; Chandra Jena, P.; Vyas, A. Enhancing Smart City Services with AI: A Field Experiment in the Context of Industry 5.0. BIO Web Conf. 2024, 86, 01063. [Google Scholar] [CrossRef]
- Ismaeel, A.G.; Mary, J.; Chelliah, A.; Logeshwaran, J.; Mahmood, S.N.; Alani, S.; Shather, A.H. Enhancing Traffic Intelligence in Smart Cities Using Sustainable Deep Radial Function. Sustainability 2023, 15, 14441. [Google Scholar] [CrossRef]
- Adenan, N.H.; Karim, N.S.A.; Mashuri, A.; Hamid, N.Z.A.; Adenan, M.S.; Armansyah, A.; Siregar, I. Traffic Flow Prediction in Urban Area Using Inverse Approach of Chaos Theory. Civ. Eng. Archit. 2021, 9, 1277. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, J.; Xu, H.; Guo, J.; Su, L. Road traffic flow prediction based on dynamic spatiotemporal graph attention network. Sci. Rep. 2023, 13, 14729. [Google Scholar] [CrossRef]
- Guo, J.; Wu, X. Research on freeway traffic flow prediction method based on Att-Conv-LSTM model. In Proceedings of the Seventh International Conference on Traffic Engineering and Transportation System (ICTETS 2023), Dalian, China, 22–24 September 2023; p. 130640C. [Google Scholar] [CrossRef]
- Wu, X.; Ying, Z.; Zhang, H. Traffic flow prediction based on T-GCN in extreme weather: A case study of Beijing. Appl. Comput. Eng. 2023, 9, 154. [Google Scholar] [CrossRef]
- Chen, L.; Sheu, R.; Peng, W.; Wu, J.; Tseng, C. Video-Based Parking Occupancy Detection for Smart Control System. Appl. Sci. 2020, 10, 1079. [Google Scholar] [CrossRef]
- Liu, Y.; James, J.Q.; Kang, J.; Niyato, D.; Zhang, S. Privacy-Preserving Traffic Flow Prediction: A Federated Learning Approach. IEEE Internet Things J. 2020, 7, 7751–7763. [Google Scholar] [CrossRef]
- Rajendran, S.; Ayyasamy, B. Short-term traffic prediction model for urban transportation using structure pattern and regression: An Indian context. SN Appl. Sci. 2020, 2, 1159. [Google Scholar] [CrossRef]
- Zhang, Y. Research and Application of Intelligent Pedestrian Traffic Light System. Commun. Humanit. Res. 2024, 44, 139. [Google Scholar] [CrossRef]
- Dikshit, S.; Atiq, A.; Shahid, M.; Dwivedi, V.; Thusu, A. The Use of Artificial Intelligence to Optimize the Routing of Vehicles and Reduce Traffic Congestion in Urban Areas. EAI Endorsed Trans. Energy Web 2023, 10, 1–13. [Google Scholar] [CrossRef]
- Ferdowsi, A.; Challita, U.; Saad, W. Deep Learning for Reliable Mobile Edge Analytics in Intelligent Transportation Systems: An Overview. IEEE Veh. Technol. Mag. 2019, 14, 62–70. [Google Scholar] [CrossRef]
- Elbasha, A.M.; Abdellatif, M.M. AIoT-Based Smart Traffic Management System. Nat. Lang. Process. Inf. Retr. AI Trends 2025, 69–77. [Google Scholar] [CrossRef]
- R, J.P.; Paramasivam, P.; Kanagaraj, T.B.; Paramasivan, S. A Benchmark Example of Intelligent Traffic Management System using Artificial Intelligence. INCOSE Int. Symp. 2023, 33, 76–89. [Google Scholar] [CrossRef]
- Gu, X.; Li, T.; Wang, Y.; Zhang, L.; Wang, Y.; Yao, J. Traffic fatalities prediction using support vector machine with hybrid particle swarm optimization. J. Algorithms Comput. Technol. 2018, 12, 20–29. [Google Scholar] [CrossRef]
- Sonbul, O.S.; Rashid, M. Algorithms and Techniques for the Structural Health Monitoring of Bridges: Systematic Literature Review. Sensors 2023, 23, 4230. [Google Scholar] [CrossRef]
- Zeng, G.; Li, D.; Guo, S.; Gao, L.; Gao, Z.; Stanley, H.E.; Havlin, S. Switch between critical percolation modes in city traffic dynamics. Proc. Natl. Acad. Sci. USA 2019, 116, 23–28. [Google Scholar] [CrossRef]
- van der Heijden, R.W.; Dietzel, S.; Leinmüller, T.; Kargl, F. Survey on Misbehavior Detection in Cooperative Intelligent Transportation Systems. IEEE Commun. Surv. Tutor. 2019, 21, 779–811. [Google Scholar] [CrossRef]
- Sun, P.; Boukerche, A. AI-assisted data dissemination methods for supporting intelligent transportation systems. Internet Technol. Lett. 2021, 4, e169. [Google Scholar] [CrossRef]
- Grieves, M.; Vickers, J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In Transdisciplinary Perspectives on Complex Systems; Springer International Publishing AG: Cham, Switzerland, 2016; pp. 85–113. [Google Scholar]
- Madni, A.M.; Madni, C.C.; Lucero, S.D. Leveraging Digital Twin Technology in Model-Based Systems Engineering. Systems 2019, 7, 7. [Google Scholar] [CrossRef]
- Qi, Q.; Tao, F.; Zuo, Y.; Zhao, D. Digital Twin Service towards Smart Manufacturing. Procedia CIRP 2018, 72, 237–242. [Google Scholar] [CrossRef]
- El Saddik, A. Digital Twins: The Convergence of Multimedia Technologies. IEEE Multimed. 2018, 25, 87–92. [Google Scholar] [CrossRef]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”; ACM: New York, NY, USA, 2016; pp. 1135–1144. [Google Scholar]
- Doshi-Velez, F.; Kim, B. Towards A Rigorous Science of Interpretable Machine Learning. arXiv 2017, arXiv:1702.08608. [Google Scholar] [CrossRef]
- Piwowar, H.A.; Vision, T.J. Data reuse and the open data citation advantage. PeerJ 2013, 1, e175. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef] [PubMed]
- Eigenbrode, S.D.; O’rourke, M.; Wulfhorst, J.D.; Althoff, D.M.; Goldberg, C.S.; Merrill, K.; Morse, W.; Nielsen-Pincus, M.; Stephens, J.; Winowiecki, L.; et al. Employing Philosophical Dialogue in Collaborative Science. Bioscience 2007, 57, 55–64. [Google Scholar] [CrossRef]
Sustainability Challenge | Specific Problem | ML Adoption Technique | Reference |
---|---|---|---|
C&D Waste | C&D Waste | SVM, ANNs, RF, K-Nearest Neighbour (KNN), DCNNs | [48] |
Smart Solid Waste Management | Linear Regression, Regression Trees, Gaussian Process Regression, SVM, and Autoregressive Integrated Moving Average Method | [47] | |
C&D Waste Classification | CVGGNet, VGGNet-11, VGGNet-13, VGGNet-16, and VGGNet-19 | [75] | |
C&D Waste Management | ANN, Deep Learning DL, CNN, and SVM | [49] | |
Carbon Emissions and Energy Consumption | CO2 Emission | Linear Regression, Ridge Regression, k-nearest Neighbour (KNN) Regression, Polynomial Regression, Forest Regression, DT Regression, Gradient Boosting Regression, Support Vector Regression | [53] |
Forecasting the CO2 Emissions | Non-equigap GM, CFNGM | [54] | |
Greenhouse Gas Emissions | LSTM Model, Root Zone Water Quality Model (RZWQM2) | [55] | |
Energy Consumption, Economic Growth, and CO2 Emissions | ANFIS | [56] | |
Short-, Medium-, and Long-Term Prediction of CO2 | W-EELM | [58] | |
Building Energy Consumption | LGBM, SHAP, XGBoost, RF, and Support Vector Regression | [57] | |
Aging Infrastructure and Maintenance | Civil Infrastructure Damage and Corrosion Detection | CNN, Cycle GAN, Conditional Random Fields (CRFs) | [59] |
Bridge Infrastructure, Deck Deterioration | ANNs and k-nearest Neighbours (KNNs) | [60] | |
Crack Detection for Bridge | CNNs, Cycle GAN, DSN and Fully FCN | [61] | |
Track Deterioration | ANN and Support Vector Regression (SVR) | [62] | |
Water Management and Pollution Control | Water Pollution Reduction | RFs, DTs, SVM, ANNs, | [63] |
Water Resources Systems Engineering | Reinforcement Learning, ANNs, Fuzzy Rule-Based Systems | [64] | |
Water Quality Management | Random Trees (RT), RF, M5P, and Reduced Error Pruning Tree (REPT) | [65] | |
Water Pollution and Groundwater Quality | Non-parametric Kernel Gaussian Learning (GPR), ANFIS, and DT | [66] | |
Urbanisation and Land Use Pressure | Urban Land Use | CNNs and SVMs | [67] |
Land use and Land Cover Change | DNN, RNN, SOM, and ANN-CA | [68] | |
Urban Expansion | MLP-ANN, CA, and logistic regression models | [69] | |
Land Use Change | Lasso Linear Regression (LLR), RFR, and Multivariate Adaptive Regression Splines (MARS) | [70] | |
Climate Change and Resilience | Climate Change Mitigation and Adaptation | Latent Dirichlet Allocation (LDA) | [71] |
Power System Resilience against Extreme Weather Events | Automated Meter Infrastructure (AMI), Supervisory Control and Data Acquisition (SCADA) | [72] | |
Conservation of Built Heritage | CNNs, Digital Elevation Model (DEM), GSD Orthophoto | [73] | |
Road Maintenance Systems | Convolutional LSTM | [74] |
Data Type | Filters |
---|---|
Engineering | |
Subject Area | Environmental Science |
Earth and Planetary Sciences | |
Energy | |
Conference Paper | |
Article | |
Document Type | Review |
Conference Review | |
Book | |
Book Chapter | |
Language | English |
Year | 2000 to 2024 |
Domain | Supervised Learning (Adoption Maturity) | Unsupervised Learning (Adoption Maturity) | Deep Learning (Adoption Maturity) | Hybrid/Physics-Informed (Adoption Maturity) |
---|---|---|---|---|
Structural | SVM, RF for damage detection (pilot-scale) | PCA for SHM feature reduction (experimental) | CNN for crack detection (pilot-scale) | PINNs for seismic response (experimental) |
Geotechnical | Regression, ANN for soil properties (pilot-scale) | Clustering for soil classification (experimental) | LSTM for slope stability (experimental) | ANN–PSO hybrids for slope FS prediction (experimental) |
Environmental | DT, RF for water quality (operational) | Clustering for pollution source ID (pilot-scale) | CNN for waste classification (pilot-scale) | Hybrid ML + LCA for CO2 emissions (experimental) |
Transportation | SVM, RF for traffic flow (operational) | K-means for travel pattern clustering (pilot-scale) | RNN/LSTM for congestion forecasting (pilot-scale) | AI + CFD hybrid for wind/traffic modelling (experimental) |
Materials | ANN, SVR for concrete strength (pilot-scale) | Feature clustering for mix optimisation (experimental) | CNN for microstructure analysis (experimental) | Hybrid ML + SHAP for embodied carbon optimisation (experimental) |
Model Type | R2 | MAE (MPa) | RMSE (MPa) | Inputs | Dataset Size | References |
---|---|---|---|---|---|---|
Boosting | 0.96 | 1.69 | 2.04 | 9.0 | 154 | [126] |
RFR | 0.92 | 1.99 | 2.67 | 9.0 | 210.0 | [127] |
ANFIS | 0.879 | 1.655 | 2.265 | 4.0 | 210.0 | [124] |
Optimised FLNN | 0.975 | - | 3.87 | 10.0 | 189.0 | [123] |
RF–GWO–XGBoost | 0.983 | - | 1.712 | 15.0 | 156.0 | [125] |
LSTM–MPA | 0.994 | - | 0.8332 | 17.0 | 162.0 | [128] |
Gradient Boosting (AML) | 0.9651 | 1.1891 | - | 9.0 | 132.0 | [129] |
AdaBoost | 0.944 | 1.259 | 2.506 | 8.0 | 154 | [130] |
ANN | 0.921 | - | 2.52 | 6.0 | 263.0 | [131] |
Concrete Mix | Cement Replacement | Embodied Carbon (kgCO2e/m3) | Material Cost (£/m3) | Compressive Strength (MPa) |
---|---|---|---|---|
C30/37 | 0% (ordinary Portland cement) | 320 | £110 | 37 |
C30/37 | 30% GGBS | 260 | £105 | 36 |
C30/37 | 50% GGBS | 220 | £100 | 34 |
C30/37 | 70% GGBS | 180 | £98 | 32 |
C30/37 | 20% Fly Ash | 270 | £106 | 36 |
C30/37 | 10% Silica Fume | 250 | £108 | 38 |
C30/37 | 40% Recycled Aggregate | 290 | £102 | 35 |
Design Type | Concrete Volume (m3) | Reinforcement (kg) | Embodied Carbon (kg CO2e) | CO2 Reduction (%) |
---|---|---|---|---|
Conventional Beam | 12.5 | 1800 | 12,500 | – |
Optimised Prismatic | 9.5 | 1400 | 7750 | 38% |
Study | Model Used | Performance | Advantages | Limitations | Notes |
---|---|---|---|---|---|
Meng et al. [189] | ANN | R2 > 0.999, RMSE < 0.15 | Accurate 3D slope stability prediction; GUI support | No pore pressure considered; homogeneous slopes only | Trained on dimensionless parameters using classical charts |
Ahangari Nanehkaran et al. [190] | MLP, SVM, KNN, DT, RF | MLP: R2 = 0.9 | Comparison of multiple ML models; MLP showed best results | Limited to 100 slope cases | Applied to real slope data from Iran’s Fars, Isfahan, and Tehran provinces |
Kardani et al. [191] | Hybrid Stacking Ensemble | AUC = 90.4% | Combines multiple optimised ML models for better performance | Model complexity; optimisation cost | Used synthetic and field datasets; applied LVQ for feature ranking |
Lei et al. [192] | PCA-PANN | R2 = 0.971 | Feature reduction via PCA; optimised with PSO | Limited dataset size (307 cases) | Slope angle, cohesion, and pore pressure most sensitive |
Bardhan and Samui [194] | ANN-MPA | R2 = 0.9931, RMSE = 0.0233 | Probabilistic analysis; strong in seismic analysis | Search space selection critical for MPA | Used for Indian Railways embankment slope |
Kasa and Mohd [197] | ANN, ANN-ICA, ANFIS | ANN-ICA: R2 = 0.998, RMSE = 0.041 | Hybrid model improved ANN performance | ANN without optimisation underperformed | PLAXIS used to generate dataset for ML training |
Kumari et al. [198] | ANN, ANFIS | ANFIS: R2 = 0.9999, RMSE = 0.0308 | Very high accuracy; real soil data | High data requirements for ANFIS | Used TIC, RAE, RRSE, and LMI as performance metrics |
Lei et al. [199] | Improved SVR | R2 = 0.901, RMSE = 0.133 | Hyperparameter tuning via grid search | Needs more development for field use | γ found to be most influential variable |
Yadav et al. [195] | RF, Bagging, Boosting | Accuracy = 96%, R2 = 0.84 | Robust under dimensionality reduction | High computational cost | Compared classification and regression perspectives |
Karir et al. [196] | SVR, ANN, RF, GB, XGBoost | XGBoost best, SVR worst | Compared models on natural and man-made slopes | Natural slopes harder to model accurately | Tree-based models outperformed others |
Tien Bui et al. [200] | MLP, GPR, MLR, SLR, SVR | MLP: R2 = 0.9939, RMSE = 0.7039 | Comprehensive model comparison | Single-layered slope case | Used WEKA and Optum G2 for simulation |
Huang et al. [193] | LSTM, CNN, SVM, RF | LSTM best (lowest RMSE) | Captures global temporal features | High training data requirements | LSTM showed higher accuracy than CNN, SVM, RF |
Study | Research Focus | Study Area | ML Applied Techniques | Ref. |
---|---|---|---|---|
Flood Risk Assessment | Comparison b/w Hydrodynamic Models and ML Models | River Thame West London | ET-PCA Extra Trees–Principal Component Analysis Model | [212] |
Coastal Flood Risk Assessment | Adaptation Strategies to mitigate Coastal Flooding | Coast Line of South Korea | RF, ANN, KNN | [214] |
Flood Forecasting Based on Precipitation | Hybrid Combination of Physical Models with ML models | Jingle, Yellow River Basin, China | K-means cluster, RF | [215] |
Rainfall Prediction to Control Floods | Rain Prediction with ML Models | Australia (Multiple Locations with heavy rainfall) | AN, DT | [216] |
Rapid Forecasting of Urban Flooding | ML prediction model with Hydrodynamic model simulation | Fengxi New Town China | RF, KNN | [217] |
Flood Mitigation and Control | Flood Susceptibility Map by ML models | Nigeria Coastlines | ANN, LR | [218] |
Flood Susceptibility Planning | Comparison b/w ML models | Silabati River India | RF, NB, XGBoost | [219] |
ML Technique | Purpose | Key Findings | Advantages | Disadvantages | Ref. |
---|---|---|---|---|---|
Field experiment with AI controllers (RL supervised) | Assessing AI integration in smart city service operations (Industry 5.0) | AI improved service efficiency, user satisfaction, and operational uptime | Real-world deployment; adaptive responsiveness; context-aware | Operational complexity; integration with legacy systems | [225] |
Sustainable deep radial function network | Enhance traffic intelligence in smart cities | Improved prediction accuracy over baseline CNN/RNNs | High modelling fidelity; sustainability considerations | Possible scalability constraints; computational load | [226] |
Chaos theory inverse modelling | Traffic flow forecasting using chaotic dynamics | Achieved RMSE comparable to traditional statistical models | Handles nonlinearities; novel theoretical framework | Methodological complexity; niche domain | [227] |
Spatiotemporal Graph Attention Network (GAT) | Short-term road traffic flow prediction | Outperformed LSTM/CNN baselines acros25test scenarios | Captures spatial–temporal dependencies; high precision | Requires rich graph-structured input; heavy computation | [228] |
ATT-CONV-LSTM (Attention + Conv + LSTM) | Freeway traffic flow forecasting | Achieved about 5–10% lower forecasting error vs. standard LSTM | Integrates spatial feature extraction and temporal memory | More parameters, risk of overfitting; slower training | [229] |
T-GCN (temporal graph convolutional) | Forecast traffic under extreme weather events | Effective in extreme conditions; better than GRU/LSTM | Models spatiotemporal correlations; robust to anomalies | Needs high-quality weather and graph data | [230] |
CNN-based video processing | Detect parking occupancy in smart systems | >95% accuracy in daylight; lower at night | Real-time detection; high accuracy in ideal conditions | Sensitive to occlusion and lighting changes | [231] |
Federated learning for traffic forecast | Privacy-aware, distributed traffic modelling | Comparable accuracy to centralised models with privacy benefits | Protects data privacy; leverages multi-agent data | Network overhead; slower convergence | [232] |
Chaos theory inverse modelling (non-ML but computational) | Predict urban traffic flow | RMSE comparable to traditional models | Captures chaotic, nonlinear behaviour | Complex and less generalisable model | [227] |
Pattern-based regression (linear/logistic regression) | Short-term urban traffic prediction in India | Acceptable accuracy in short-term forecasts | Computationally light, interpretable | Limited in capturing complex nonlinear patterns | [233] |
Intelligent control system (possibly fuzzy logic or ML classification) | Intelligent pedestrian traffic light optimisation | Reduced average waiting time and queue length | Improves pedestrian wait times; real-time adaptation | Lack of clarity on ML algorithms used | [234] |
Route optimisation via AI (GA, RL) | Minimise congestion via route planning | Significant reductions in travel time and delays | Adaptive to dynamic traffic; scalable | Computational complexity; data-dependency | [235] |
Review of deep learning for edge analytics | Survey edge computing in ITS | Edge deployment is promising but network and compute limits persist | Highlights DL approaches on-device | Does not present new model; identifies latency concerns | [236] |
AIoT traffic management (IoT + ML/AI) | Develop a smart, integrated traffic system | Demonstrates improved traffic flow in simulations | Real-time sensor fusion; scalable control | Integration complexity; device constraints | [237] |
AI-based ITS benchmark (likely ML classification/regression) | Provide benchmark for intelligent traffic control systems | Offers reference metrics for ML in ITS | Establishes a baseline; allows future comparison | Specific algorithms not deeply detailed | [238] |
SVM with hybrid Particle Swarm Optimisation | Predict traffic fatalities | Accuracy improved over base SVM; PSO tuning critical | Improves SVM performance via PSO | SVM + PSO can be slow to train; data-intensive | [239] |
AI Technique | Application Area | Advantages | Limitations |
---|---|---|---|
CNN (ResNet, VGG) | Pavement image-based crack detection | Accurate feature extraction from images; real-time capability | Sensitive to lighting and shadows; needs extensive training data |
LSTM/RNN | Traffic flow forecasting | Captures complex temporal dependencies; high prediction accuracy | Requires large, labelled datasets; slow training |
Reinforcement Learning | Adaptive signal control | Learns policies from environment; handles non-stationary traffic | Difficult convergence; computational cost |
Ensemble ML (XGBoost) | Pavement condition prediction | Improved generalisation; combines multiple models | Requires careful feature engineering; risk of overfitting |
Autoencoders/LSTM-AE | Bridge SHM anomaly detection | Handles unlabelled data; effective in early fault detection | Can produce false positives; complex architecture |
Agent-Based + ML Models | Urban mobility simulation | Represents individual-level interactions; supports dynamic planning | High complexity; data-intensive |
GANs | Traffic data simulation for urban planning | Generates realistic synthetic data; helps in planning under uncertainty | Training instability; interpretability issues |
Method | Strengths | Weaknesses | Typical Use Cases in Civil Engineering |
---|---|---|---|
ANN [131,138,189,194,208,209] | Captures complex nonlinear relationships; good for prediction | Black-box, prone to overfitting, needs large datasets | Concrete strength prediction, slope stability, groundwater forecasting |
CN [153,156,157,225,226] | High accuracy in image recognition; automates visual tasks | Requires large, labelled datasets; computationally heavy | Crack detection, traffic intelligence, waste classification |
RNN/LSTM [229,230] | Handles sequential and time-series data well | Training complexity; sensitive to data quality | Traffic flow forecasting, SHM time-series |
SVM [207,223] | Works well with small datasets; effective for classification | Limited with large datasets; struggles with high noise | Soil type classification, Rain prediction |
RF [195] | Robust, handles nonlinearities; interpretable feature importance | Can be computationally heavy; less effective with very high-dimensional data | Slope stability, material property prediction |
DT [218,223] | Simple, interpretable, fast | Lower accuracy than ensemble methods; prone to overfitting | Preliminary soil classification, Rain Prediction |
Ensemble Models (XGBoost, Bagging, Boosting) [126,129,130,196] | High accuracy; reduce overfitting; flexible | Require tuning; less interpretable | Geopolymer mix design, CO2 emissions forecasting, slope stability |
GA [148,241] | Generates synthetic data; augments limited datasets | Complex training; risk of instability | Structural failure simulation, traffic data |
Hybrid Model [179,191,212] | Combine data-driven and physics-based accuracy; better reliability | Still experimental; requires domain expertise | Structural load prediction, geotechnical modelling, flood forecasting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahadori-Jahromi, A.; Room, S.; Paknahad, C.; Altekreeti, M.; Tariq, Z.; Tahayori, H. The Role of Artificial Intelligence and Machine Learning in Advancing Civil Engineering: A Comprehensive Review. Appl. Sci. 2025, 15, 10499. https://doi.org/10.3390/app151910499
Bahadori-Jahromi A, Room S, Paknahad C, Altekreeti M, Tariq Z, Tahayori H. The Role of Artificial Intelligence and Machine Learning in Advancing Civil Engineering: A Comprehensive Review. Applied Sciences. 2025; 15(19):10499. https://doi.org/10.3390/app151910499
Chicago/Turabian StyleBahadori-Jahromi, Ali, Shah Room, Chia Paknahad, Marwah Altekreeti, Zeeshan Tariq, and Hooman Tahayori. 2025. "The Role of Artificial Intelligence and Machine Learning in Advancing Civil Engineering: A Comprehensive Review" Applied Sciences 15, no. 19: 10499. https://doi.org/10.3390/app151910499
APA StyleBahadori-Jahromi, A., Room, S., Paknahad, C., Altekreeti, M., Tariq, Z., & Tahayori, H. (2025). The Role of Artificial Intelligence and Machine Learning in Advancing Civil Engineering: A Comprehensive Review. Applied Sciences, 15(19), 10499. https://doi.org/10.3390/app151910499