Agent Systems and GIS Integration in Requirements Analysis and Selection of Optimal Locations for Energy Infrastructure Facilities
Abstract
1. Introduction
- Integration of agent-based systems with large-scale data processing platforms.
- 2.
- Comparative analysis of clustering algorithms.
- 3.
- Improvement of spatial compactness and coherence.
- 4.
- Demonstration of large-scale applicability in conversational interfaces.
- 5.
- Inclusion of regulatory and spatial criteria.
2. GIS as the Foundation of Spatial Analyses
3. The Role of Multi-Criteria Methods and Metaheuristic Optimization in Decision Support Systems
4. The Role of Machine Learning, Large Language Models, and Agents in Decision Support Processes
5. Clustering Algorithms
5.1. Depth-First Search Algorithm
5.2. Agglomerative Clustering Algorithm
5.3. K-Means Algorithm
6. Materials and Methods
6.1. Application Concept
- Step 1—Data intake and preprocessing
- Step 2a—Use of Apache Spark
- Step 2b—Use of PostGIS
- Step 3—Aggregation of results
6.1.1. Data Intake and Preprocessing (Step 1)
- Substrate availability: 0.45
- Ecosystems and biodiversity: 0.25
- Spatial and landscape pressure: 0.05
- Distances, statutory thresholds, and compactness: 0.15
6.1.2. Scenario Involving the Use of Apache Spark (Step 2a)
6.1.3. Scenario Involving the Use of Apache Spark and PostGIS (Step 2b)
6.1.4. Aggregation of Results (Step 3)
- Map visualization—the _display_map() function from the ui.py module is responsible for generating an interactive map using the PyDeck library. Separate visual layers are created:
- GeoJsonLayer for individual plots (fits), marked in green by default.
- GeoJsonLayer for plots belonging to valid clusters, with each cluster assigned a random, unique color.
- PathLayer layers for specific types of infrastructure (roads, power lines, water, sewage), each marked with a different color.
- 2.
- Tabular presentation—the function _display_summary_tables() generates two separate summary tables. The first contains detailed data on the qualified individual plots, and the second provides analogous information for the clusters that met all the criteria.
6.2. Software Environment
6.3. Implementation of Clustering Algorithms
6.3.1. Depth-First Search (_Cluster_Plots_NN)
6.3.2. Improved Depth-First Search (_Cluster_Plots_NN_Improved)
- Optimized graph construction—instead of an n2 loop, the algorithm first creates a spatial index (R-tree) for all plots using the attribute gdf.sindex. Then, for each plot, it searches only for potential neighbors (whose bounding boxes intersect), which drastically reduces the number of costly .touches() checks that need to be performed.
- Precise dimension control—instead of a bounding box, the algorithm applies a much more accurate method. When considering the addition of a new plot, it creates a temporary merged cluster geometry (unary_union) and computes its minimum rotated rectangle (minimum_rotated_rectangle). This method perfectly fits the rectangle to the shape of the cluster, regardless of its orientation, allowing for precise verification of its actual width and height.
6.3.3. Basic K-Means (_Cluster_Plots_KMeans)
6.3.4. Improved K-Means (_Cluster_Plots_KMeans_Improved)
- Stage 1—Initial clustering (optimization): The fast k-means algorithm is run first. Its output is not treated as final but only as a way to coarsely divide the entire dataset into smaller “zones” or “neighborhoods.”
- Stage 2—Building coherent clusters: Next, the algorithm iterates through each plot, building coherent clusters in a way very similar to the _cluster_plots_NN_improved method. The key difference is that neighbor search is restricted only to plots within the same k-means “zone.” Dimension control is performed precisely using the minimum rotated rectangle.
6.3.5. Agglomerative Clustering (_Cluster_Plots_Agglomerative_Clustering)
7. Results
7.1. Evaluation Metric
7.1.1. Execution Time Metric
7.1.2. Resource Consumption Metric
7.2. Experimental Plan
7.2.1. Test Environment
7.2.2. Test Scenarios
- Variant I—Spark—covering tests using the Spark mechanism, enabling the analysis of distributed data processing efficiency.
- Variant II—PostGIS—covering tests based on the PostGIS database, allowing results to be compared with a more traditional database solution.
- Scenario 1—comparison of data loading performance.
- Scenario 2—comparison of clustering algorithm performance.
8. Discussion
8.1. Data Loading Results
8.2. Clustering Algorithms Performance Results
8.3. Limitations and Challenges
- Limitations of clustering-based approaches.
- 2.
- Regulatory and social acceptance issues.
- 3.
- Risks of NLP-based legal interpretation.
- 4.
- Transferability to other regions.
- 5.
- Weighting and uncertainty representation.
8.4. Extension with Additional Evaluation Criteria
- Greenhouse gas (GHG) emission reduction potential.
- 2.
- Transport logistics.
- 3.
- Environmental impact assessment (EIA).
8.5. Comparison of Plot Evaluation by the Traditional Method and the Agent-Based Model
9. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AHP | Analytic Hierarchy Process |
AI | Artificial Intelligence |
API | Application Programming Interface |
APC | Article Processing Charge |
BWM | Best–Worst Method |
CE | Circular Economy |
CLINK | Complete Linkage (hierarchical clustering algorithm) |
CPU | Central Processing Unit |
DDSS | Distributed Decision Support System |
DFS | Depth-First Search |
DSS | Decision Support System |
EM | Environmental Management |
ETL | Extract, Transform, Load |
F-AHP | Fuzzy Analytic Hierarchy Process |
GIS | Geographic Information System |
IDSS | Intelligent Decision Support System |
IoT | Internet of Things |
JDBC | Java Database Connectivity |
K-Means | K-Means Clustering Algorithm |
LCA | Life-Cycle Assessment |
LLM | Large Language Model |
MCDA | Multi-Criteria Decision Analysis |
ML | Machine Learning |
MRR | Minimum Rotated Rectangle |
NLP | Natural Language Processing |
PV | Photovoltaics |
QGIS | Quantum GIS (Free and Open-Source Geographic Information System) |
RAM | Random Access Memory |
RES | Renewable Energy Sources |
REST | Representational State Transfer |
R-Tree | Rectangle Tree (Spatial Index) |
SLINK | Sequential Linkage (single-link hierarchical clustering algorithm) |
SQL | Structured Query Language |
TOPSIS | Technique for Order Preference by Similarity to Ideal Solution |
VRAM | Video Random Access Memory |
WebGL | Web Graphics Library |
References
- Kostopoulos, G.; Davrazos, G.; Kotsiantis, S. Explainable Artificial Intelligence-Based Decision Support Systems: A Recent Review. Electronics 2024, 13, 2842. [Google Scholar] [CrossRef]
- Vélez Bedoya, J.I.; González Bedia, M.; Castillo Ossa, L.F. Intelligent Agents and Causal Inference: Enhancing Decision-Making through Causal Reasoning. Appl. Sci. 2024, 14, 3818. [Google Scholar] [CrossRef]
- Kovari, A. AI for Decision Support: Balancing Accuracy, Transparency, and Trust Across Sectors. Information 2024, 15, 725. [Google Scholar] [CrossRef]
- Fernandez, V. Environmental Management: Implications for Business Performance, Innovation, and Financing. Technol. Forecast. Soc. Change 2022, 182, 121797. [Google Scholar] [CrossRef]
- do Amaral, M.R.; Willerding, I.A.V.; Lapolli, É.M. ESG Practices: The Key to Organizational Sustainability (Práticas ESG: A Chave para a Sustentabilidade Organizacional). Concilium 2024, 24, 85–107. [Google Scholar] [CrossRef]
- Li, C.; Zhang, T.; Wang, X.; Lian, Z. Site Selection of Urban Parks Based on Fuzzy-Analytic Hierarchy Process (F-AHP): A Case Study of Nanjing, China. Int. J. Environ. Res. Public Health 2022, 19, 13159. [Google Scholar] [CrossRef]
- Farsi, H.; Dizene, R.; Flamant, G.; Notton, G. Multi-Criteria Decision Making Methods for Suitable Site Selection of Concentrating Solar Power Plants. Sustainability 2024, 16, 7673. [Google Scholar] [CrossRef]
- Rekik, S.; Khabbouchi, I.; El Alimi, S. A Spatial Analysis for Optimal Wind Site Selection from a Sustainable Supply-Chain-Management Perspective. Sustainability 2025, 17, 1571. [Google Scholar] [CrossRef]
- Kochanek, A.; Ciuła, J.; Cembruch-Nowakowski, M.; Zacłona, T. Polish Farmers’ Perceptions of the Benefits and Risks of Investing in Biogas Plants and the Role of GISs in Site Selection. Energies 2025, 18, 3981. [Google Scholar] [CrossRef]
- Ciuła, J.; Gaska, K.; Siedlarz, D.; Koval, V. Management of Sewage Sludge Energy Use with the Application of Bifunctional Bioreactor as an Element of Pure Production in Industry. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2019; Volume 123, p. 01016. [Google Scholar] [CrossRef]
- Department of Forestry and Rural Development. An Introduction to the Geo-Information System of the Canada Land Inventory; Department of Forestry and Rural Development: Ottawa, ON, Canada, 1967; p. 46. Available online: https://gisandscience.wordpress.com/wp-content/uploads/2014/02/3-an-introduction-to-the-geo-information-system-of-the-canada-land-inventory_complete.pdf (accessed on 5 August 2025).
- Zhu, J.; Wu, P. Towards Effective BIM/GIS Data Integration for Smart City by Integrating Computer Graphics Technique. Remote Sens. 2021, 13, 1889. [Google Scholar] [CrossRef]
- Bordbar, M.; Shahabi, H.; Chapi, K.; Kariminejad, N.; Deo, R.C.; Ahmad, A.; Rahmati, O.; Pham, B.T.; Bui, D.T.; Tien Bui, D.; et al. Multi-Hazard Spatial Modeling via Ensembles of Machine Learning Algorithms (Earthquake, Flood, Landslide). Sci. Rep. 2022, 12, 2115–2134. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.; Li, R. A Geospatial Approach for Prioritizing Wind Farm Development in Northeast Nebraska, USA. ISPRS Int. J. Geo-Inf. 2014, 3, 968–979. [Google Scholar] [CrossRef]
- Moltames, R.; Naghavi, M.S.; Silakhori, M.; Noorollahi, Y.; Yousefi, H.; Hajiaghaei-Keshteli, M.; Azizimehr, B. Multi-Criteria Decision Methods for Selecting a Wind Farm Site Using a Geographic Information System (GIS). Sustainability 2022, 14, 14742. [Google Scholar] [CrossRef]
- Demir, A.; Dinçer, A.E.; Çiftçi, C.; Gülçimen, S.; Uzal, N.; Yılmaz, K. Wind Farm Site Selection Using GIS-Based Multicriteria Analysis with Life-Cycle Assessment Integration. Earth Sci. Inform. 2024, 17, 1591–1608. [Google Scholar] [CrossRef]
- Kwaśnicki, P.; Gronba-Chyła, A.; Generowicz, A.; Ciuła, J.; Makara, A.; Kowalski, Z. Characterization of the TCO Layer on a Glass Surface for PV IInd and IIIrd Generation Applications. Energies 2024, 17, 3122. [Google Scholar] [CrossRef]
- Ashraf, H.A.; Li, J.; Li, Z.; Sohail, A.; Ahmed, R.; Butt, M.H.; Ullah, H. Geographic Information System and Machine Learning Approach for Solar Photovoltaic Site Selection: A Case Study in Pakistan. Processes 2025, 13, 981. [Google Scholar] [CrossRef]
- Adhikari, M.D.; Yune, C.-Y. Geospatial-Based Risk Analysis of Solar Plants Located in the Mountainous Region of Gangwon Province, South Korea. Renew. Energy 2025, 251, 123408. [Google Scholar] [CrossRef]
- He, Z.; Xu, W.; Sun, Y.; Zhang, X. A GIS-Based Techno-Economic Comparative Assessment of Offshore Fixed and Floating Photovoltaic Systems: A Case Study of Hainan. Appl. Energy 2025, 391, 125854. [Google Scholar] [CrossRef]
- Chukwuma, E.C.; Onyesolu, F.C.O.; Ani, K.A.; Nwanna, E.C. GIS Bio Waste Assessment and Suitability Analysis for Biogas Power Plant: A Case Study of Anambra State of Nigeria. Renew. Energy 2021, 163, 1182–1194. [Google Scholar] [CrossRef]
- Fiehl, M.; Leicher, J.; Giese, A.; Görner, K.; Fleischmann, B.; Spielmann, S. Biogas as a Co-Firing Fuel in Thermal Processing Industries: Implementation in a Glass Melting Furnace. Energy Procedia 2017, 120, 302–308. [Google Scholar] [CrossRef]
- Mesthrige, T.G.; Kaparaju, P. Decarbonisation of Natural Gas Grid: A Review of GIS-Based Approaches on Spatial Biomass Assessment, Plant Siting and Biomethane Grid Injection. Energies 2025, 18, 734. [Google Scholar] [CrossRef]
- Uyan, M.; Ertunç, E. GIS-Based Optimal Site Selection of the Biogas Facility Installation Using the Best-Worst Method. Chem. Eng. Res. Des. 2023, 192, 1003–1011. [Google Scholar] [CrossRef]
- Michalski, K.; Kośka-Wolny, M.; Chmielowski, K.; Bedla, D.; Petryk, A.; Guzdek, P.; Dąbek, K.A.; Gąsiorek, M.; Grübel, K.; Halecki, W. Examining the Potential of Biogas: A Pathway from Post-Fermented Waste into Energy in a Wastewater Treatment Plant. Energies 2024, 17, 5618. [Google Scholar] [CrossRef]
- Petryk, A.; Czop, M.; Pohrebennyk, V. The Assessment of the Degree of Pollution of Fallow Vegetation with Heavy Metals in Rural Administrative Units of Psary and Płoki in Poland. In Proceedings of the 18th International Multidisciplinary Scientific Geoconference SGEM, Albena, Bulgaria, 2–8 July 2018; Volume 18, pp. 921–928. [Google Scholar] [CrossRef]
- Korkovelos, A.; Mentis, D.; Siyal, S.H.; Arderne, C.; Rogner, H.; Bazilian, M.; Howells, M.; Beck, H.; De Roo, A. A Geospatial Assessment of Small-Scale Hydropower Potential in Sub-Saharan Africa. Energies 2018, 11, 3100. [Google Scholar] [CrossRef]
- Chiu, Y.-R.; Tsai, Y.-L.; Chiang, Y.-C. Designing Rainwater Harvesting Systems Cost-Effectively in an Urban Water-Energy Saving Scheme by Using a GIS-Simulation Based Design System. Water 2015, 7, 6285–6300. [Google Scholar] [CrossRef]
- Ciuła, J.; Sobiecka, E.; Zacłona, T.; Rydwańska, P.; Oleksy-Gębczyk, A.; Olejnik, T.P.; Jurkowski, S. Management of the Municipal Waste Stream: Waste into Energy in the Context of a Circular Economy—Economic and Technological Aspects for a Selected Region in Poland. Sustainability 2024, 16, 6493. [Google Scholar] [CrossRef]
- Piatkowski, J.; Nowinska, K.; Matula, T.; Siwiec, G.; Szucki, M.; Oleksiak, B. Microstructure and Mechanical Properties of AlSi10MnMg Alloy with Increased Content of Recycled Scrap. Materials 2025, 18, 1119. [Google Scholar] [CrossRef]
- Malinowski, M.; Guzdek, S.; Petryk, A.; Tomaszek, K. A GIS and AHP-Based Approach to Determine Potential Locations of Municipal Solid Waste Collection Points in Rural Areas. J. Water Land Dev. 2021, 51, 94–101. [Google Scholar] [CrossRef]
- Kochanek, A.; Ciuła, J.; Generowicz, A.; Mitryasova, O.; Jasińska, A.; Jurkowski, S.; Kwaśnicki, P. The Analysis of Geospatial Factors Necessary for the Planning, Design, and Construction of Agricultural Biogas Plants in the Context of Sustainable Development. Energies 2024, 17, 5619. [Google Scholar] [CrossRef]
- Kafel, P.; Nowicki, P. Circular Economy Implementation Based on ISO 14001 within SME Organization: How to Do It Best? Sustainability 2023, 15, 496. [Google Scholar] [CrossRef]
- Plinke, M.; Berndmeyer, J.; Hack, J. Development of a GIS-Based Register of Biogas Plant Sites in Lower Saxony, Germany: A Foundation for Identifying P2G Potential. Energy Sustain. Soc. 2025, 15, 7. [Google Scholar] [CrossRef]
- Heck, R.; Rudi, A.; Lauth, D.; Schultmann, F. An Estimation of Biomass Potential and Location Optimization for Integrated Biorefineries in Germany: A Combined Approach of GIS and Mathematical Modeling. Sustainability 2024, 16, 6781. [Google Scholar] [CrossRef]
- Safari Bazargani, J.; Sadeghi-Niaraki, A.; Choi, S.-M. A Survey of GIS and IoT Integration: Applications and Architecture. Appl. Sci. 2021, 11, 10365. [Google Scholar] [CrossRef]
- Calka, B.; Szostak, M. GIS-Based Environmental Monitoring and Analysis. Appl. Sci. 2025, 15, 3155. [Google Scholar] [CrossRef]
- Kochanek, A.J.; Kobylarczyk, S. The Analysis of the Main Geospatial Factors Using Geoinformation Programs Required for the Planning, Design and Construction of a Photovoltaic Power Plant. J. Ecol. Eng. 2024, 25, 49–65. [Google Scholar] [CrossRef]
- Koko, M.N.; Eleyi, F.S. Impact of Financial Reporting on Management Decision Making in Rivers State Owned Universities. Glob. J. Hum. Soc. Sci. 2020, 20, 49–54. Available online: https://socialscienceresearch.org/index.php/GJHSS/article/view/3159 (accessed on 7 August 2025).
- Pušeljić, M.; Skledar, A.; Pokupec, I. Decision Making as a Management Function. Interdiscip. Manag. Res. 2015, 11, 234–244. [Google Scholar]
- Citroen, C.L. The Role of Information in Strategic Decision-Making. Int. J. Inf. Manag. 2011, 31, 493–501. [Google Scholar] [CrossRef]
- Núñez-Valdez, E.R. Special Issue on Algorithms in Decision Support Systems Vol.2. Algorithms 2023, 16, 512. [Google Scholar] [CrossRef]
- Kabir, G.; Sadiq, R.; Tesfamariam, S. A Review of Multi-Criteria Decision-Making Methods for Infrastructure Management. Struct. Infrastruct. Eng. 2014, 10, 1176–1210. [Google Scholar] [CrossRef]
- Bączkiewicz, A.; Wątróbski, J.; Kizielewicz, B.; Sałabun, W. Towards Objectification of Multi-Criteria Assessments: A Comparative Study on MCDA Methods. In Proceedings of the 16th Conference on Computer Science and Intelligence Systems (FedCSIS), Online, 2–5 September 2021; pp. 417–425. [Google Scholar] [CrossRef]
- Taherdoost, H.; Madanchian, M. Multi-Criteria Decision Making (MCDM) Methods and Concepts. Encyclopedia 2023, 3, 77–87. [Google Scholar] [CrossRef]
- Mohamed, A.-M.O.; Mohamed, D.; Fayad, A.; Al Nahyan, M.T. Enhancing Decision Making and Decarbonation in Environmental Management: A Review on the Role of Digital Technologies. Sustainability 2024, 16, 7156. [Google Scholar] [CrossRef]
- Almadani, B.; Kaisar, H.; Thoker, I.R.; Aliyu, F. A Systematic Survey of Distributed Decision Support Systems in Healthcare. Systems 2025, 13, 157. [Google Scholar] [CrossRef]
- Keenan, P.B. A Scientometric Analysis of Multicriteria Decision-Making Research. J. Decis. Syst. 2024, 33 (Suppl. S1), 78–88. [Google Scholar] [CrossRef]
- Alam Bhuiyan, M.M.; Hammad, A. A Hybrid Multi-Criteria Decision Support System for Selecting the Most Sustainable Structural Material for a Multistory Building Construction. Sustainability 2023, 15, 3128. [Google Scholar] [CrossRef]
- Ali, R.; Hussain, A.; Nazir, S.; Khan, S.; Khan, H.U. Intelligent Decision Support Systems—An Analysis of Machine Learning and Multicriteria Decision-Making Methods. Appl. Sci. 2023, 13, 12426. [Google Scholar] [CrossRef]
- Nassef, A.M.; Abdelkareem, M.A.; Maghrabie, H.M.; Baroutaji, A. Review of Metaheuristic Optimization Algorithms for Power Systems Problems. Sustainability 2023, 15, 9434. [Google Scholar] [CrossRef]
- Bouaouda, A.; Sayouti, Y. Hybrid Meta-Heuristic Algorithms for Optimal Sizing of Hybrid Renewable Energy System: A Review of the State-of-the-Art. Arch. Comput. Methods Eng. 2022, 29, 4049–4083. [Google Scholar] [CrossRef]
- Sanin-Villa, D.; Figueroa-Saavedra, H.A.; Grisales-Noreña, L.F. Efficient BESS Scheduling in AC Microgrids via Multiverse Optimizer: A Grid-Dependent and Self-Powered Strategy to Minimize Power Losses and CO2 Footprint. Appl. Syst. Innov. 2025, 8, 85. [Google Scholar] [CrossRef]
- Sicuaio, T.; Zhao, P.; Pilesjö, P.; Shindyapin, A.; Mansourian, A. A Multi-Objective Optimization Approach for Solar Farm Site Selection: Case Study in Maputo, Mozambique. Sustainability 2024, 16, 7333. [Google Scholar] [CrossRef]
- Shao, M.; Mao, Z.; Sun, J.; Guan, X.; Shao, Z.; Tang, T. Multi-Scale Offshore Wind Farm Site Selection Decision Framework Based on GIS, MCDM and Meta-Heuristic Algorithm. Ocean. Eng. 2025, 316, 119921. [Google Scholar] [CrossRef]
- Olan, F.; Spanaki, K.; Ahmed, W.; Zhao, G. Enabling Explainable Artificial Intelligence Capabilities in Supply Chain Decision Support Making. Prod. Plan. Control. 2024, 36, 808–819. [Google Scholar] [CrossRef]
- Shool, S.; Adimi, S.; Amleshi, R.S.; Bitaraf, E.; Golpira, R.; Tara, M. A Systematic Review of Large Language Model (LLM) Evaluations in Clinical Medicine. BMC Med. Inform. Decis. Mak. 2025, 25, 117. [Google Scholar] [CrossRef]
- Soori, M.; Karimi Ghaleh Jough, F.; Dastres, R.; Arezoo, B. AI-Based Decision Support Systems in Industry 4.0, a Review. J. Econ. Technol. 2024, in press. [Google Scholar] [CrossRef]
- Handler, A.; Larsen, K.R.; Hackathorn, R. Large Language Models Present New Questions for Decision Support. Int. J. Inf. Manag. 2024, 76, 102811. [Google Scholar] [CrossRef]
- Bharti, M. AI Agents: A Systematic Review of Architectures, Components, and Evolutionary Trajectories in Autonomous Digital Systems. Int. J. Comput. Eng. Technol. 2025, 16, 653–664. [Google Scholar] [CrossRef]
- Maroto-Gómez, M.; Alonso-Martín, F.; Malfaz, M.; Salichs, M.A. A Systematic Literature Review of Decision-Making and Control Systems for Autonomous and Social Robots. Int. J. Soc. Robot. 2023, 15, 745–789. [Google Scholar] [CrossRef]
- Miller, T.; Durlik, I.; Kostecka, E.; Kozlovska, P.; Łobodzińska, A.; Sokołowska, S.; Nowy, A. Integrating Artificial Intelligence Agents with the Internet of Things for Enhanced Environmental Monitoring: Applications in Water Quality and Climate Data. Electronics 2025, 14, 696. [Google Scholar] [CrossRef]
- Rousseas, P.; Bechlioulis, C.; Kyriakopoulos, K. Reactive Optimal Motion Planning for a Class of Holonomic Planar Agents Using Reinforcement Learning with Provable Guarantees. Front. Robot. AI 2024, 10, 1255696. [Google Scholar] [CrossRef]
- Tang, S.; He, B.; Yu, C.; Li, Y.; Li, K. A Survey on Spark Ecosystem: Big Data Processing Infrastructure, Machine Learning, and Applications. IEEE Trans. Knowl. Data Eng. 2022, 34, 71–91. [Google Scholar] [CrossRef]
- Obe, R.O.; Hsu, L.S. PostGIS in Action, 3rd ed.; Manning Publications: Shelter Island, NY, USA, 2021; ISBN 9781617296697. [Google Scholar]
- Zeng, Y.; Brown, C.; Raymond, J.; Byari, M.; Hotz, R.; Rounsevell, M. Exploring the opportunities and challenges of using large language models to represent institutional agency in land system modelling. Earth Syst. Dyn. 2025, 16, 423–449. [Google Scholar] [CrossRef]
- Afroogh, S.; Akbari, A.; Malone, E.; Kargar, M.; Alambeigi, H. Trust in AI: Progress, Challenges, and Future Directions. Humanit. Soc. Sci. Commun. 2024, 11, 1568. [Google Scholar] [CrossRef]
- Sebastião, S.P.; Dias, D.F.-M. AI Transparency: A Conceptual, Normative, and Practical Frame Analysis. Media Commun. 2025, 13, 9419. [Google Scholar] [CrossRef]
- Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 3rd ed.; MIT Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Aho, A.V.; Hopcroft, J.E.; Ullman, J.D. Data Structures and Algorithms; Addison-Wesley: Boston, MA, USA, 1983. [Google Scholar]
- Riansanti, O.; Ihsan, M.; Suhaimi, D. Connectivity Algorithm with Depth First Search (DFS) on Simple Graphs. J. Phys. Conf. Ser. 2018, 948, 012065. [Google Scholar] [CrossRef]
- Ng, R.T.; Han, J. Efficient and Effective Clustering Methods for Spatial Data Mining. In Proceedings of the 1994 VLDB Conference, Santiago de Chile, Chile, 12–15 September 1994; Morgan Kaufmann: Santiago, Chile, 1994; pp. 144–155. [Google Scholar]
- Xie, K.; Wang, T.; Zhong, P.; Zhao, Z.; Wang, Z. Human Clustering Based on Graph Embedding and Space Functions of Trajectory Stay Points on Campus. Appl. Sci. 2025, 15, 3090. [Google Scholar] [CrossRef]
- Yan, X.; Han, J. gSpan: Graph-Based Substructure Pattern Mining. In Proceedings of the 2002 IEEE International Conference on Data Mining, Maebashi City, Japan, 9–12 December 2002; IEEE: Maebashi, Japan, 2002; pp. 721–724. [Google Scholar] [CrossRef]
- Washio, T.; Motoda, H. State of the Art of Graph-Based Data Mining. SIGKDD Explor. 2003, 5, 59–68. [Google Scholar] [CrossRef]
- Rokach, L.; Maimon, O. Clustering Methods. In The Data Mining and Knowledge Discovery Handbook; Maimon, O., Rokach, L., Eds.; Springer: Boston, MA, USA, 2005; pp. 321–352. [Google Scholar] [CrossRef]
- Jain, A.K.; Murty, M.N.; Flynn, P.J. Data Clustering: A Review. ACM Comput. Surv. 1999, 31, 264–323. [Google Scholar] [CrossRef]
- Everitt, B.S.; Landau, S.; Leese, M.; Stahl, D. Cluster Analysis, 5th ed.; Wiley: Chichester, UK, 2011. [Google Scholar]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; Wiley: New York, NY, USA, 1990; ISBN 0-471-87876-6. [Google Scholar] [CrossRef]
- Defays, D. An Efficient Algorithm for a Complete Link Method. Comput. J. 1977, 20, 364–366. [Google Scholar] [CrossRef]
- Murtagh, F.; Contreras, P. Algorithms for Hierarchical Clustering: An Overview. WIREs Data Min. Knowl. Discov. 2012, 2, 86–97. [Google Scholar] [CrossRef]
- Jain, A.K. Data Clustering: 50 Years Beyond K-Means. Pattern Recognit. Lett. 2010, 31, 651–666. [Google Scholar] [CrossRef]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A K-Means Clustering Algorithm. J. R. Stat. Soc. C Appl. Stat. 1979, 28, 100–108. [Google Scholar] [CrossRef]
- MacQueen, J. Some Methods for Classification and Analysis of Multivariate Observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; University of California Press: Berkeley, CA, USA, 1967; pp. 281–297. [Google Scholar]
- Arthur, D.; Vassilvitskii, S. K-Means++: The Advantages of Careful Seeding. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), New Orleans, LA, USA, 7–9 January 2007; SIAM: New Orleans, LA, USA, 2007; pp. 1027–1035. [Google Scholar]
- Xu, R.; Wunsch, D. Survey of Clustering Algorithms. IEEE Trans. Neural Netw. 2005, 16, 645–678. [Google Scholar] [CrossRef]
- Halkidi, M.; Batistakis, Y.; Vazirgiannis, M. Cluster Validity Methods: Part I. SIGMOD Rec. 2001, 31, 40–45. [Google Scholar] [CrossRef]
- Python Software Foundation. Python Programming Language. Available online: https://www.python.org/ (accessed on 17 August 2025).
- Streamlit Inc. Streamlit—The Fastest Way to Build and Share Data Apps. Available online: https://streamlit.io/ (accessed on 17 August 2025).
- PostgreSQL Polska. PostgreSQL—System Zarządzania Relacyjnymi Bazami Danych. Available online: https://www.postgresql.org.pl/ (accessed on 17 August 2025).
- QGIS Development Team. QGIS—A Free and Open Source Geographic Information System. Available online: https://qgis.org/ (accessed on 17 August 2025).
- Apache Software Foundation. Apache Spark™—Unified Analytics Engine for Big Data. Available online: https://spark.apache.org/ (accessed on 17 August 2025).
- GeoPandas Developers. GeoPandas—Python Tools for Geographic Data. Available online: https://geopandas.org/en/stable/ (accessed on 17 August 2025).
- Scikit-Learn Developers. Scikit-Learn: Machine Learning in Python. Available online: https://scikit-learn.org/stable/ (accessed on 17 August 2025).
- Uber Technologies Inc. Deck.gl—WebGL-Powered Framework for Large-Scale Data Visualization. Available online: https://deckgl.readthedocs.io/en/latest/ (accessed on 17 August 2025).
- Docker Inc. Docker—Develop, Ship, and Run Applications. Available online: https://www.docker.com/ (accessed on 17 August 2025).
- Ollama Inc. Ollama—Run Large Language Models Locally. Available online: https://ollama.com/ (accessed on 17 August 2025).
- Lee, H.M.; Yadav, D.; Lee, S.; Govindarazan, K.; Chen, C.; Sundar, S.S. While We Wait… How Users Perceive Waiting Times and Generation Cues during AI Image Generation. In Proceedings of the Extended Abstracts of the CHI Conference on Human Factors in Computing Systems (CHI EA’25), Yokohama, Japan, 26 April–1 May 2025; ACM: New York, NY, USA, 2025; p. 602. 8p. [Google Scholar] [CrossRef]
- Gaska, K.; Generowicz, A.; Lobur, M.; Jaworski, N.; Ciuła, J.; Vovk, M. Advanced Algorithmic Model for Poly-Optimization of Biomass Fuel Production from Separate Combustible Fractions of Municipal Wastes as a Progress in Improving Energy Efficiency of Waste Utilization. E3S Web Conf. 2019, 122, 01004. [Google Scholar] [CrossRef]
- Kochanek, A.; Generowicz, A.; Zacłona, T. The Role of Geographic Information Systems in Environmental Management and the Development of Renewable Energy Sources—A Review Approach. Energies 2025, 18, 4740. [Google Scholar] [CrossRef]
- Wereda, W.; Zacłona, T. Shaping the Image as a Management Instrument in the Contemporary Enterprise. In Scientific Papers of Silesian University of Technology, Organization and Management, Series 145; Silesian University of Technology Publishing House: Gliwice, Poland, 2020; pp. 597–611. [Google Scholar] [CrossRef]
- Kochanek, A.; Grąz, K.; Potok, H.; Gronba-Chyła, A.; Kwaśny, J.; Wiewiórska, I.; Ciuła, J.; Basta, E.; Łapiński, J. Micro- and Nanoplastics in the Environment: Current State of Research, Sources of Origin, Health Risks, and Regulations—A Comprehensive Review. Toxics 2025, 13, 564. [Google Scholar] [CrossRef]
- Gronba-Chyła, A.; Generowicz, A.; Kwaśnicki, P.; Kochanek, A. Recovery and Recycling of Selected Waste Fractions with a Grain Size Below 10 mm. Sustainability 2025, 17, 1612. [Google Scholar] [CrossRef]
- Kochanek, A.; Janczura, J.; Jurkowski, S.; Zacłona, T.; Gronba-Chyła, A.; Kwaśnicki, P. The Analysis of Exhaust Composition Serves as the Foundation of Sustainable Road Transport Development in the Context of Meeting Emission Standards. Sustainability 2025, 17, 3420. [Google Scholar] [CrossRef]
Type of Software | Description of Operation | Ref. |
---|---|---|
Python (version 3.11.13) | Chosen as the main programming language due to its versatility, rich ecosystem of data analysis libraries (Pandas, Scikit-learn) and GIS (GeoPandas), as well as excellent integration with the other components of the project. | [88] |
Streamlit (version 1.48.1) | Used for rapid prototyping and building an interactive user interface. Its simplicity and script-based model allowed the focus to remain on analytical logic rather than the complexity of developing web applications. | [89] |
PostgreSQL (version 16.4-1) with PostGIS (version 3.4.3) | Used as the database system. The PostGIS extension is the industry standard for storing, indexing, and querying geospatial data, which was crucial for effective management of plot geometries and infrastructure data. | [90] |
QGIS (Quantum GIS version 3.44.1-Solothurn) | Applied at the stage of data preparation and preprocessing. This desktop GIS software was used for manual editing, validation, and preparation of vector layers (plots, water, power lines) before importing them into the target PostGIS database. | [91] |
Apache Spark (version 3.5.1) | Used to implement the ETL process. Its ability to perform distributed data processing makes it an ideal tool for efficiently loading and preprocessing large volumes of data from the database, offloading this task from the main application. | [92] |
GeoPandas (version 1.1.1) | Serves as the foundation of the project’s analytical layer. This library extends the popular Pandas package with geospatial data handling, providing an intuitive and efficient interface for geometric operations, which was essential for implementing filtering and clustering logic. | [93] |
Scikit-learn (version 1.7.1) | Used to implement standard machine learning algorithms, which served as the basis for clustering mechanisms (e.g., K-Means, Agglomerative Clustering). | [94] |
PyDeck (version 0.9.1) | Applied to create interactive, multi-layered map visualizations. Its ability to render large datasets client-side (in the browser) using WebGL ensures high performance and smooth navigation. | [95] |
Docker Engine version 24.0 & Docker Compose vervion 2.39.4 | These tools were used to containerize the entire application and its dependencies (database, Python environment). This enabled the creation of a consistent, portable, and easily reproducible runtime environment, significantly simplifying deployment and development. | [96] |
Ollama & Gemma-3n-e4b | Designed as a toolkit providing an API interface for communication with the large language model (LLM). The choice of the Gemma-3n-e4b model was motivated by its optimal balance between performance quality and computational resource consumption (RAM, VRAM, CPU). The model supports both text and image inputs. A distinctive feature of Gemma-3n-e4b is its extended context window of 128K, allowing the processing of longer information sequences. | [97] |
Component | Sample Specification |
---|---|
Operating system | Windows 11/Ubuntu 22.04 |
Processor (CPU) | Intel Core i7-12700H |
Memory (RAM) | 32 GB DDR5 |
Disk | NVMe SSD |
Software | Docker and Docker Compose, QGIS (wersja 3.44.1) |
Dataset | 36,000 plots and infrastructure layers |
Application Variant | Average Loading Time [s] | Peak RAM [MB] | Peak CPU [%] |
---|---|---|---|
Variant I—Spark | 0.0372 | 1040.38 | 195.2 |
Variant II—PostGIS | 0.03375 | 760.06 | 163.38 |
Clustering Algorithm | Avg. Spark Analysis Time [s] | Avg. PostGIS Analysis Time [s] | Peak RAM Usage Spark [MB] | Peak CPU Usage Spark [%] | Peak RAM Usage PostGIS [MB] | Peak CPU Usage PostGIS [%] |
---|---|---|---|---|---|---|
Depth-First Search (DFS) | 530.97 | 526.77 | 1038.3 | 110.21 | 760.06 | 109.48 |
Improved DFS | 54.19 | 61.994 | 1005.05 | 109.3 | 515.58 | 96.20 |
K-Means (basic) | 5.884 | 17.478 | 1040.38 | 195.2 | 620.16 | 174.00 |
K-Means (improved) | 56.346 | 63.994 | 703.94 | 142.9 | 531.36 | 123.90 |
Agglomerative clustering | 3056.2 | 6032.5 | 1267.82 | 326.71 | 1023.34 | 254.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kochanek, A.; Zacłona, T.; Szucki, M.; Bulanda, N. Agent Systems and GIS Integration in Requirements Analysis and Selection of Optimal Locations for Energy Infrastructure Facilities. Appl. Sci. 2025, 15, 10406. https://doi.org/10.3390/app151910406
Kochanek A, Zacłona T, Szucki M, Bulanda N. Agent Systems and GIS Integration in Requirements Analysis and Selection of Optimal Locations for Energy Infrastructure Facilities. Applied Sciences. 2025; 15(19):10406. https://doi.org/10.3390/app151910406
Chicago/Turabian StyleKochanek, Anna, Tomasz Zacłona, Michał Szucki, and Nikodem Bulanda. 2025. "Agent Systems and GIS Integration in Requirements Analysis and Selection of Optimal Locations for Energy Infrastructure Facilities" Applied Sciences 15, no. 19: 10406. https://doi.org/10.3390/app151910406
APA StyleKochanek, A., Zacłona, T., Szucki, M., & Bulanda, N. (2025). Agent Systems and GIS Integration in Requirements Analysis and Selection of Optimal Locations for Energy Infrastructure Facilities. Applied Sciences, 15(19), 10406. https://doi.org/10.3390/app151910406