Collective Dynamics in the Awakening of Sleeping Beauty Patents: A BERTopic Approach
Abstract
1. Introduction
2. Literature Review
2.1. Sleeping Beauty Patents
2.2. Technological Shifts and Awakening
3. Methods
3.1. Data and Sample
3.2. Sleeping Beauty Patents
3.3. BERTopic
3.4. Yearly Change in Topic Distribution
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dotter, C.T.; Judkins, M.P. Transluminal Treatment of Arteriosclerotic Obstruction. Circulation 1964, 30, 654–670. [Google Scholar] [CrossRef]
- Gorry, P.; Ragouet, P. “Sleeping Beauty” and Her Restless Sleep: Charles Dotter and the Birth of Interventional Radiology. Scientometrics 2016, 107, 773–784. [Google Scholar] [CrossRef]
- Hou, J.; Yang, X.; Song, H.; Yao, H. Will Patent Family Be Dormant? Research on the Identification and Characteristics of Sleeping Beauty’s Patent Family. Scientometrics 2023, 128, 5361–5387. [Google Scholar] [CrossRef]
- van Raan, A.F.J. Sleeping Beauties in Science. Scientometrics 2004, 59, 467–472. [Google Scholar] [CrossRef]
- Fahimifar, S.; Janavi, E.; Fadaei, F. Awakening the Beauty: A Journey through Dormant Gems in Strategic Management Literature. Qual. Quant. 2024, 58, 3331–3362. [Google Scholar] [CrossRef]
- Ke, Q.; Ferrara, E.; Radicchi, F.; Flammini, A. Defining and Identifying Sleeping Beauties in Science. Proc. Natl. Acad. Sci. USA 2015, 112, 7426–7431. [Google Scholar] [CrossRef]
- Fontana, R.; Nuvolari, A.; Verspagen, B. Mapping Technological Trajectories as Patent Citation Networks. An Application to Data Communication Standards. Econ. Innov. New Technol. 2009, 18, 311–336. [Google Scholar] [CrossRef]
- Hall, B.H.; Jaffe, A.; Trajtenberg, M. Market Value and Patent Citations. RAND J. Econ. 2005, 36, 16–39. [Google Scholar]
- Singh, J.; Fleming, L. Lone Inventors as Sources of Breakthroughs: Myth or Reality? Manag. Sci. 2010, 56, 41–56. [Google Scholar] [CrossRef]
- Schwall, A.; Wagner, J. The Persistence of Worthless Patents? World Pat. Inf. 2023, 72, 102179. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, N.; Jiang, H.; Fan, S.; Zhu, B. Uncovering Gold in Ash: Identifying Sleeping Beauties among Massive Unprofitable Patents. J. Informetr. 2025, 19, 101674. [Google Scholar] [CrossRef]
- Braun, T.; Glänzel, W.; Schubert, A. On Sleeping Beauties, Princes and Other Tales of Citation Distributions. Res. Eval. 2010, 19, 195–202. [Google Scholar] [CrossRef]
- Hou, J.; Yang, X. Patent Sleeping Beauties: Evolutionary Trajectories and Identification Methods. Scientometrics 2019, 120, 187–215. [Google Scholar] [CrossRef]
- Rosenberg, N. Perspectives on Technology; Cambridge University Press: Cambridge, UK, 1976. [Google Scholar]
- Song, H.; Hou, J.; Yang, X.; Liu, R. Wake-up of Sleeping Beauty Patent Families: The Global Non-Equilibrium Diffusion of Technological Knowledge. Technol. Soc. 2024, 79, 102706. [Google Scholar] [CrossRef]
- Mariani, M.S.; Battiston, F.; Horvát, E.-Á.; Livan, G.; Musciotto, F.; Wang, D. Collective Dynamics behind Success. Nat. Commun. 2024, 15, 10701. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.; Rysman, M.; Simcoe, T. Identifying the Age Profile of Patent Citations: New Estimates of Knowledge Diffusion. J. Appl. Econom. 2010, 25, 1179–1204. [Google Scholar] [CrossRef]
- Kojaku, S.; Lee, J.; Ahn, Y.-Y. Community-Centric Modeling of Citation Dynamics Explains Collective Citation Pat-terns in Science, Law, and Patents. arXiv 2025, arXiv:2501.15552v2. [Google Scholar]
- Anderson, P.; Tushman, M.L. Technological Discontinuities and Dominant Designs: A Cyclical Model of Technological Change. Adm. Sci. Q. 1990, 35, 604–633. [Google Scholar] [CrossRef]
- Kaplan, S.; Tripsas, M. Thinking about Technology: Applying a Cognitive Lens to Technical Change. Res. Policy 2008, 37, 790–805. [Google Scholar] [CrossRef]
- Raffaelli, R. Technology Reemergence: Creating New Value for Old Technologies in Swiss Mechanical Watchmaking, 1970–2008. Adm. Sci. Q. 2019, 64, 576–618. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Bercovitz, J. When One Door Closes, Another Door Opens … for Some: Evidence from the Post-TRIPS Indian Pharmaceutical Industry. Strateg. Manag. J. 2020, 41, 988–1022. [Google Scholar] [CrossRef]
- Zhu, K.; Malhotra, S.; Li, Y. Technological Diversity of Patent Applications and Decision Pendency. Res. Policy 2022, 51, 104364. [Google Scholar] [CrossRef]
- Grootendorst, M. BERTopic: Neural Topic Modeling with a Class-Based TF-IDF Procedure. arXiv 2022, arXiv:2203.05794v1. [Google Scholar]
- Jiang, J.; Ying, F.; Dhuny, R. Unveiling Technological Evolution with a Patent-Based Dynamic Topic Modeling Framework: A Case Study of Advanced 6G Technologies. Appl. Sci. 2025, 15, 3783. [Google Scholar] [CrossRef]
- Hall, D.; Jurafsky, D.; Manning, C.D. Studying the History of Ideas Using Topic Models. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, Honolulu, HI, USA, 25–27 October 2008; Association for Computational Linguistics: Kerrville, TX, USA, 2008; pp. 363–371. [Google Scholar]
- Lin, J. Divergence Measures Based on the Shannon Entropy. IEEE Trans. Inf. Theory 1991, 37, 145–151. [Google Scholar] [CrossRef]
- Li, J.; Shi, D.; Zhao, S.X.; Ye, F.Y. A Study of the “Heartbeat Spectra” for “Sleeping Beauties”. J. Informetr. 2014, 8, 493–502. [Google Scholar] [CrossRef]
- Ye, F.Y.; Bornmann, L. “Smart Girls” versus “Sleeping Beauties” in the Sciences: The Identification of Instant and Delayed Recognition by Using the Citation Angle. J. Assoc. Inf. Sci. Technol. 2018, 69, 359–367. [Google Scholar] [CrossRef]
- Dey, R.; Roy, A.; Chakraborty, T.; Ghosh, S. Sleeping Beauties in Computer Science: Characterization and Early Identification. Scientometrics 2017, 113, 1645–1663. [Google Scholar] [CrossRef]
- Hartley, J.; Ho, Y.-S. Who Woke the Sleeping Beauties in Psychology? Scientometrics 2017, 112, 1065–1068. [Google Scholar] [CrossRef]
- Tur, E.M.; Bourelos, E.; McKelvey, M. The Case of Sleeping Beauties in Nanotechnology: A Study of Potential Breakthrough Inventions in Emerging Technologies. Ann. Reg. Sci. 2022, 69, 683–708. [Google Scholar] [CrossRef]
- Li, S.; Yu, G.; Zhang, X.; Zhang, W. Identifying Princes of Sleeping Beauty—Knowledge Mapping in Discovering Princes. In Proceedings of the 2014 International Conference on Management Science & Engineering 21th Annual Conference Proceedings, Helsinki, Finland, 17–19 August 2014; pp. 912–918. [Google Scholar]
- Haghani, M.; Varamini, P. Temporal Evolution, Most Influential Studies and Sleeping Beauties of the Coronavirus Literature. Scientometrics 2021, 126, 7005–7050. [Google Scholar] [CrossRef]
- Garud, R.; Rappa, M.A. A Socio-Cognitive Model of Technology Evolution: The Case of Cochlear Implants. Organ. Sci. 1994, 5, 344–362. [Google Scholar] [CrossRef]
- Xu, H.; Winnink, J.; Yue, Z.; Zhang, H.; Pang, H. Multidimensional Scientometric Indicators for the Detection of Emerging Research Topics. Technol. Forecast. Soc. Change 2021, 163, 120490. [Google Scholar] [CrossRef]
- Wang, B.; Liu, S.; Ding, K.; Liu, Z.; Xu, J. Identifying Technological Topics and Institution-Topic Distribution Probability for Patent Competitive Intelligence Analysis: A Case Study in LTE Technology. Scientometrics 2014, 101, 685–704. [Google Scholar] [CrossRef]
- Schmoch, U. Concept of a Technology Classification for Country Comparisons; Fraunhofer Institute for Systems and Innovation Research: Karlsruhe, Germany, 2008. [Google Scholar]
- Silvestri, D.; Riccaboni, M.; Della Malva, A. Sailing in All Winds: Technological Search over the Business Cycle. Res. Policy 2018, 47, 1933–1944. [Google Scholar] [CrossRef]
- Jee, S.J.; Kwon, M.; Ha, J.M.; Sohn, S.Y. Exploring the Forward Citation Patterns of Patents Based on the Evolution of Technology Fields. J. Informetr. 2019, 13, 100985. [Google Scholar] [CrossRef]
- Abdelrazek, A.; Eid, Y.; Gawish, E.; Medhat, W.; Hassan, A. Topic Modeling Algorithms and Applications: A Survey. Inf. Syst. 2023, 112, 102131. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, Z.; Li, T.; Jiang, L. Topic Recognition and Refined Evolution Path Analysis of Literature in the Field of Cybersecurity. PLoS ONE 2025, 20, e0319201. [Google Scholar] [CrossRef]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent Dirichlet Allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Rosen-Zvi, M.; Griffiths, T.; Steyvers, M.; Smyth, P. The Author-Topic Model for Authors and Documents. arXiv 2012, arXiv:1207.4169. [Google Scholar]
- Wu, Q.; Zhang, C.; Hong, Q.; Chen, L. Topic Evolution Based on LDA and HMM and Its Application in Stem Cell Research. J. Inf. Sci. 2014, 40, 611–620. [Google Scholar] [CrossRef]
- Li, D.; He, B.; Ding, Y.; Tang, J.; Sugimoto, C.; Qin, Z.; Yan, E.; Li, J.; Dong, T. Community-Based Topic Modeling for Social Tagging. In Proceedings of the 19th ACM International Conference on Information and Knowledge Management, Toronto, ON, Canada, 26–30 October 2010; Association for Computing Machinery: New York, NY, USA, 2010; pp. 1565–1568. [Google Scholar]
- Gao, Q.; Huang, X.; Dong, K.; Liang, Z.; Wu, J. Semantic-Enhanced Topic Evolution Analysis: A Combination of the Dynamic Topic Model and Word2vec. Scientometrics 2022, 127, 1543–1563. [Google Scholar] [CrossRef]
- Hu, K.; Qi, K.; Yang, S.; Shen, S.; Cheng, X.; Wu, H.; Zheng, J.; McClure, S.; Yu, T. Identifying the “Ghost City” of Domain Topics in a Keyword Semantic Space Combining Citations. Scientometrics 2018, 114, 1141–1157. [Google Scholar] [CrossRef]
- Egger, R.; Yu, J. A Topic Modeling Comparison Between LDA, NMF, Top2Vec, and BERTopic to Demystify Twitter Posts. Front. Sociol. 2022, 7, 886498. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Qu, Q.; Chen, X.; Tu, W.; Shen, Y.; Zhu, J. Discovering Author Interest Evolution in Order-Sensitive and Semantic-Aware Topic Modeling. Inf. Sci. 2019, 486, 271–286. [Google Scholar] [CrossRef]
- Hamilton, W.L.; Leskovec, J.; Jurafsky, D. Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change. arXiv 2016, arXiv:1605.09096. [Google Scholar]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013, arXiv:1301.3781. [Google Scholar]
- Pazhouhan, M.; Karimi Mazraeshahi, A.; Jahanbakht, M.; Rezanejad, K.; Rohban, M.H. Wave and Tidal Energy: A Patent Landscape Study. J. Mar. Sci. Eng. 2024, 12, 1967. [Google Scholar] [CrossRef]
- Gan, J.; Qi, Y. Selection of the Optimal Number of Topics for LDA Topic Model—Taking Patent Policy Analysis as an Example. Entropy 2021, 23, 1301. [Google Scholar] [CrossRef]
- O’Brien, R.M. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Svensson, R. Commercialization, Renewal, and Quality of Patents. Econ. Innov. New Technol. 2012, 21, 175–201. [Google Scholar] [CrossRef]
- Yun, S.; Song, K.; Kim, C.; Lee, S. From Stones to Jewellery: Investigating Technology Opportunities from Expired Patents. Technovation 2021, 103, 102235. [Google Scholar] [CrossRef]
- Dong, H.-R.; Chen, D.-Z.; Huang, M.-H. Are Invalid Patents Still Cited? Proc. Assoc. Inf. Sci. Technol. 2019, 56, 639–641. [Google Scholar] [CrossRef]
- Alcácer, J.; Gittelman, M.; Sampat, B. Applicant and Examiner Citations in U.S. Patents: An Overview and Analysis. Res. Policy 2009, 38, 415–427. [Google Scholar] [CrossRef]
Category | Mean | SD | Min | Max |
---|---|---|---|---|
SBP dataset | 2996.4 | 2732.3 | 1006 | 17,166 |
Topic measurement dataset | 30,081.6 | 62,809.2 | 1528 | 695,918 |
Variables | Model 1 | Model 2 | Model 3 | Model 4 |
---|---|---|---|---|
JSD | −4.381 (1.710) | −3.758 (1.827) | ||
Entropy | 0.414 (0.225) | 0.238 (0.243) | ||
Subclass dummies | Included | Included | Included | Included |
Year dummies | Included | Included | Included | Included |
Intercept | −19.960 (757.378) | −18.515 (754.567) | −21.380 (757.462) | −19.543 (754.779) |
AIC | 3165.564 | 3158.764 | 3164.103 | 3159.796 |
BIC | 4697.279 | 4683.852 | 4702.524 | 4691.663 |
log-likelihood | −1357.782 | −1354.382 | −1356.051 | −1353.898 |
Pseudo R2 (McFadden) | 0.254 | 0.249 | 0.255 | 0.249 |
Variables | Model 5 | Model 6 | Model 7 | Model 8 |
---|---|---|---|---|
JSD | −3.025 (1.037) | −4.293 (1.590) | ||
Entropy | 0.136 (0.141) | 0.467 (0.219) | ||
Subclass dummies | Included | Included | Included | Included |
Year dummies | Included | Included | ||
Year trend (linear) | 1.101 (0.076) | 1.045 (0.077) | ||
Year trend (quadratic) | −0.023 (0.002) | −0.022 (0.002) | ||
Intercept | −18.079 (258.666) | −20.546 (429.076) | −13.315 (1.241) | −16.032 (1.330) |
AIC | 5301.018 | 5310.543 | 3205.705 | 3208.581 |
BIC | 6826.107 | 6848.964 | 4520.670 | 4529.172 |
log-likelihood | −2425.509 | −2429.272 | −1408.852 | −1410.290 |
Pseudo R2 (McFadden) | 0.415 | 0.425 | 0.219 | 0.225 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mun, H.J.; Lee, S. Collective Dynamics in the Awakening of Sleeping Beauty Patents: A BERTopic Approach. Appl. Sci. 2025, 15, 10395. https://doi.org/10.3390/app151910395
Mun HJ, Lee S. Collective Dynamics in the Awakening of Sleeping Beauty Patents: A BERTopic Approach. Applied Sciences. 2025; 15(19):10395. https://doi.org/10.3390/app151910395
Chicago/Turabian StyleMun, Hee Jin, and Sanghoon Lee. 2025. "Collective Dynamics in the Awakening of Sleeping Beauty Patents: A BERTopic Approach" Applied Sciences 15, no. 19: 10395. https://doi.org/10.3390/app151910395
APA StyleMun, H. J., & Lee, S. (2025). Collective Dynamics in the Awakening of Sleeping Beauty Patents: A BERTopic Approach. Applied Sciences, 15(19), 10395. https://doi.org/10.3390/app151910395