Development of Customized Algorithms for the Semi-Automatic Generation of Gradient, Conformal Strut-Based Lattice Structures Using Rhino 8 and Grasshopper: Application and Flexural Testing
Abstract
1. Introduction
2. Materials and Methods
2.1. Software and Hardware
2.1.1. Crystallon
2.1.2. Dendro
2.1.3. IntraLattice
2.1.4. Pufferfish
- Processor: AMD Ryzen 9 5900X, 12C/24T, SC@5 GHz, MC@4.5 GHz
- RAM: 64 GB (4x 16 GB Kit), DDR4-3600, CL16-18-18-38
- Graphics: GeForce RTX 3060 OC, 12 GB GDDR6
- HDD: Samsung SSD 980 PRO 2 TB, M.2
- OS: Microsoft Windows 10 Professional (x64) Build 19045.3208
2.2. Test Series
- Test series 1: Partial factorial test with test geometry arch
- Test series 2: Open test with test geometry wing insert (use case Formula Student)
2.2.1. Test Series 1
- B (conformity): This factor was instrumental in determining whether the structure conforms to the geometry’s surface(s) or not. The surfaces that the lattice structure follows are the upper and lower arch surfaces.
- C (gradient cell size): This parameter was employed to delineate the continuity or gradation of the unit cell size in all principal directions. In principle, further subdivisions could be made based on the axis directions (X, Y, and Z). However, the same defined progression curve was always selected for reasons of simplification.
- D (gradient strut diameter): This factor was employed to ascertain whether the diameter of the struts is uniform or gradually varying. In the case of gradually varying struts, the maximum deviation from the actual diameter was set at 0.2 mm in both the upward and downward directions. Therefore, the smallest value (0.8 mm or 1.22 mm) was designated as the minimum dimension, and the largest value (1.2 mm or 1.62 mm) entered in line E was designated as the maximum dimension. In the event that the bar diameter was uniform, the original value, which was entered in the middle in each case (1 mm or 1.42 mm), was utilized.
- E (strut diameter, when gradient): This parameter served to dictate the selection of the lower or upper diameter range. The upper value is equivalent to twice the cross-sectional area of the lower value.
- F (cell size relative to total volume of design space, when gradient): The average unit cell size, otherwise known as the unit cell volume, is specified as a percentage of the total volume of the design space (input CAD model) in order to ensure the comparability of different component sizes, as well as conformal and non-conformal lattices. The F factor was utilized as the means to control the aforementioned unit cell size. The division of the structure into X, Y, and Z axes was always set so that the calculated percentage value returned in the algorithm corresponds to 0.8 or 1.6%.
2.2.2. Test Series 2
2.3. Test Setup and Manufacturing
3. Results
3.1. Algorithm
- The process initiates with the definition of the input CAD model as the design space, followed by
- The subsequent subdivision of this model into voxels.
- Following the selection of the unit cell topology and its properties conformity and gradients in cell size or strut diameter,
- The unit cell is integrated into the previously defined voxels.
- Following the implementation of optional adjustments and fine-tuning such as trimming, addition of material such as shells or closed surfaces, and text labeling,
- The entirety of the lattice structure and its data set become available for the purpose of documentation.
- Subsequently, the lattice structure can be meshed and output using the Dendro plugin,
- Or output (baked) as a 3D model using the Grasshopper function “pipe”.
3.2. 3-Point Bending Tests
3.2.1. Test Series 1
3.2.2. Test Series 2
4. Discussion
4.1. Advantages of Rhino 8 and Grasshopper®
4.2. Disadvantages of Rhino 8 and Grasshopper®
4.3. Comparison with Other Software Tools
4.4. Comparison to Prior Research
5. Conclusions
5.1. Algorithms
5.2. 3-Point Bending Tests
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Griffiths, L. Tctmagazine. Available online: https://www.tctmagazine.com/additive-manufacturing-3d-printing-news/materialisee-%20stage-support-generation-for-metal-3d-printing/ (accessed on 18 April 2025).
- Dimopoulos, A.; Salimi, M.; Gan, T.-H.; Chatzakos, P. Support Structures Optimisation for High-Quality Metal Additive Manufacturing with Laser Powder Bed Fusion: A Numerical Simulation Study. Materials 2023, 16, 7164. [Google Scholar] [CrossRef]
- Stanciu Birlescu, A.; Balc, N. Computational Model for Tree-like Fractals Used as Internal Structures for Additive Manufacturing Parts. Appl. Sci. 2023, 13, 11187. [Google Scholar] [CrossRef]
- Subedi, S.C.; Shahba, A.; Thevamaran, M.; Thoma, D.J.; Suresh, K. Towards the optimal design of support structures for laser powder bed fusion-based metal additive manufacturing via thermal equivalent static loads. Addit. Manuf. 2022, 57, 102956. [Google Scholar] [CrossRef]
- Didier, P.; Le Coz, G.; Robin, G.; Lohmuller, P.; Piotrowski, B.; Moufki, A.; Laheurte, P. Consideration of SLM additive manufacturing supports on the stability of flexible structures in finish milling. Manuf. Process. 2021, 62, 213. [Google Scholar] [CrossRef]
- Egan, P.F. Design for Additive Manufacturing: Recent Innovations and Future Directions. Designs 2023, 7, 83. [Google Scholar] [CrossRef]
- Stiefelbauer, A. Application of Biomimetics and Computational Structure Optimization Process for Product Development-Using the Example of an Additive Manufactured Skibinding. Master’s Thesis, University of Applied Sciences Vienna-Hochschule Campus Wien. Available online: https://pub.hcw.ac.at/obvfcwmetaonly/content/titleinfo/6612994 (accessed on 22 July 2025).
- Tyflopoulos, E.; Flem, D.T.; Steinert, M.; Olsen, A. State of the Art of Generative Design and Topology Optimization and Potential Research Needs. NordDesign. 2018. Available online: http://hdl.handle.net/11250/2586059 (accessed on 12 September 2025).
- General Motors Seat Clamp. Available online: https://www.sculpteo.com/de/3d-lernzentrum/erstellung-einer-druckbaren-3d-datei/generatives-design/ (accessed on 18 July 2025).
- Szabó, K.; Hegedűs, G. Brief overview of generative design support software. Des. Mach. Struct. 2020, 10, 123. [Google Scholar] [CrossRef]
- Panesar, A.; Abdi, M.; Hickman, D.; Ashcroft, I. Strategies for functionally graded lattice structures derived using topology optimisation for Additive Manufacturing. Addit. Manuf. 2018, 19, 81–94. [Google Scholar] [CrossRef]
- Suzuki, A.; Nakatani, H.; Nakagawa, S.; Kobashi, M.; Tsuji, Y. Architected materials informatics: Construction and application to cellular-structured heat sink optimization. Acta Mater. 2025, 283, 120557. [Google Scholar] [CrossRef]
- Korshunova, N.; Alaimo, G.; Hosseini, S.B.; Carraturo, M.; Reali, A.; Niiranen, J.; Auricchio, F.; Rank, E.; Kollmannsberger, S. Bending behavior of octet-truss lattice structures: Modelling options, numerical characterization and experimental validation. Mater. Des. 2021, 205, 109693. [Google Scholar] [CrossRef]
- Majari, P.; Olvera-Trejo, D.; Estrada-Díaz, J.A.; Elías-Zúñiga, A.; Martinez-Romero, O.; Ramírez-Herrera, C.A.; Perales-Martínez, I.A. Enhanced Lightweight Structures Through Brachistochrone-Inspired Lattice Design. Polymers 2025, 17, 654. [Google Scholar] [CrossRef]
- Geyer, S.; Hölzl, C. Comparison of CAD Software for Designing Cellular Structures for Additive Manufacturing. Appl. Sci. 2024, 14, 3306. [Google Scholar] [CrossRef]
- Geyer, S.; Schwemmer, J.; Hölzl, C. Development and Evaluation of Customized Bike Saddle Pads Using Innovative Design for AM Approaches and Suitable Additive Manufacturing Processes. Appl. Sci. 2025, 15, 472. [Google Scholar] [CrossRef]
- nTopology, Inc. nTop. Available online: https://www.ntop.com/ (accessed on 8 July 2025).
- Altair Engineering Inc. Sulis. Available online: https://www.altair.com/sulis/ (accessed on 8 July 2025).
- Altair Engineering Inc. Inspire. Available online: https://altair.com/inspire/ (accessed on 8 July 2025).
- Carbon Inc. Design Engine Pro. Available online: https://www.carbon3d.com/products/carbon-design-engine (accessed on 8 July 2025).
- Autodesk Netfabb Ultimate. Available online: https://www.autodesk.com/de/products/netfabb/overview?plc=F360NFP&term=1-YEAR&support=ADVANCED&quantity=1&tab=subscription (accessed on 8 July 2025).
- Metafold 3D. Metafold. Available online: https://www.metafold3d.com/ (accessed on 8 July 2025).
- Shields, G. All3DP. Available online: https://all3dp.com/1/3d-printing-lattice-structures-the-ultimate-guide/ (accessed on 19 April 2024).
- Boschetto, A.; Bottini, L.; Macera, L.; Vatanparast, S. Additive Manufacturing for Lightweighting Satellite Platform. Appl. Sci. 2023, 13, 2809. [Google Scholar] [CrossRef]
- Suárez, L.; Del Mar Espinosa, M. Assessment on the use of additive manufacturing technologies for acoustic applications. Int. J. Adv. Manuf. Technol. 2020, 109, 2691. [Google Scholar] [CrossRef]
- Dong, G.; Tessier, D.; Zhao, Y.F. Design of Shoe Soles Using Lattice Structures Fabricated by Additive Manufacturing. Proc. Des. Soc. Int. Conf. Eng. Des. 2019, 1, 719. [Google Scholar] [CrossRef]
- Harish, A.; Alsaleh, N.A.; Ahmadein, M.; Elfar, A.A.; Djuansjah, J.; Hassanin, H.; El-Sayed, M.A.; Essa, K. Designing Lightweight 3D-Printable Bioinspired Structures for Enhanced Compression and Energy Absorption Properties. Polymers 2024, 16, 729. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhang, R.; Chu, X.; Liu, H. Multiscale Design of Graded Stochastic Cellular Structures for the Heat Transfer Problem. Appl. Sci. 2023, 13, 4409. [Google Scholar] [CrossRef]
- Grasshopper 3D, Grasshopper. Available online: https://www.grasshopper3d.com/ (accessed on 8 July 2025).
- Robert McNeel & Associates, Rhino 7. Available online: https://www.rhino3d.com/ (accessed on 8 July 2025).
- Efstathiadis, A.; Symeonidou, I.; Tsongas, K.; Tzimtzimis, E.K.; Tzetzis, D. Parametric Design and Mechanical Characterization of 3D-Printed PLA Composite Biomimetic Voronoi Lattices Inspired by the Stereom of Sea Urchins. Compos. Sci. 2023, 7, 3. [Google Scholar] [CrossRef]
- Sasagawa, T.; Nimura, N.; Tanaka, M. Flexible lattice structure using curved struts based on body-centered cubic structure. Addit. Manuf. 2025, 103, 104746. [Google Scholar] [CrossRef]
- Ferreiraa, K.; Anwera, N.; Mehdi-Souzani, C. Characterization of L-PBF lattice structures geometric defects. Procedia CIRP 100 2021, 100, 846–851. [Google Scholar] [CrossRef]
- Soldo, S. A Newly Modeling Procedure for Different Morphological Distributions of Unit Cells in Lattice Structure with Constant Relative Density. Int. J. Innov. Solut. Eng. 2025, 1, 25. [Google Scholar] [CrossRef]
- Inoma, A.; Ibhadode, O. A Novel Dual Curved Cubic (DCC) structure with improved compressive strength. Int. J. Mech. Sci. 2025, 294, 110186. [Google Scholar] [CrossRef]
- Porterfield, A. Crystallon. Available online: https://www.food4rhino.com/en/app/crystallon?page=2&lang=de#commentsSection (accessed on 8 July 2025).
- EcrLabs, Dendro. Available online: https://www.ecrlabs.com/dendro/ (accessed on 8 July 2025).
- Kurtz, A. Intralattice. Available online: http://www.intralattice.com/ (accessed on 8 July 2025).
- Pryor, M. Pufferfish. Available online: https://www.grasshopper3d.com/group/pufferfish (accessed on 8 July 2025).
- Maconachie, T.; Leary, M.; Lozanovski, B.; Zhang, X.; Qian, M.; Faruque, O.; Brandt, M. SLM lattice structures: Properties, performance, applications and challenges. Mater. Des. 2019, 183, 108137. [Google Scholar] [CrossRef]
- Jaroš, J.; Vaverka, O.; Senck, S.; Koutný, D. Influence of Process Energy on the Formation of Imperfections in Body-Centered Cubic Cells with Struts in the Vertical Orientation Produced by Laser Powder Bed Fusion from the Magnesium Alloy WE43. Micromachines 2024, 15, 278. [Google Scholar] [CrossRef] [PubMed]
- Siebertz, K.; Van Bebber, D.; Hochkirchen, T. Statistische Versuchsplanung; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; Volume 8. [Google Scholar]
- EOS GmbH. MDS EOS PA2200. Available online: https://www.eos.info/polymer-solutions/polymer-materials/data-sheets/mds-pa-2200 (accessed on 4 July 2025).
- Decker, T.; Kedziora, S. Optimizing the Thickness of Functionally Graded Lattice Structures for High-Performance Energy Absorption: A Case Study Based on a Bicycle Helmet. Appl. Sci. 2024, 14, 2788. [Google Scholar] [CrossRef]
- Papazoglou, D.P.; NeidhardDoll, A.T.; Pinnell, M.F.; Erdahl, D.S.; Osborn, T.H. Compression and Tensile Testing of L-PBF Ti-6Al-4V Lattice Structures with Biomimetic Porosities and Strut Geometries for Orthopedic Implants. Metals 2024, 14, 232. [Google Scholar] [CrossRef]
- ISO 178:2019; Plastics—Determination of Flexural Properties. Austrian Standards International: Vienna, Austria, 2025.
- Autodesk Inc. Fusion 360. Available online: https://www.autodesk.com/products/fusion-360/overview?term=1-YEAR&tab=subscription. (accessed on 8 July 2025).
- Mostafa, K.G.; Momesso, G.A.; Li, X.; Nobes, D.S.; Qureshi, A.J. Dual Graded Lattice Structures: Generation Framework and Mechanical Properties Characterization. Polymers 2021, 13, 1528. [Google Scholar] [CrossRef]
- Yang, L.; Han, C.; Wu, H.; Hao, L.; Wei, Q.; Yan, C.; Shi, Y. Insights into unit cell size effect on mechanical responses and energy absorption capability of titanium graded porous structures manufactured by laser powder bed fusion. J. Mech. Behav. Biomed. Mater. 2020, 109, 103843. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, D.; Zhao, R.; Wang, X.; Wang, L.; Zhang, L.-C. High Mechanical Performance of Lattice Structures Fabricated by Additive Manufacturing. Metals 2024, 14, 1165. [Google Scholar] [CrossRef]
- Di Prima, M.; Van Belleghem, S.; Badhe, Y.; Snodderly, K.; Porter, D.; Burchi, A.; Gilmour, L. Build parameter influence on strut thickness and mechanical performance in additively manufactured titanium lattice structures. J. Mech. Behav. Biomed. Mater. 2024, 151, 106369. [Google Scholar] [CrossRef]
- Nechi, D. Evaluation of Different Software Solutions with Regard to the Generation of Lattice Structures for Additively Manufactured Components. Master’s Thesis, University of Applied Sciences Vienna-Hochschule Campus Wien. Available online: https://resolver.obvsg.at/urn:nbn:at:at-fhcw:1-104773 (accessed on 22 July 2025).
- Babacan, N.; Şeremet, H. Investigation of the load-bearing capacity of Co-Cr Lattice Structures fabricated by selective laser melting. Int. J. 3D Print. Technol. Digit. Ind. 2022, 6, 286. [Google Scholar] [CrossRef]
- Distefano, F.; Pasta, S.; Epasto, G. Titanium Lattice Structures Produced via Additive Manufacturing for a Bone Scaffold: A Review. J. Funct. Biomater. 2023, 14, 125. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, S.; Giacalone, M.; Merulla, A.; Bassoli, E.; Defanti, S. Effective Mechanical Properties of AlSi7Mg Additively Manufactured Cubic Lattice Structures. 3D Print. Addit. Manuf. 2022, 9, 326–336. [Google Scholar] [CrossRef]
- Noronha, J.; Leary, M.; Brandt, M.; Qian, M. AlSi10Mg hollow-strut lattice metamaterials by laser powder bed fusion. Mater. Adv. 2024, 5, 3751. [Google Scholar] [CrossRef]
Factor | Parameter | Settings | |
---|---|---|---|
− | + | ||
A | Base cell topology | BCCXYZ | FCCXYZ |
B | Conformity | No | Yes |
C | Gradient cell size | No | Yes |
D | Gradient strut diameter | No | Yes |
E | Strut diameter, when gradient | 0.8–1–1.2 | 1.22–1.42–1.62 |
F | Cell size relative to total volume of design space, when gradient | 0.8% | 1.6% |
0.8% | 1.6% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Factor | Non-Conformal | Conformal | Non-Conformal | Conformal | ||||||||
Direction | X | Y | Z | X | Y | Z | X | Y | Z | X | Y | Z |
Cells | 13 | 4 | 6(7) | 12 | 4 | 2 | 10 | 3 | 5(6) | 8 | 3 | 2 |
Struts | 14 | 5 | 7(8) | 13 | 5 | 3 | 11 | 4 | 6(7) | 9 | 4 | 3 |
Nr. | A | B | AB | C | AC | AE | E | D | AD | BD | ABD | BF | ACD | F | AF | Test Nr. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | − | − | + | − | + | + | − | − | + | + | − | + | − | − | + | 8 |
2 | + | − | − | − | − | + | + | − | − | + | + | + | + | − | − | 7 |
3 | − | + | − | − | + | − | + | − | + | − | + | + | − | + | − | 2 |
4 | + | + | + | − | − | − | − | − | − | − | − | + | + | + | + | 16 |
5 | − | − | + | + | − | − | + | − | + | + | − | − | + | + | − | 13 |
6 | + | − | − | + | + | − | − | − | − | + | + | − | − | + | + | 15 |
7 | − | + | − | + | − | + | − | − | + | − | + | − | + | − | + | 6 |
8 | + | + | + | + | + | + | + | − | − | − | − | − | − | − | − | 14 |
9 | − | − | + | − | + | + | − | + | − | − | + | − | + | + | − | 4 |
10 | + | − | − | − | − | + | + | + | + | − | − | − | − | + | + | 3 |
11 | − | + | − | − | + | − | + | + | − | + | − | − | + | − | + | 11 |
12 | + | + | + | − | − | − | − | + | + | + | + | − | − | − | − | 12 |
13 | − | − | + | + | − | − | + | + | − | − | + | + | − | − | + | 10 |
14 | + | − | − | + | + | − | − | + | + | − | − | + | + | − | − | 1 |
15 | − | + | − | + | − | + | − | + | − | + | − | + | − | + | − | 9 |
16 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 5 |
Nr. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | − | + | − | + | − | + | − | + | − | + | − | + | − | + | − | + |
B | − | − | + | + | − | − | + | + | − | − | + | + | − | − | + | + |
C | − | − | − | − | + | + | + | + | − | − | − | − | + | + | + | + |
D | − | − | − | − | − | − | − | − | + | + | + | + | + | + | + | + |
E | − | + | + | − | + | − | − | + | − | + | + | − | + | − | − | + |
F | − | − | + | + | + | + | − | − | + | + | − | − | − | − | + | + |
Parameter | Value |
---|---|
Test speed [mm/min] | 10 |
Max. force [N] | 30 |
Travel [mm] | 25 |
Test method | 3 point bending test |
y-axis | Force [N] |
x-axis | Travel [mm] |
Nr. | A | B | C | D | E | F |
---|---|---|---|---|---|---|
#1_01 | BCCXYZ | non-conformal | uniform | uniform | 1 | 0.8 |
#1_02 | FCCXYZ | non-conformal | uniform | uniform | 1.42 | 0.8 |
#1_03 | BCCXYZ | conformal | uniform | uniform | 1.42 | 1.6 |
#1_04 | FCCXYZ | conformal | uniform | uniform | 1 | 1.6 |
#1_05 | BCCXYZ | non-conformal | gradient | uniform | 1.42 | 1.6 |
#1_06 | FCCXYZ | non-conformal | gradient | uniform | 1 | 1.6 |
#1_07 | BCCXYZ | conformal | gradient | uniform | 1 | 0.8 |
#1_08 | FCCXYZ | conformal | gradient | uniform | 1.42 | 0.8 |
#1_09 | BCCXYZ | non-conformal | uniform | gradient | 0.8–1–1.2 | 1.6 |
#1_10 | FCCXYZ | non-conformal | uniform | gradient | 1.22–1.42–1.62 | 1.6 |
#1_11 | BCCXYZ | conformal | uniform | gradient | 1.22–1.42–1.62 | 0.8 |
#1_12 | FCCXYZ | conformal | uniform | gradient | 0.8–1–1.2 | 0.8 |
#1_13 | BCCXYZ | non-conformal | gradient | gradient | 1.22–1.42–1.62 | 0.8 |
#1_14 | FCCXYZ | non-conformal | gradient | gradient | 0.8–1–1.2 | 0.8 |
#1_15 | BCCXYZ | conformal | gradient | gradient | 0.8–1–1.2 | 1.6 |
#1_16 | FCCXYZ | conformal | gradient | gradient | 1.22–1.42–1.62 | 1.6 |
Test # | # | A | B | AB | C | AC | AE | E | D | AD | BD | ABD | BF | ACD | F | AF | F/m |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8 | 1 | − | − | + | − | + | + | − | − | + | + | − | + | − | − | + | 7.9 |
7 | 2 | + | − | − | − | − | + | + | − | − | + | + | + | + | − | − | 21.8 |
2 | 3 | − | + | − | − | + | − | + | − | + | − | + | + | − | + | − | 18.7 |
16 | 4 | + | + | + | − | − | − | − | − | − | − | − | + | + | + | + | 17.3 |
13 | 5 | − | − | + | + | − | − | + | − | + | + | − | − | + | + | − | 5.9 |
15 | 6 | + | − | − | + | + | − | − | − | − | + | + | − | − | + | + | 1.4 |
6 | 7 | − | + | − | + | − | + | − | − | + | − | + | − | + | − | + | 18.1 |
14 | 8 | + | + | + | + | + | + | + | − | − | − | − | − | − | − | − | 35.6 |
4 | 9 | − | − | + | − | + | + | − | + | − | − | + | − | + | + | − | 3.9 |
3 | 10 | + | − | − | − | − | + | + | + | + | − | − | − | − | + | + | 10.7 |
11 | 11 | − | + | − | − | + | − | + | + | − | + | − | − | + | − | + | 28.9 |
12 | 12 | + | + | + | − | − | − | − | + | + | + | + | − | − | − | − | 29.2 |
10 | 13 | − | − | + | + | − | − | + | + | − | − | + | + | − | − | + | 14.7 |
1 | 14 | + | − | − | + | + | − | − | + | + | − | − | + | + | − | − | 4 |
9 | 15 | − | + | − | + | − | + | − | + | − | + | − | + | − | + | − | 14 |
5 | 16 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 34 |
max.F/m | MW + | 19.2 | 24.5 | 18.6 | 15.9 | 16.8 | 18.3 | 21.3 | 17.4 | 16.1 | 17.9 | 17.7 | 16.5 | 16.7 | 13.2 | 16.6 | |
MW − | 14.0 | 8.8 | 14.7 | 17.3 | 16.4 | 15 | 12 | 15.8 | 17.2 | 15.4 | 15.5 | 16.7 | 16.5 | 20 | 16.6 | ||
Eff. | 5.24 | 15.7 | 3.9 | −1.4 | 0.4 | 3.3 | 9.3 | 1.6 | −1.1 | 2.5 | 2.2 | −0.2 | 0.2 | −6.8 | 0.00 |
Nr. | A | B | C | D | E | F |
---|---|---|---|---|---|---|
#3_T1 | Solid body test specimen | |||||
#3_T2 | Manually optimized test specimen | |||||
#3_T3 | BCCXYZ | conformal | uniform | uniform | 1 | not implemented |
#3_T4 | FCCXYZ | conformal | uniform | gradient | 1.22–1.42–1.62 | not implemented |
#3_T5 | FCCXYZ | non-conformal | uniform | gradient | 1.22–1.42–1.62 | not implemented |
#3_T6 | Diamond | conformal | uniform | gradient | 0.8–1–1.2 | not implemented |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geyer, S.; Giefing, R.; Hölzl, C. Development of Customized Algorithms for the Semi-Automatic Generation of Gradient, Conformal Strut-Based Lattice Structures Using Rhino 8 and Grasshopper: Application and Flexural Testing. Appl. Sci. 2025, 15, 10364. https://doi.org/10.3390/app151910364
Geyer S, Giefing R, Hölzl C. Development of Customized Algorithms for the Semi-Automatic Generation of Gradient, Conformal Strut-Based Lattice Structures Using Rhino 8 and Grasshopper: Application and Flexural Testing. Applied Sciences. 2025; 15(19):10364. https://doi.org/10.3390/app151910364
Chicago/Turabian StyleGeyer, Sebastian, Richard Giefing, and Christian Hölzl. 2025. "Development of Customized Algorithms for the Semi-Automatic Generation of Gradient, Conformal Strut-Based Lattice Structures Using Rhino 8 and Grasshopper: Application and Flexural Testing" Applied Sciences 15, no. 19: 10364. https://doi.org/10.3390/app151910364
APA StyleGeyer, S., Giefing, R., & Hölzl, C. (2025). Development of Customized Algorithms for the Semi-Automatic Generation of Gradient, Conformal Strut-Based Lattice Structures Using Rhino 8 and Grasshopper: Application and Flexural Testing. Applied Sciences, 15(19), 10364. https://doi.org/10.3390/app151910364