Development of a Low-Particle Emission Linear Atmospheric Plasma Device for Hydrophilization of Silicon Wafers
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication of the Linear Plasma Device
2.2. Performance Evaluation and Comparative Experiments
3. Results
3.1. Conditions for Stable Plasma Generation in the Linear Plasma Device
3.2. Evaluation of Hydrophilization Effect
3.3. Evaluation of Particle Suppression Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abe, H.; Yoneda, M.; Fujiwara, N. Developments of Plasma Etching Technology for Fabricating Semiconductor Devices. Jpn. J. Appl. Phys. 2008, 47, 1435–1455. [Google Scholar] [CrossRef]
- Chiappim, W.; Neto, B.B.; Shiotani, M.; Karnopp, J.; Gonçalves, L.; Chaves, J.P.; da Silva Sobrinho, A.; Leitão, J.P.; Fraga, M.; Pessoa, R. Plasma-Assisted Nanofabrication: The Potential and Challenges in Atomic Layer Deposition and Etching. Nanomaterials 2022, 12, 3497. [Google Scholar] [CrossRef]
- Ryu, S.H.; Hwang, I.; Jeon, D.; Lee, S.K.; Chung, T.-M.; Han, J.H.; Chae, S.; Baek, I.-H.; Kim, S.K. Plasma-enhanced atomic layer deposition of indium-free ZnSnOₓ thin films for thin-film transistors. Appl. Surf. Sci. 2025, 680, 161320. [Google Scholar] [CrossRef]
- Tamura, T.; Kaburaki, Y.; Sasaki, R.; Miyahara, H.; Okino, A. Direct decomposition of anesthetic gas exhaust using atmospheric pressure multigas inductively coupled plasma. IEEE Trans. Plasma Sci. 2011, 39, 1684–1688. [Google Scholar] [CrossRef]
- Takamatsu, T.; Miyahara, H.; Azuma, T.; Okino, A. Investigation of reactive species using various gas plasmas. J. Toxicol. Sci. 2014, 39, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Andrae, A.S.G.; Edler, T. On Global Electricity Usage of Communication Technology: Trends to 2030. Challenges 2015, 6, 117–157. [Google Scholar] [CrossRef]
- Johnsson, L.; Netzer, G. The impact of Moore’s Law and loss of Dennard scaling: Are DSP SoCs an energy efficient alternative to x86 SoCs? J. Phys. Conf. Ser. 2016, 762, 012022. [Google Scholar] [CrossRef]
- Moody, G.; Islam, M.S. Materials for ultra-efficient, high-speed optoelectronics. MRS Bull. 2022, 47, 475–484. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Ji, J.; Sun, Z.; Sun, J.; Fang, B.; Lu, J.; Li, S.; Ma, X.; Chen, X.; et al. Fast-speed and low-power-consumption optical phased array based on lithium niobate waveguides. Nanophotonics 2024, 13, 13. [Google Scholar] [CrossRef]
- Rani, A.; Dewra, S. Semiconductor Optical Amplifiers in Optical Communication Systems—Review. Int. J. Eng. Res. Technol. 2013, 2, 1006–1010. [Google Scholar]
- Duan, G.H.; Jany, C.; Le Liepvre, A.; Accard, A.; Lamponi, M.; Make, D.; Kaspar, P.; Levaufre, G.; Girard, N.; Lelarge, F.; et al. Hybrid III-V on Silicon Lasers for Photonic Integrated Circuits on Silicon. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 379–391. [Google Scholar]
- Fang, W.; Takahashi, N.; Ohiso, Y.; Amemiya, T.; Nishiyama, N. Reduced Thermal Resistance of Membrane Fabry-Perot Laser Bonded on Si Through Room-Temperature, Surface-Activated Bonding Assisted by a-Si Nano-Film. IEEE J. Quantum Electron. 2022, 58, 2000208. [Google Scholar] [CrossRef]
- Maszara, W.P.; Pronko, P.P.; McCormick, A.W. Epi-less bond-and-etch-back silicon-on-insulator by MeV ion implantation. Appl. Phys. Lett. 1991, 58, 2779–2781. [Google Scholar] [CrossRef]
- Takagi, H. Room-temperature wafer bonding. Surf. Sci. 2005, 26, 82–87. [Google Scholar] [CrossRef][Green Version]
- Qin, Y.; Howlader, M.M.R.; Deen, M.J. Low-Temperature Bonding for Silicon-Based Micro-Optical Systems. Photonics 2015, 2, 1164–1201. [Google Scholar] [CrossRef]
- Encinas, N.; Dillingham, R.G.; Oakley, B.R.; Abenojar, J.; Martínez, M.A.; Pantoja, M. Atmospheric Pressure Plasma Hydrophilic Modification of a Silicone Surface. J. Adhes. 2012, 88, 321–336. [Google Scholar] [CrossRef]
- Suni, T.; Henttinen, K.; Suni, I.; Mäkinen, J. Effects of Plasma Activation on Hydrophilic Bonding of Si and SiO2. J. Electrochem. Soc. 2002, 149, G348–G351. [Google Scholar] [CrossRef]
- Ma, X.; Chen, C.; Liu, W.; Liu, X.; Du, X.; Song, Z.; Lin, C. Study of the Ge Wafer Surface Hydrophilicity after Low-Temperature Plasma Activation. J. Electrochem. Soc. 2009, 156, H307–H311. [Google Scholar] [CrossRef]
- Esser, R.H.; Hobart, K.D.; Kub, F.J. Improved Low-Temperature Si–Si Hydrophilic Wafer Bonding. J. Electrochem. Soc. 2003, 150, G228–G232. [Google Scholar] [CrossRef]
- Tong, Q.-Y.; Gan, Q.; Hudson, G.; Fountain, G.; Enquist, P. Low temperature InP/Si wafer bonding. Appl. Phys. Lett. 2004, 84, 732–734. [Google Scholar] [CrossRef]
- Lee, Y.; You, Y.; Cho, C.; Kim, S.; Lee, J.; Kim, M.; Lee, H.; You, Y.; Kim, K.; You, S. Comprehensive assessments in bonding energy of plasma assisted Si–SiO2 direct wafer bonding after low temperature rapid thermal annealing. Micromachines 2022, 13, 1856. [Google Scholar] [CrossRef]
- Takamatsu, T.; Hirai, H.; Sasaki, R.; Miyahara, H.; Okino, A. Surface Hydrophilization of Polyimide Films Using Atmospheric Damage-Free Multigas Plasma Jet Source. IEEE Trans. Plasma Sci. 2013, 41, 119–125. [Google Scholar] [CrossRef]
- Wagner, H.-E.; Brandenburg, R.; Kozlov, K.V.; Sonnenfeld, A.; Michel, P.; Behnke, J.F. The barrier discharge: Basic properties and applications to surface treatment. Vacuum 2003, 71, 417–436. [Google Scholar] [CrossRef]
- Yin, G.Q.; Wang, J.J.; Yuan, Q.H. The Discharge Characteristics of Capacitively Coupled Ar Plasma as the Change of Pressure. Plasma Phys. Rep. 2023, 49, 802–807. [Google Scholar] [CrossRef]
- Chibowski, E.; Jurak, M. Comparison of contact angle hysteresis of different probe liquids on the same solid surface. Colloid Polym. Sci. 2013, 291, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Head, A.R.; Schnadt, J. UHV and Ambient Pressure XPS: Potentials for Mg, MgO, and Mg(OH)2 Surface Analysis. JOM 2016, 68, 3070–3077. [Google Scholar] [CrossRef]
- Yang, J.; Xia, L.; Zhou, S.; Liao, L.; Wang, Z.; Wen, L.; Yan, K.C.; Wang, H.; Chu, J. Study of uniformity of atmospheric pressure plasma microjet array for maskless parallel micropatterned etching. Plasma Process. Polym. 2022, 19, e2100167. [Google Scholar] [CrossRef]
- Suzuki, H.; Koma, H.; Ogasawara, T.; Koike, Y.; Toyoda, H. Spatial uniformity evaluation of atmospheric-pressure microwave line plasma for wide-area surface treatment. Plasma Fusion Res. 2021, 16, 1406046. [Google Scholar] [CrossRef]
- Pateyron, B.; Elchinger, M.-F.; Delluc, G.; Fauchais, P. Thermodynamic and transport properties of Ar-H2 and Ar-He plasma gases used for spraying at atmospheric pressure. Plasma Chem. Plasma Process. 1992, 12, 421–448. [Google Scholar] [CrossRef]
- Hori, M. Radical-controlled plasma processes. Rev. Mod. Plasma Phys. 2022, 6, 36. [Google Scholar] [CrossRef]
- May, E.F.; Berg, R.F.; Moldover, M.R. Reference Viscosities of H2, CH4, Ar, and Xe at Low Densities. Int. J. Thermophys. 2007, 28, 1085–1110. [Google Scholar] [CrossRef]
- Golovicher, L.E.; Kolenchits, O.A.; Nesterov, N.A. Dynamic viscosity of gases over a wide range of temperatures. J. Eng. Phys. Thermophys. 1989, 56, 689–694. [Google Scholar] [CrossRef]
- Yoshida, H.; Takei, Y.; Arai, K. Equations for Calculating the Gas Flow Rate through a Cylindrical Tube in Various Flow Regimes. Vac. Surf. Sci. 2020, 63, 304–310. [Google Scholar] [CrossRef]
- Senda, Y. Theoretical Analysis of Vacuum Evacuation in Viscous Flow and Its Applications. SEI Tech. Rev. 2010, 176, 1–7. [Google Scholar]
- Villarreal-Medina, R.; Murphy, A.B.; Méndez, P.F.; Ramírez-Argáez, M.A. Heat Transfer Mechanisms in Arcs of Various Gases at Atmospheric Pressure. Plasma Chem. Plasma Process. 2023, 43, 787–803. [Google Scholar] [CrossRef]
- Abdilla, J.; See, G.H. Chip-to-Wafer Hybrid Bonding Development for High Volume Manufacturing. IMAPSource Proc. 2023. [Google Scholar] [CrossRef]
- Alam, A.U.; Howlader, M.M.R.; Deen, M.J. The effects of oxygen plasma and humidity on surface roughness, water contact angle and hardness of silicon, silicon dioxide and glass. J. Micromech. Microeng. 2014, 24, 035010. [Google Scholar] [CrossRef]












Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshida, S.; Hihara, K.; Furuya, J.; Osawa, T.; Yaida, A.; Nishiyama, N.; Okino, A. Development of a Low-Particle Emission Linear Atmospheric Plasma Device for Hydrophilization of Silicon Wafers. Appl. Sci. 2025, 15, 10349. https://doi.org/10.3390/app151910349
Yoshida S, Hihara K, Furuya J, Osawa T, Yaida A, Nishiyama N, Okino A. Development of a Low-Particle Emission Linear Atmospheric Plasma Device for Hydrophilization of Silicon Wafers. Applied Sciences. 2025; 15(19):10349. https://doi.org/10.3390/app151910349
Chicago/Turabian StyleYoshida, Sho, Koki Hihara, Junnosuke Furuya, Taiki Osawa, Akane Yaida, Nobuhiko Nishiyama, and Akitoshi Okino. 2025. "Development of a Low-Particle Emission Linear Atmospheric Plasma Device for Hydrophilization of Silicon Wafers" Applied Sciences 15, no. 19: 10349. https://doi.org/10.3390/app151910349
APA StyleYoshida, S., Hihara, K., Furuya, J., Osawa, T., Yaida, A., Nishiyama, N., & Okino, A. (2025). Development of a Low-Particle Emission Linear Atmospheric Plasma Device for Hydrophilization of Silicon Wafers. Applied Sciences, 15(19), 10349. https://doi.org/10.3390/app151910349
