Analysis of the Mechanical Properties, Durability, and Micro-Mechanisms of Alkali-Activated Fly Ash Mortar
Abstract
1. Introduction
2. Raw Materials and Experimental Methods
2.1. Raw Materials
2.2. Alkali Activator
2.3. Preparation of the Sample
2.4. Performance and Characterization Tests
2.4.1. Mechanical Performance Testing and Durability Tests
Mechanical Performance Tests
- (1)
- Flexural strength test:
- (2)
- Compressive strength test:
Durability Test Design
- (1)
- High-temperature resistance performance test
- (2)
- Acid and alkali resistance test
- (3)
- Quality change testing
2.4.2. Microstructure Characterization
3. Results and Discussion
3.1. Mechanical Properties
3.1.1. Water Glass Modulus and Alkali Equivalent
3.1.2. FA Content
3.2. Microstructure Characterization
3.2.1. XRD Analysis
3.2.2. FTIR Analysis
3.2.3. SEM Analysis
3.3. Durability Performance Test
3.3.1. High-Temperature Resistance Performance Test
3.3.2. H2SO4 Resistance Test
3.3.3. NaOH Resistance Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martín-Rodríguez, P.; García-Lodeiro, I.; Fernández-Carrasco, L.; Blanco-Varela, M.; Palomo, A.; Fernández-Jiménez, A. Artificial precursor for alkaline cements. Compos. Part B Eng. 2025, 296, 112216. [Google Scholar] [CrossRef]
- Jia, R.; Wang, Q.; Luo, T. Understanding the workability of alkali-activated phosphorus slag pastes: Effects of alkali dose and silicate modulus on early-age hydration reactions. Cem. Concr. Compos. 2022, 133, 104649. [Google Scholar] [CrossRef]
- Zhang, M.; Hu, P.; Sun, S.; Yao, J.; Sun, Y.; Zhong, J. Ultra-high-performance alkali-activated concrete produced with desert sand incorporations. Constr. Build. Mater. 2025, 476, 141240. [Google Scholar] [CrossRef]
- Akhtar, M.N.; Bani-Hani, K.A.; Malkawi, D.A.; Albatayneh, O. Suitability of sustainable sand for concrete manufacturing—A complete review of recycled and desert sand substitution. Results Eng. 2024, 23, 102478. [Google Scholar] [CrossRef]
- Kazmi, S.M.S.; Munir, M.J.; Wu, Y.-F. Development of sustainable high-performance desert sand concrete: Engineering and environmental impacts of compression casting. Resour. Conserv. Recycl. 2024, 212, 108002. [Google Scholar] [CrossRef]
- Li, X.; Fan, Y.; Li, Q.; Shah, S.P. Experimental study on early-age fracture behavior of cement mortar with the addition of fly ash. Constr. Build. Mater. 2025, 465, 140255. [Google Scholar] [CrossRef]
- Long, Q.; Zhao, Y.; Zhang, B.; Yang, H.; Luo, Z.; Li, Z.; Zhang, G.; Liu, K. Interfacial Behavior of Slag, Fly Ash, and Red Mud-Based Geopolymer Mortar with Concrete Substrate: Mechanical Properties and Microstructure. Buildings 2024, 14, 652. [Google Scholar] [CrossRef]
- Long, Q.; Zhao, Y.; Zhang, B.; Yang, H.; Luo, Z.; Li, Z.; Zhang, G.; Liu, K. Review of the materials composition and performance evolution of green alkali-activated cementitious materials. Clean Technol. Environ. Policy 2023, 25, 1439–1459. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, N.; Zhou, Y.; Li, C.; Zhao, J.; Zhang, Y. Photocatalysis in alkali activated cementitious materials. J. Build. Eng. 2022, 46, 103749. [Google Scholar] [CrossRef]
- Zuo, Y.; Chen, Y.; Liu, C.; Gan, Y.; Göbel, L.; Ye, G.; Provis, J.L. Modeling and simulation of alkali-activated materials (AAMs): A critical review. Cem. Concr. Res. 2024, 189, 107769. [Google Scholar] [CrossRef]
- Su, C.; Zhang, J.; Ding, Y. Research on reactivity evaluation and micro-mechanism of various solid waste powders for alkali-activated cementitious materials. Constr. Build. Mater. 2024, 411, 134374. [Google Scholar] [CrossRef]
- Amer, I.; Kohail, M.; El-Feky, M.S.; Rashad, A.; Khalaf, M.A. A review on alkali-activated slag concrete. Ain Shams Eng. J. 2021, 12, 1475–1499. [Google Scholar] [CrossRef]
- Pradeep, S.S.; Gummadi, S.N.; Selvaraj, T. Living mortars-simulation study on organic lime mortar used in heritage structures. Eur. Phys. J. Plus 2022, 137, 499. [Google Scholar] [CrossRef]
- Hamada, H.M.; Abed, F.; Al-Sadoon, Z.A.; Elnassar, Z.; Hassan, A. The use of treated desert sand in sustainable concrete: A mechanical and microstructure study. J. Build. Eng. 2023, 79, 107843. [Google Scholar] [CrossRef]
- Krishna, R.S.; Elshorbagi, M.; Tao, Z.; Tam, V.W.Y.; Jiang, C. Enhancing desert sand concrete with fibre-reinforced polymer (FRP) confinement: Mechanical and microstructural perspectives. Sustain. Mater. Technol. 2025, 45, e01503. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Liu, G.; Hu, D.; Ma, X. Multi-scale study on mechanical property and strength prediction of aeolian sand concrete. Constr. Build. Mater. 2020, 247, 118538. [Google Scholar] [CrossRef]
- He, M.; Wang, Y.; Yuan, K.; Sheng, Z.; Qiu, J.; Liu, J.; Wang, J. Synergistic effects of ultrafine particles and graphene oxide on hydration mechanism and mechanical property of dune sand-incorporated cementitious composites. Constr. Build. Mater. 2020, 262, 120817. [Google Scholar] [CrossRef]
- Shi, F.; Li, T.; Wang, W.; Liu, R.; Liu, X.; Tian, H.; Liu, N. Research on the Effect of Desert Sand on Pore Structure of Fiber Reinforced Mortar Based on X-CT Technology. Materials 2021, 14, 5572. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, J.; Qian, X.; Wang, L.; Lin, G.; Liu, Z. Bio-inspired functionalization of very fine aggregates for better performance of cementitious materials. Constr. Build. Mater. 2020, 241, 118104. [Google Scholar] [CrossRef]
- Krivenko, P.; Gelevera, O.; Kovalchuk, O.; Bumanis, G.; Korjakins, A. Alkali-aggregate reaction in alkali-activated cement concretes. IOP Conf. Ser. Mater. Sci. Eng. 2019, 660, 012002. [Google Scholar] [CrossRef]
- Badkul, A.; Paswan, R.; Singh, S.K.; Tegar, J.P. A comprehensive study on the performance of alkali activated fly ash/GGBFS geopolymer concrete pavement. Road Mater. Pavement Des. 2021, 23, 1815–1835. [Google Scholar] [CrossRef]
- Dong, T.; Sun, T.; Xu, F.; Ouyang, G.; Wang, H.; Yang, F.; Wang, Z. Effect of Solid Sodium Silicate on Workability, Hydration and Strength of Alkali-Activated GGBS/Fly Ash Paste. Coatings 2023, 13, 696. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, R.; Jin, H.; Li, F. Analysis of mechanical properties and fractal characteristics of pore structure of geopolymer mortar. J. South China Univ. Technol. (Nat. Sci. Ed.) 2020, 48, 126–140. [Google Scholar]
- Das, D.; Rout, P.K. A Review of Coal Fly Ash Utilization to Save the Environment. Water Air Soil Pollut. 2023, 234, 128. [Google Scholar] [CrossRef]
- Wang, H.; Liu, T.; Yan, C.; Wang, J. Expansive Soil Stabilization Using Alkali-Activated Fly Ash. Processes 2023, 11, 1550. [Google Scholar] [CrossRef]
- Duan, K.; Wang, J.; Liu, Z.; Li, X.; Zhang, J.; Wang, X.; Wang, D. Flowability and in-situ phase evolution of Na2CO3-carbide slag-activated blast furnace slag and fly ash. Constr. Build. Mater. 2025, 466, 140341. [Google Scholar] [CrossRef]
- Mao, X.; Zhao, J.; Liu, J.; Liu, Q. Use of coal chemical industry by-product coal gasification fine ash as supplementary cementitious materials in cement: Chemical excitation, hydration and hardening characteristics. Constr. Build. Mater. 2024, 426, 136147. [Google Scholar] [CrossRef]
- Yang, J.; Zeng, J.; He, X.; Zhang, Y.; Su, Y.; Tan, H. Sustainable clinker-free solid waste binder produced from wet-ground granulated blast-furnace slag, phosphogypsum and carbide slag. Constr. Build. Mater. 2022, 330, 127218. [Google Scholar] [CrossRef]
- Samarakoon, M.H.; Ranjith, P.G.; Duan, W.H.; De Silva, V.R.S. Properties of one-part fly ash/slag-based binders activated by thermally-treated waste glass/NaOH blends: A comparative study. Cem. Concr. Compos. 2020, 112, 103679. [Google Scholar] [CrossRef]
- Wang, L.; Chen, H.; Zhang, Y. Study on Mechanical Properties and Hydration Characteristics of Bauxite-GGBFS Alkali-Activated Materials, Based on Composite Alkali Activator and Response Surface Method. Materials 2025, 18, 1466. [Google Scholar] [CrossRef]
- Konduru, H.; Karthiyaini, S. Enhancing solidification in one-part geopolymer systems through alkali-thermal activation of bauxite residue and silica fume integration. Case Stud. Constr. Mater. 2024, 21, e03444. [Google Scholar] [CrossRef]
- GB/T 17671-2021; Test Method of Cement Mortar Strength (ISO Method). State Administration for Market Regulation: Beijing, China, 2021.
- Wang, R.; Li, G.; Li, C.; Huo, Y.; Wang, T.; Hou, P.; Gong, Z. Study on the design method of multi-component industrial solid waste low carbon cementitious material with cement as the activator. Case Stud. Constr. Mater. 2024, 21, e03478. [Google Scholar] [CrossRef]
- Luo, D.; Li, F.; Niu, D. Study on the deterioration of concrete performance in saline soil area under the combined effect of high low temperatures, chloride and sulfate salts. Cem. Concr. Compos. 2024, 150, 105531. [Google Scholar] [CrossRef]
- Naghizadeh, A.; Tchadjie, L.N.; Ekolu, S.O.; Welman-Purchase, M. Circular production of recycled binder from fly ash-based geopolymer concrete. Constr. Build. Mater. 2024, 415, 135098. [Google Scholar] [CrossRef]
- Luo, D.; Li, F.; Niu, D. Mechanisms of concentration control alkali activated fly ash stabilized saline soil in seasonally frozen regions. Sci. Rep. 2025, 15, 105531. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, J.; Liu, J.; Fan, D.; Qu, H.; Zhou, L.; Zheng, S. Effects of Different Calcium Sources on Mechanical Properties of Metakaolin Geopolymers. Materials 2024, 17, 2087. [Google Scholar] [CrossRef]
- Ren, C.; Wang, J.; Duan, K.; Li, X.; Wang, D. Effects of Steel Slag on the Hydration Process of Solid Waste-Based Cementitious Materials. Materials 2024, 17, 1999. [Google Scholar] [CrossRef]
- He, S.; Li, Y.; Yu, P.; Zhou, Y. Effect of lime mud under wet grinding on the compressive strength and hydration of cement mortar. Cem. Concr. Compos. 2023, 140, 105067. [Google Scholar] [CrossRef]
- Kaya, H.; Ngo, D.; Gin, S.; Kim, S.H. Spectral changes in Si–O–Si stretching band of porous glass network upon ingress of water. J. Non-Cryst. Solids 2020, 527, 119722. [Google Scholar] [CrossRef]
- Yu, J.; Ji, F.; Lv, Q.; Li, W.; Lin, Z.; Peng, Y. Mechanical property and microstructure of fly ash-based geopolymer by calcium activators. Case Stud. Constr. Mater. 2024, 21, e03811. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, W.; Zhang, Y.; Gu, X. Research on hydration characteristics of OSR-GGBFS-FA alkali-activated materials. Constr. Build. Mater. 2024, 411, 134321. [Google Scholar] [CrossRef]
- Zhang, S.; Li, J.; Chen, Z.; He, Y.; Cui, X.-M.; Liu, J.-H.; Liu, Q. Design, preparation, and performance of marine resource-based alkali-activated cementitious materials. J. Build. Eng. 2024, 97, 110822. [Google Scholar] [CrossRef]
- Han, F.; Zhu, Z.; Zhang, H.; Li, Y.; Fu, T. Effect of Steel Slag on the Properties of Alkali-Activated Slag Material: A Comparative Study with Fly Ash. Materials 2024, 17, 2495. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, H.; Li, C.; Li, X.; Jiang, J.; Gong, M. Failure criterion and damage evolution of high-strength geopolymer concrete under compression-shear composite loading after high temperatures. Constr. Build. Mater. 2024, 450, 138686. [Google Scholar] [CrossRef]
- Zhao, S.; Lu, W.; Li, D.; Xia, M. Study on acid resistance and high temperature resistance of composite geopolymer-stabilized lead–zinc tailing. Constr. Build. Mater. 2023, 407, 133554. [Google Scholar] [CrossRef]
- Liu, X.; Feng, P.; Li, W.; Geng, G.; Huang, J.; Gao, Y.; Mu, S.; Hong, J. Effects of pH on the nano/micro structure of calcium silicate hydrate (C-S-H) under sulfate attack. Cem. Concr. Res. 2021, 140, 106306. [Google Scholar] [CrossRef]
Materials | Chemical Composition (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | CaO | Fe2O3 | MgO | SO3 | Na2O | K2O | TiO2 | |
FA | 40.31 | 24.38 | 8.02 | 10.27 | 5.75 | 5.23 | 2.6 | 1.28 | 0.72 |
GGBS | 34.50 | 17.70 | 34.00 | 1.03 | 6.01 | 0.04 | / | / | / |
TD | 73.10 | 14.63 | 2.69 | 2.13 | 1.37 | / | 2.70 | 2.96 | / |
Number | Water-to-Glue Ratio | TD (g) | GGBS (g) | FA (g) | Water Glass Modulus (n) | Alkali Equivalent (%) | Alkali Activator (g) | Water (g) |
---|---|---|---|---|---|---|---|---|
1 | 0.5 | 1350 | 360 | 90 | 1.2 | 4 | 81.74 | 182 |
2 | 0.5 | 1350 | 360 | 90 | 1.2 | 6 | 123.46 | 160.34 |
3 | 0.5 | 1350 | 360 | 90 | 1.2 | 8 | 164.21 | 138.78 |
4 | 0.5 | 1350 | 360 | 90 | 1.4 | 4 | 81.74 | 182 |
5 | 0.5 | 1350 | 360 | 90 | 1.4 | 6 | 123.46 | 160.34 |
6 | 0.5 | 1350 | 360 | 90 | 1.4 | 8 | 164.21 | 138.78 |
7 | 0.5 | 1350 | 360 | 90 | 1.6 | 4 | 81.74 | 182 |
8 | 0.5 | 1350 | 360 | 90 | 1.6 | 6 | 123.46 | 160.34 |
9 | 0.5 | 1350 | 360 | 90 | 1.2 | 8 | 164.21 | 138.78 |
Number | Water-to-Glue Ratio | TD (g) | GGBS (%) | FA (%) | Waterglass Modulus (n) | Alkali Equivalent (%) | Alkali Activator (g) | Water (g) |
---|---|---|---|---|---|---|---|---|
1 | 0.5 | 1350 | 450 | 0 | 1.2 | 6 | 123.46 | 160.34 |
2 | 0.5 | 1350 | 360 | 90 | 1.2 | 6 | 123.46 | 160.34 |
3 | 0.5 | 1350 | 315 | 135 | 1.2 | 6 | 123.46 | 160.34 |
4 | 0.5 | 1350 | 270 | 180 | 1.2 | 6 | 123.46 | 160.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Zuo, B.; Liu, Z.; Si, Y.; Wu, H.; Liu, T.; Huang, Y. Analysis of the Mechanical Properties, Durability, and Micro-Mechanisms of Alkali-Activated Fly Ash Mortar. Appl. Sci. 2025, 15, 10316. https://doi.org/10.3390/app151910316
Sun C, Zuo B, Liu Z, Si Y, Wu H, Liu T, Huang Y. Analysis of the Mechanical Properties, Durability, and Micro-Mechanisms of Alkali-Activated Fly Ash Mortar. Applied Sciences. 2025; 15(19):10316. https://doi.org/10.3390/app151910316
Chicago/Turabian StyleSun, Chunwang, Baoxi Zuo, Zengshui Liu, Yi Si, Hong Wu, Ting Liu, and Yong Huang. 2025. "Analysis of the Mechanical Properties, Durability, and Micro-Mechanisms of Alkali-Activated Fly Ash Mortar" Applied Sciences 15, no. 19: 10316. https://doi.org/10.3390/app151910316
APA StyleSun, C., Zuo, B., Liu, Z., Si, Y., Wu, H., Liu, T., & Huang, Y. (2025). Analysis of the Mechanical Properties, Durability, and Micro-Mechanisms of Alkali-Activated Fly Ash Mortar. Applied Sciences, 15(19), 10316. https://doi.org/10.3390/app151910316