Comparative Analysis of Physical Activity and Neuromuscular Characteristics in Middle-Aged and Young Men
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Body Composition
2.3. International Physical Activity Questionnaire Scale
2.4. Blood Sampling
2.5. Isokinetic Strength
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics According to Variables
3.2. Multiple Regression Analysis Assessing the Relationship Between Age, Physical Activity, and Body Composition Variables
3.3. Multiple Regression Analysis of Age, Physical Activity, and Neuromuscular Biomarkers on Isokinetic Strength
3.4. Multiple Regression Analysis of Age, Physical Activity, and Isokinetic Strength on Neuromuscular Biomarkers
3.5. Correlation Analysis of Isokinetic Strength with Age, Physical Activity, Neuromuscular Biomarkers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Statistics Korea. Population Projections for Korea: 2017–2067 (Based on the 2017 Population Census); Statistics Korea: Daejeon, Republic of Korea, 2019. [Google Scholar]
- Kim, K.W.; Kim, O.S. Super aging in South Korea unstoppable but mitigatable: A sub-national scale population projection for best policy planning. Spat. Demogr. 2020, 8, 155–173. [Google Scholar] [CrossRef]
- Kang, J.S.; Park, S.J. The impact of communication on the overall quality of life in elderly koreans. Int. J. Adv. Cult. Technol. 2019, 7, 58–64. [Google Scholar]
- Hester, G.M.; VanDusseldorp, T.A.; Ha, P.L.; Kiani, K.; Olmos, A.A.; Jabbari, M.; Kalladanthyil, S.; An, S.; Bailly, A.R.; Dalton, B.E.; et al. Microbiopsy sampling for examining age-related differences in skeletal muscle fiber morphology and composition. Front. Physiol. 2022, 12, 756626. [Google Scholar] [CrossRef] [PubMed]
- Leyk, D.; Rüther, T.; Wunderlich, M.; Sievert, A.; Eßfeld, D.; Witzki, A.; Erley, O.; Küchmeister, G.; Piekarski, C.; Löllgen, H. Physical performance in middle age and old age: Good news for our sedentary and aging society. Dtsch. Ärzteblatt Int. 2010, 107, 809. [Google Scholar]
- Guthold, R.; Ono, T.; Strong, K.L.; Chatterji, S.; Morabia, A. Worldwide variability in physical inactivity: A 51-country survey. Am. J. Prev. Med. 2008, 34, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, E.; Ekelund, U.; Wareham, N.J. Temporal trends in physical activity in England: The Health Survey for England 1991 to 2004. Prev. Med. 2007, 45, 416–423. [Google Scholar] [CrossRef]
- Macaluso, A.; De Vito, G. Muscle strength, power and adaptations to resistance training in older people. Eur. J. Appl. Physiol. 2004, 91, 450–472. [Google Scholar] [CrossRef]
- Janssen, I.; Heymsfield, S.B.; Wang, Z.; Ross, R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J. Appl. Physiol. 2000, 89, 81–88. [Google Scholar] [CrossRef]
- Grevendonk, L.; Connell, N.J.; McCrum, C.; Fealy, C.E.; Bilet, L.; Bruls, Y.M.; Mevenkamp, J.; Schrauwen-Hinderling, V.B.; Jörgensen, J.A.; Moonen-Kornips, E.; et al. Impact of aging and exercise on skeletal muscle mitochondrial capacity, energy metabolism, and physical function. Nat. Commun. 2021, 12, 4773. [Google Scholar] [CrossRef]
- Kuk, J.L.; Saunders, T.J.; Davidson, L.E.; Ross, R. Age-related changes in total and regional fat distribution. Ageing Res. Rev. 2009, 8, 339–348. [Google Scholar] [CrossRef]
- von Haehling, S.; Morley, J.E.; Anker, S.D. An overview of sarcopenia: Facts and numbers on prevalence and clinical impact. J. Cachexia Sarcopenia Muscle 2010, 1, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.V.; Brown, M. Age-related changes in contractile properties of single skeletal fibers from the soleus muscle. J. Appl. Physiol. 1999, 86, 881–886. [Google Scholar] [CrossRef]
- Goodpaster, B.H.; Park, S.W.; Harris, T.B.; Kritchevsky, S.B.; Nevitt, M.; Schwartz, A.V.; Simonsick, E.M.; Tylavsky, F.A.; Visser, M.; Newman, A.B. The loss of skeletal muscle strength, mass, and quality in older adults: The health, aging and body composition study. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 1059–1064. [Google Scholar] [CrossRef]
- Hanson, E.D.; Srivatsan, S.R.; Agrawal, S.; Menon, K.S.; Delmonico, M.J.; Wang, M.Q.; Hurley, B.F. Effects of strength training on physical function: Influence of power, strength, and body composition. J. Strength Cond. Res. 2009, 23, 2627–2637. [Google Scholar] [CrossRef]
- Cho, E.S.; Kim, J.U.; Song, H.J. Self-Rated Health and Associated Factors among Community-Dwelling Male Elders. Int. J. Adv. Smart Converg. 2025, 14, 331–341. [Google Scholar]
- Rantanen, T.; Guralnik, J.M.; Foley, D.; Masaki, K.; Leveille, S.; Curb, J.D.; White, L. Midlife hand grip strength as a predictor of old age disability. JAMA 1999, 281, 558–560. [Google Scholar] [CrossRef] [PubMed]
- Angulo, J.; El Assar, M.; Álvarez-Bustos, A.; Rodríguez-Mañas, L. Physical activity and exercise: Strategies to manage frailty. Redox Biol. 2020, 35, 101513. [Google Scholar] [CrossRef] [PubMed]
- Alcazar, J.; Rodriguez-Lopez, C.; Delecluse, C.; Thomis, M.; Van Roie, E. Ten-year longitudinal changes in muscle power, force, and velocity in young, middle-aged, and older adults. J. Cachexia Sarcopenia Muscle 2023, 14, 1019–1032. [Google Scholar] [CrossRef]
- Casati, M.; Costa, A.S.; Capitanio, D.; Ponzoni, L.; Ferri, E.; Agostini, S.; Lori, E. The biological foundations of sarcopenia: Established and promising markers. Front. Med. 2019, 6, 184. [Google Scholar] [CrossRef]
- Moreira-Pais, A.; Ferreira, R.; Oliveira, P.A.; Duarte, J.A. A neuromuscular perspective of sarcopenia pathogenesis: Deciphering the signaling pathways involved. Geroscience 2022, 44, 1199–1213. [Google Scholar] [CrossRef]
- Pratt, J.; De Vito, G.; Segurado, R.; Pessanha, L.; Dolan, J.; Narici, M.; Boreham, C. Plasma neurofilament light levels associate with muscle mass and strength in middle-aged and older adults: Findings from GenoFit. J. Cachexia Sarcopenia Muscle 2022, 13, 1811–1820. [Google Scholar] [CrossRef]
- Stephan, A.; Mateos, J.M.; Kozlov, S.V.; Cinelli, P.; Kistler, A.D.; Hettwer, S.; Rülicke, T.; Streit, P.; Kunz, B.; Sonderegger, P. Neurotrypsin cleaves agrin locally at the synapse. FASEB J. 2008, 22, 1861–1873. [Google Scholar] [CrossRef]
- Sarto, F.; Franchi, M.V.; McPhee, J.S.; Stashuk, D.W.; Paganini, M.; Monti, E.; Rossi, M.; Sirago, G.; Zampieri, S.; Motanova, E.S.; et al. Neuromuscular impairment at different stages of human sarcopenia. J. Cachexia Sarcopenia Muscle 2024, 15, 1797–1810. [Google Scholar] [CrossRef]
- Qaisar, R.; Karim, A.; Iqbal, M.S.; Ahmad, F.; Hussain, M.A. Tracking the plasma C-terminal agrin fragment as a biomarker of neuromuscular decline in 18-to 87-year-old men. Mol. Diagn. Ther. 2024, 28, 611–620. [Google Scholar] [CrossRef] [PubMed]
- Kennis, E.; Verschueren, S.; Van Roie, E.; Thomis, M.; Lefevre, J.; Delecluse, C. Longitudinal impact of aging on muscle quality in middle-aged men. Age 2014, 36, 9689. [Google Scholar] [CrossRef] [PubMed]
- Blocquiaux, S.; Ramaekers, M.; Van Thienen, R.; Nielens, H.; Delecluse, C.; De Bock, K.; Thomis, M. Recurrent training rejuvenates and enhances transcriptome and methylome responses in young and older human muscle. JCSM Rapid Commun. 2022, 5, 10–32. [Google Scholar] [CrossRef]
- Fragala, M.S.; Cadore, E.L.; Dorgo, S.; Izquierdo, M.; Kraemer, W.J.; Peterson, M.D.; Ryan, E.D. Resistance training for older adults: Position statement from the national strength and conditioning association. J. Strength Cond. Res. 2019, 33, 2019–2052. [Google Scholar] [CrossRef]
- Thompson, B.J.; Ryan, E.D.; Herda, T.J.; Costa, P.B.; Herda, A.A.; Cramer, J.T. Age-related changes in the rate of muscle activation and rapid force characteristics. Age 2014, 36, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Volpi, E.; Nazemi, R.; Fujita, S. Muscle tissue changes with aging. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 405–410. [Google Scholar] [CrossRef]
- Watanabe, D.; Yoshida, T.; Nakagata, T.; Sawada, N.; Yamada, Y.; Kurotani, K.; Tanaka, K.; Okabayashi, M.; Shimada, H.; Takimoto, H.; et al. Factors associated with sarcopenia screened by finger-circle test among middle-aged and older adults: A population-based multisite cross-sectional survey in Japan. BMC Public Health 2021, 21, 798. [Google Scholar] [CrossRef]
- Oh, J.Y.; Yang, Y.J.; Kim, B.S.; Kang, J.H. Validity and reliability of Korean version of International Physical Activity Questionnaire (IPAQ) short form. Korean J. Fam. Med. 2007, 28, 532–541. [Google Scholar]
- Tintignac, L.A.; Brenner, H.R.; Rüegg, M.A. Mechanisms regulating neuromuscular junction development and function and causes of muscle wasting. Physiol. Rev. 2015, 95, 809–852. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef]
- Frontera, W.R.; Hughes, V.A.; Fielding, R.A.; Fiatarone, M.A.; Evans, W.J.; Roubenoff, R. Aging of skeletal muscle: A 12-yr longitudinal study. J. Appl. Physiol. 2000, 88, 1321–1326. [Google Scholar] [CrossRef]
- Loenneke, J.P.; Thiebaud, R.S.; Abe, T. Estimating site-specific muscle loss: A valuable tool for early sarcopenia detection? Rejuvenation Res. 2014, 17, 496–498. [Google Scholar] [CrossRef] [PubMed]
- Samuel, D.; Rowe, P. An investigation of the association between grip strength and hip and knee joint moments in older adults. Arch. Gerontol. Geriatr. 2012, 54, 357–360. [Google Scholar] [CrossRef]
- Parraca, J.A.; Adsuar, J.C.; Domínguez-Muñoz, F.J.; Barrios-Fernandez, S.; Tomas-Carus, P. Test-retest reliability of isokinetic strength measurements in lower limbs in elderly. Biology 2022, 11, 802. [Google Scholar] [CrossRef]
- Pereira, J.C.; Neri, S.G.R.; Vainshelboim, B.; Gadelha, A.B.; Bottaro, M.; Lima, R.M. A reference equation for normal standards for knee extensor isokinetic strength in Brazilian older women. Aging Clin. Exp. Res. 2019, 31, 1531–1537. [Google Scholar] [CrossRef]
- Harbo, T.; Brincks, J.; Andersen, H. Maximal isokinetic and isometric muscle strength of major muscle groups related to age, body mass, height, and sex in 178 healthy subjects. Eur. J. Appl. Physiol. 2012, 112, 267–275. [Google Scholar] [CrossRef]
- Alcazar, J.; Aagaard, P.; Haddock, B.; Kamper, R.S.; Hansen, S.K.; Prescott, E.; Alegre, L.M.; Frandsen, U.; Suetta, C. Age-and sex-specific changes in lower-limb muscle power throughout the lifespan. J. Gerontol. Ser. A 2020, 75, 1369–1378. [Google Scholar] [CrossRef] [PubMed]
- Marcell, T.J.; Hawkins, S.A.; Wiswell, R.A. Leg strength declines with advancing age despite habitual endurance exercise in active older adults. J. Strength Cond. Res. 2014, 28, 504–513. [Google Scholar] [CrossRef]
- Cossich, V.; Maffiuletti, N.A. Early vs. late rate of torque development: Relation with maximal strength and influencing factors. J. Electromyogr. Kinesiol. 2020, 55, 102486. [Google Scholar] [CrossRef] [PubMed]
- Blazevich, A.J.; Cannavan, D.; Horne, S.; Coleman, D.R.; Aagaard, P. Changes in muscle force–length properties affect the early rise of force in vivo. Muscle Nerve 2009, 39, 512–520. [Google Scholar] [CrossRef]
- Methenitis, S.; Spengos, K.; Zaras, N.; Stasinaki, A.N.; Papadimas, G.; Karampatsos, G.; Arnaotis, G.; Terzis, G. Fiber type composition and rate of force development in endurance-and resistance-trained individuals. J. Strength Cond. Res. 2019, 33, 2388–2397. [Google Scholar] [CrossRef]
- Ando, R.; Suzuki, Y. Positive relationship between passive muscle stiffness and rapid force production. Hum. Mov. Sci. 2019, 66, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Thompson, B.J.; Ryan, E.D.; Sobolewski, E.J.; Conchola, E.C.; Cramer, J.T. Age related differences in maximal and rapid torque characteristics of the leg extensors and flexors in young, middle-aged and old men. Exp. Gerontol. 2013, 48, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Bemben, M.G.; Massey, B.H.; Bemben, D.A.; Misner, J.E.; Boileau, R.A. Isometric muscle force production as a function of age in healthy 20-to 74-yr-old men. Med. Sci. Sports Exerc. 1991, 23, 1302–1310. [Google Scholar] [CrossRef]
- Ditroilo, M.; Forte, R.; Benelli, P.; Gambarara, D.; De Vito, G. Effects of age and limb dominance on upper and lower limb muscle function in healthy males and females aged 40–80 years. J. Sports Sci. 2010, 28, 667–677. [Google Scholar] [CrossRef]
- Carbonneau, E.; Smeesters, C. Effects of age and lean direction on the threshold of single-step balance recovery in younger, middle-aged and older adults. Gait Posture 2014, 39, 365–371. [Google Scholar] [CrossRef]
- Hill, M.W.; Duncan, M.J.; Price, M.J. The emergence of age-related deterioration in dynamic, but not quiet standing balance abilities among healthy middle-aged adults. Exp. Gerontol. 2020, 140, 111076. [Google Scholar] [CrossRef]
- Thompson, B.J.; Sobolewski, E.J.; Ryan, E.D. Comparison of age-specific leg extensor muscle function torque-time and rapid velocity attributes across the adult lifespan: A relative deficiency investigation. Exp. Gerontol. 2020, 131, 110819. [Google Scholar] [CrossRef] [PubMed]
- Sirago, G.; Pellegrino, M.A.; Bottinelli, R.; Franchi, M.V.; Narici, M.V. Loss of neuromuscular junction integrity and muscle atrophy in skeletal muscle disuse. Ageing Res. Rev. 2023, 83, 101810. [Google Scholar] [CrossRef]
- Franchi, M.V.; Badiali, F.; Sarto, F.; Müller, P.; Müller, N.G.; Rehfeld, K.; Monti, E.; Rankin, D.; Longo, S.; Lund, J.; et al. Neuromuscular aging: A case for the neuroprotective effects of dancing. Gerontology 2023, 69, 73–81. [Google Scholar] [CrossRef]
- Qaisar, R.; Karim, A.; Muhammad, T.; Shah, I.; Khan, J. Prediction of sarcopenia using a battery of circulating biomarkers. Sci. Rep. 2021, 11, 8632. [Google Scholar] [CrossRef]
- Monti, E.; Reggiani, C.; Franchi, M.V.; Toniolo, L.; Sandri, M.; Armani, A.; Zampieri, S.; Giacomello, E.; Sarto, F.; Sirago, G.; et al. Neuromuscular junction instability and altered intracellular calcium handling as early determinants of force loss during unloading in humans. J. Physiol. 2021, 599, 3037–3061. [Google Scholar] [CrossRef]
- Khalil, M.; Pirpamer, L.; Hofer, E.; Voortman, M.M.; Barro, C.; Leppert, D.; Benkert, P.; Ropele, S.; Enzinger, C.; Fazekas, F.; et al. Serum neurofilament light levels in normal aging and their association with morphologic brain changes. Nat. Commun. 2020, 11, 812. [Google Scholar] [CrossRef]
- Barro, C.; Chitnis, T.; Weiner, H.L. Blood neurofilament light: A critical review of its application to neurologic disease. Ann. Clin. Transl. Neurol. 2020, 7, 2508–2523. [Google Scholar] [CrossRef]
- Koini, M.; Pirpamer, L.; Hofer, E.; Buchmann, A.; Pinter, D.; Ropele, S.; Enzinger, C.; Benkert, P.; Leppert, D.; Kuhle, J.; et al. Factors influencing serum neurofilament light chain levels in normal aging. Aging 2021, 13, 25729. [Google Scholar] [CrossRef] [PubMed]
- Drey, M.; Sieber, C.C.; Bauer, J.M.; Uter, W.; Dahinden, P.; Fariello, R.G.; Vrijbloed, J.W. C-terminal Agrin Fragment as a potential marker for sarcopenia caused by degeneration of the neuromuscular junction. Exp. Gerontol. 2013, 48, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Bompa, T.O.; Buzzichelli, C. Periodization: Theory and Methodology of Training; Human kinetics: Champaign, IL, USA, 2019. [Google Scholar]
Physical Activity Level | Calculate |
---|---|
Walking MET | 3.3 (MET level) × Walking time (min) × Day |
Moderate activity MET | 4.0 (MET level) × Moderate intensity activity time (min) × Day |
Vigorous activity MET | 8.0 (MET level) × Vigorous intensity activity time (min) × Day |
Variable | Middle-Age (n = 40) | Young-Age (n = 40) | p |
---|---|---|---|
Behavioral variable | |||
IPAQ score | 2428.95 ± 873.71 | 2413.78 ± 998.38 | 0.943 |
Anthropometric characteristics | |||
Age (years) | 50.35 ± 4.48 | 29.05 ± 3.08 | <0.001 |
Height (cm) | 172.33 ± 6.85 | 173.63 ± 5.10 | 0.339 |
Weight (kg) | 74.61 ± 8.35 | 77.51 ± 12.73 | 0.243 |
BMI (kg/m2) | 25.22 ± 3.10 | 25.14 ± 4.31 | 0.535 |
Body fat (%) | 23.95 ± 4.84 | 21.47 ± 6.09 | 0.047 |
Isokinetic strength | |||
PT (Nm) | 178.04 ± 32.46 | 222.55 ± 46.45 | <0.001 |
BW/PT (%) | 240.56 ± 46.45 | 294.33 ± 72.33 | <0.001 |
RTD@0.18s (Nm) | 95.02 ± 30.11 | 143.42 ± 30.18 | <0.001 |
Neuromuscular junctions | |||
CAF (pg/mL) | 3354.54 ± 627.09 | 3138.30 ± 536.84 | 0.102 |
NfL (pg/mL) | 10.91 ± 4.80 | 6.50 ± 3.16 | <0.001 |
Dependent Variable | Independent Variable | B | S.E. | β | t | p | VIF |
---|---|---|---|---|---|---|---|
Weight (a) | Age | −0.150 | 0.104 | −0.158 | −1.448 | 0.152 | 1.002 |
IPAQ score | −0.003 | 0.001 | −0.241 | −2.204 * | 0.031 | 1.002 | |
Body Fat (b) | Age | 0.126 | 0.054 | 0.256 | 2.328 * | 0.023 | 1.002 |
IPAQ score | 0.000 | 0.001 | −0.029 | −0.262 | 0.794 | 1.002 | |
BMI (c) | Age | −0.025 | 0.037 | −0.077 | −0.695 | 0.489 | 1.002 |
IPAQ score | −0.001 | 0.000 | −0.199 | −1.788 | 0.078 | 1.002 |
Dependent Variable | Independent Variable | B | S.E. | β | t | p | VIF |
---|---|---|---|---|---|---|---|
PT (a) | Age | −2.574 | 0.357 | −0.701 | −7.211 *** | <0.001 | 1.448 |
IPAQ score | 0.020 | 0.004 | 0.446 | 4.647 *** | <0.001 | 1.414 | |
CAF | 0.009 | 0.007 | 0.130 | 1.348 | 0.182 | 1.417 | |
NfL | 1.821 | 0.880 | 0.201 | 2.069 * | 0.042 | 1.444 | |
BW/PT (b) | Age | −3.153 | 0.611 | −0.542 | −5.163 *** | <0.001 | 1.448 |
IPAQ score | 0.037 | 0.007 | 0.525 | 5.054 *** | <0.001 | 1.414 | |
CAF | 0.011 | 0.012 | 0.096 | 0.920 | 0.360 | 1.417 | |
NfL | 2.855 | 1.506 | 0.199 | 1.896 | 0.062 | 1.444 | |
RTD@0.18s (c) | Age | −2.118 | 0.357 | −0.624 | −5.941 *** | <0.001 | 1.448 |
IPAQ score | 0.002 | 0.004 | 0.037 | 0.355 | 0.724 | 1.414 | |
CAF | −0.001 | 0.007 | −0.016 | −0.150 | 0.881 | 1.417 | |
NfL | −0.353 | 0.879 | −0.042 | −0.402 | 0.689 | 1.444 |
Dependent Variable | Independent Variable | B | S.E. | β | t | p | VIF |
---|---|---|---|---|---|---|---|
CAF (a) | Age | 11.151 | 7.278 | 0.215 | 1.532 | 0.130 | 2.106 |
IPAQ score | −0.363 | 0.071 | −0.574 | −5.092 *** | <0.001 | 1.360 | |
PT | 2.390 | 2.455 | 0.169 | 0.974 | 0.333 | 3.230 | |
BW/PT | 0.093 | 1.418 | 0.010 | 0.066 | 0.948 | 2.702 | |
RTD@0.18s | −0.881 | 2.012 | −0.058 | −0.438 | 0.663 | 1.854 | |
NfL (b) | Age | 0.252 | 0.055 | 0.623 | 4.593 *** | <0.001 | 2.106 |
IPAQ score | −0.001 | 0.001 | −0.262 | −2.407 * | 0.019 | 1.360 | |
PT | 0.023 | 0.019 | 0.207 | 1.229 | 0.223 | 3.230 | |
BW/PT | 0.008 | 0.011 | 0.118 | 0.767 | 0.446 | 2.702 | |
RTD@0.18s | −0.014 | 0.015 | −0.114 | −0.896 | 0.373 | 1.854 |
Variable | Age | IPAQ Score | CAF | NfL |
---|---|---|---|---|
PT | −0.591 *** | 0.376 *** | −0.197 | −0.231 * |
BW/PT | −0.442 *** | 0.466 *** | −0.244 * | −0.165 |
RTD@0.18s | −0.651 *** | 0.079 | −0.148 | −0.384 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.; Kim, K.; Lee, S.; Son, J.; Jeong, H. Comparative Analysis of Physical Activity and Neuromuscular Characteristics in Middle-Aged and Young Men. Appl. Sci. 2025, 15, 9952. https://doi.org/10.3390/app15189952
Kim B, Kim K, Lee S, Son J, Jeong H. Comparative Analysis of Physical Activity and Neuromuscular Characteristics in Middle-Aged and Young Men. Applied Sciences. 2025; 15(18):9952. https://doi.org/10.3390/app15189952
Chicago/Turabian StyleKim, Byungkwan, Kihong Kim, Sanghyun Lee, Jaeheon Son, and Hwanjong Jeong. 2025. "Comparative Analysis of Physical Activity and Neuromuscular Characteristics in Middle-Aged and Young Men" Applied Sciences 15, no. 18: 9952. https://doi.org/10.3390/app15189952
APA StyleKim, B., Kim, K., Lee, S., Son, J., & Jeong, H. (2025). Comparative Analysis of Physical Activity and Neuromuscular Characteristics in Middle-Aged and Young Men. Applied Sciences, 15(18), 9952. https://doi.org/10.3390/app15189952