Lode Angle-Dependent Fracture Mechanisms in Brittle Rock Under 3D Stress Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Three-Dimensional Loading and AE Acquisition System
2.2. Testing Specimen
2.3. Three-Dimensional Stress Loading Paths
2.4. Testing Procedure
3. Results and Analysis
3.1. Fracturing Processes
3.2. Fracturing Quantitative Evaluation
3.3. Macroscopic Fracture Surfaces
4. Discussion
4.1. Implications of θσ on Rock Strength for Stability Assessment
4.2. Construction Effectiveness Through Deformation and AE Monitoring
4.3. Fracture Network Analysis for Optimized Design
4.4. Study Limitations
5. Conclusions
- (1)
- The Lode angle θσ plays a critical role in governing rock strength, fracturing process, and failure mode. Under a constant mean stress (p = 100 MPa), an increase in θσ from −30° to +30° leads to a pronounced linear reduction in peak strength. More importantly, it fundamentally alters the fracturing mechanism, from a progressive dilation-dominated mode at lower θσ values to an abrupt shear-localized mode at higher θσ values. This result highlights the essential role of deviatoric stress symmetry in predicting the timing and the mode of rock failure.
- (2)
- A real-time diagnostic for fracturing intensity has been established. The introduced parameter C, derived from the coupled evolution of AE energy rate and hit rate, provides a quantitative measure of the intensity of the fracturing process. This parameter moves beyond traditional AE analysis by offering a lithology- and scale-adaptive tool for real-time assessment of rock damage evolution, with direct implications for monitoring and managing hazards in deep engineering operations.
- (3)
- A new fracture classification emerges from 3D stress states. Post-failure CT reconstructions consistently reveal complex X-shaped polymodal fault networks, governed by a sequential tensile–shear interaction mechanism. This prompts the proposal of a “deflected shear–tensile hybrid kinked fracture” typology. This classification captures the inherent topological complexity of fractures born under 3D stress states, offering a more nuanced framework than conventional monomodal schemes for interpreting fracture patterns in both experimental and field settings.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, F.D.; Chen, T.Y.; Shan, G.J.; Ma, L.L.; Yu, X.J.; Zheng, X.B.; Zhang, S.J.; Chai, X. Experimental investigation on the failure mechanism of water-bearing sedimentary rocks under true-triaxial stress. Eng. Fail. Anal. 2025, 175, 109605. [Google Scholar] [CrossRef]
- Gao, L.; Zhao, H.B.; Liu, C. Study on the influence of true triaxial principal stress loading and unloading on gas permeability characteristics of coal seams containing gangue. Results Eng. 2025, 27, 105667. [Google Scholar] [CrossRef]
- Liu, X.J.; Ge, Z.L.; Zhou, Z.; Tang, Y.L.; Zhang, D. Stress-induced borehole deformation mechanism of self-rotating waterjets drilling under true triaxial stress conditions. Geoenergy Sci. Eng. 2025, 254, 214021. [Google Scholar] [CrossRef]
- Gu, L.J.; Zhu, G.Q.; Yu, S.; Zhou, Y.Y.; Zhang, Y.; Hu, Y. Directional development mechanism of hard rock fracture under true triaxial stress: Insights from macroscopic and microscopic fracture perspectives. Eng. Fract. Mech. 2025, 319, 111000. [Google Scholar] [CrossRef]
- Liu, Y.X.; Gao, Y.; Wang, G.; Cheng, W.M.; Xu, C.H.; Cheng, J.X. Development of experimental system for rock anisotropic seepage under true triaxial stress. Geomech. Energy Environ. 2025, 42, 100677. [Google Scholar] [CrossRef]
- Sethi, C.; Motra, H.B.; Hazra, B.; Ostadhassan, M. Influence of lithological contrast on elastic anisotropy of shales under true-triaxial stress and thermal conditions. Int. J. Rock Mech. Min. 2025, 190, 106100. [Google Scholar] [CrossRef]
- Goto, R.; Sakaguchi, K.; Parisio, F.; Yoshioka, K.; Pramudyo, E.; Watanabe, N. Wellbore stability in high-temperature granite under true triaxial stress. Geothermics 2022, 100, 102334. [Google Scholar] [CrossRef]
- Cao, S.; Wang, X.J.; Ge, Z.L.; Zhang, L.; Yang, Y.; Hu, H.R. Dynamic damage mechanism of coal with high true triaxial stress level subject to water jets. Powder Technol. 2024, 437, 119583. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.F.; Xu, D.P.; Gao, Y.H.; Zhou, Y.Y.; Gu, L.J. True triaxial stresses mobilizing dilatant fracturing and engineering failure of hard rocks. Eng. Fail. Anal. 2023, 154, 107652. [Google Scholar] [CrossRef]
- Browning, J.; Meredith, P.G.; Stuart, C.E.; Healy, D.; Harland, S.; Mitchell, T.M. Acoustic characterization of crack damage evolution in sandstone deformed under conventional and true triaxial loading. J. Geophys. Res. Solid Earth 2017, 122, 4395–4412. [Google Scholar] [CrossRef]
- Zhang, D.C.; Liu, Z.W.; Song, Y.Q.; Huang, J.C.; Wu, B.L.; Ranjith, P.G.; Perera, M.S.A.; Kong, L.; Nie, W. DEM simulation on the damage of sandstone with a three-dimensional embedded rough fracture with different width and inclination angle under true-triaxial stress conditions. Theor. Appl. Fract. Mech. 2024, 133, 104528. [Google Scholar] [CrossRef]
- Luo, Y.; Gong, H.L.; Xu, K.; Pei, C.H.; Wei, X.Q.; Li, X.P. Progressive failure characteristics and energy accumulation of granite with a pre-fabricated fracture during conventional triaxial loading. Theor. Appl. Fract. Mech. 2022, 118, 103219. [Google Scholar] [CrossRef]
- Chen, L.; Yin, S.F.; Chang, L.F.; Wang, E.; Zhang, M.Y.; Li, D.J. A damage evolution model of red sandstone under uniaxial compressive loading with different loading rates based on infrared thermography. Infrared Phys. Technol. 2025, 145, 105664. [Google Scholar] [CrossRef]
- Yang, W.M.; Wang, M.X.; Zhou, Z.Q.; Li, L.P.; Yuan, Y.C.; Gao, C.L. A true triaxial geomechanical model test apparatus for studying the precursory information of water inrush from impermeable rock mass failure. Tunn. Undergr. Space Technol. 2019, 93, 103078. [Google Scholar] [CrossRef]
- Feng, X.T.; Yu, X.J.; Zhou, Y.Y.; Yang, C.X.; Wang, F.Y. A rigid true triaxial apparatus for analyses of deformation and failure features of deep weak rock under excavation stress paths. J. Rock Mech. Geotech. Eng. 2023, 15, 1065–1075. [Google Scholar] [CrossRef]
- Song, Z.L.; Zhang, Z.G.; Ranjith, P.G.; Zhao, W.C.; Liu, C. Experimental study on the influence of hydrostatic stress on the Lode angle effect of porous rock. Int. J. Min. Sci. Technol. 2022, 32, 727–735. [Google Scholar] [CrossRef]
- Chemenda, A.; Mas, D. Dependence of rock properties on the Lode angle: Experimental data, constitutive model, and bifurcation analysis. J. Mech. Phys. Solids 2016, 96, 477–496. [Google Scholar] [CrossRef]
- Liu, J.C.; Li, X.; Xiao, J.J.; Xie, Y.C.; Xia, K. Three-dimensional strength criterion for rocks: A review. Energy Rev. 2024, 3, 100102. [Google Scholar] [CrossRef]
- Liu, J.C.; Li, X.; Wang, C.L.; Xu, Y.; Xia, K.W. A three-dimensional elastoplastic constitutive model incorporating Lode angle dependence. Geomech. Energy Environ. 2024, 38, 100567. [Google Scholar] [CrossRef]
- Zhou, J.S.; Gardner, L. New void growth-based ductile fracture models incorporating interaction effects of stress triaxiality and Lode angle parameter. Theor. Appl. Fract. Mech. 2025, 140, 105204. [Google Scholar] [CrossRef]
- Li, F.D.; Elsworth, D.; Feng, X.T.; Chen, T.Y.; Zhao, J.; Li, Y.C.; Zhang, J.Y.; Wu, Q.; Cui, G.L. Revisiting the normal stiffness–permeability relations for shale fractures under true triaxial stress. J. Rock Mech. Geotech. Eng. 2025, 17, 5001–5017. [Google Scholar] [CrossRef]
- Liu, Y.X.; Jiang, C.R.; Wang, G.; Gao, Y.; Cheng, J.X.; Ni, G.H. Evolution of the hydraulic wetting path in fractured coal under true triaxial stress and the influence mechanism of fracture orientation. J. Hydrol. 2024, 640, 131692. [Google Scholar] [CrossRef]
- Chen, J.; Gui, Z.; Rui, Y.C.; Zhao, X.; Pan, X.; Wang, Q.; Pu, Y.; Li, Z.; Liu, M. A dual attention-based deep learning model for lithology identification while drilling. J. Rock Mech. Geotech. Eng. 2025, S1674775525002562. [Google Scholar] [CrossRef]
- Li, B.L.; Jiang, J.Y.; Zhang, J.Z.; Zheng, L.; Long, Y. Influences of initial damage on the saturated granite failure characteristics under true triaxial stress with a free face: Insights into the rockburst prevention and control. Eng. Fract. Mech. 2025, 324, 111263. [Google Scholar] [CrossRef]
- Li, M.L.; Li, K.G.; Wu, S.H.; Qin, Q.C.; Zheng, Z. Tunnel rockburst with a single set of joints under true-triaxial stress condition. J. Rock Mech. Geotech. Eng. 2025, 17, 4827–4851. [Google Scholar] [CrossRef]
- Li, M.H.; Yin, G.Z.; Xu, J.; Li, W.P.; Song, Z.L.; Jiang, C.B. A Novel True Triaxial Apparatus to Study the Geomechanical and Fluid Flow Aspects of Energy Exploitations in Geological Formations. Rock Mech. Rock Eng. 2016, 49, 4647–4659. [Google Scholar] [CrossRef]
- Song, Z.L.; Yin, G.Z.; Ranjith, P.G.; Li, M.H.; Huang, J.; Liu, C. Influence of the intermediate principal stress on sandstone failure. Rock Mech. Rock Eng. 2019, 52, 3033–3046. [Google Scholar] [CrossRef]
- Huang, J.; Qin, C.Z.; Niu, Y.; Li, R.; Song, Z.L.; Wang, X.D. A method for monitoring acoustic emissions in geological media under coupled 3-D stress and fluid flow. J. Pet. Sci. Eng. 2022, 211, 110227. [Google Scholar] [CrossRef]
- Nasseri, M.H.B.; Goodfellow, S.D.; Lombos, L.; Young, R.P. 3-D transport and acoustic properties of Fontainebleau sandstone during true-triaxial deformation experiments. Int. J. Rock Mech. Min. 2014, 69, 1–18. [Google Scholar] [CrossRef]
- Yang, Z.H.; Elgamal, A. Multi-surface Cyclic Plasticity Sand Model with Lode Angle Effect. Geotech. Geol. Eng. 2008, 26, 335–348. [Google Scholar] [CrossRef]
- Zhang, J.C.; Zheng, H.R.; Wang, G.L.; Liu, Z.Q.; Qi, Y.C.; Huang, Z.W.; Fan, X. In-situ stresses, abnormal pore pressures and their impacts on the Triassic Xujiahe reservoirs in tectonically active western Sichuan basin. Mar. Pet. Geol. 2020, 122, 104708. [Google Scholar] [CrossRef]
- Kabwe, E. Confining stress effect on the elastoplastic ground reaction considering the Lode angle dependence. Int. J. Min. Sci. Technol. 2020, 30, 431–440. [Google Scholar] [CrossRef]
- Triantis, D.; Kourkoulis, S.K. An Alternative Approach for Representing the Data Provided by the Acoustic Emission Technique. Rock Mech. Rock Eng. 2018, 51, 2433–2438. [Google Scholar] [CrossRef]
- Niu, Y.; Zhou, X.P.; Berto, F. Temporal dominant frequency evolution characteristics during the fracture process of flawed red sandstone. Theor. Appl. Fract. Mech. 2020, 110, 102838. [Google Scholar] [CrossRef]
- Healy, D.; Jones, R.R.; Holdsworth, R.E. New insights into the development of brittle shear fractures from a 3-D numerical model of microcrack interaction. Earth. Planet. Sci. Lett. 2006, 249, 14–28. [Google Scholar] [CrossRef]
- Healy, D.; Blenkinsop, T.G.; Timms, N.E.; Meredith, P.G.; Mitchell, T.M.; Cooke, M.L. Polymodal faulting: Time for a new angle on shear failure. J. Struct. Geol. 2015, 80, 57–71. [Google Scholar] [CrossRef]
- Cai, J.X. A super-critical stress model for polymodal faulting of rocks. J. Geodyn. 2019, 130, 12–21. [Google Scholar] [CrossRef]
- Zou, Y.S.; Zhang, S.C.; Ma, X.F.; Zhang, X.H.; Zhang, S.P. Hydraulic fracture morphology and conductivity of continental shale under the true-triaxial stress conditions. Fuel 2023, 352, 129056. [Google Scholar] [CrossRef]
- Chen, B.; Shen, B.T.; Zhang, S.C.; Li, Y.Y.; Jiang, H.Y. 3D morphology and formation mechanism of fractures developed by true triaxial stress. Int. J. Min. Sci. Technol. 2022, 32, 1273–1284. [Google Scholar] [CrossRef]
- Du, K.; Li, X.F.; Tao, M.; Wang, S.F. Experimental study on acoustic emission (AE) characteristics and crack classification during rock fracture in several basic lab tests. Int. J. Rock Mech. Min. 2020, 133, 104411. [Google Scholar] [CrossRef]
- Wu, Z.R.; Xu, T.T.; Arson, C. Effect of the Intermediate principal stress on pre-peak damage propagation in hard rock under true triaxial compression. Rock Mech. Rock Eng. 2022, 55, 6475–6494. [Google Scholar] [CrossRef]
- Racine, J.S. Conditional Probability Density and Cumulative Distribution Functions; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Rouhani, H.; Farrokh, E. Failure analysis of Nehbandan granite under various stress states and strain rates using a calibrated Riedel-Hiermaier-Thoma constitutive model. Geomech. Geophys. Geo-Energy Geo-Resour. 2024, 10, 157. [Google Scholar] [CrossRef]
- Pradhan, S.; Stroisz, A.M.; Fjær, E.; Stenebråten, J.; Lund, H.K.; Sønstebø, E.F.; Roy, S. Fracturing tests on reservoir rocks: Analysis of AE events and radial strain evolution. arXiv 2015, arXiv:1512.05184. [Google Scholar] [CrossRef]
- Euser, B.; Rougier, E.; Lei, Z.; Knight, E.E.; Frash, L.P.; Carey, J.W.; Viswanathan, H.; Munjiza, A. Simulation of Fracture Coalescence in Granite via the Combined Finite-Discrete Element Method. Rock Mech. Rock Eng. 2019, 52, 3213–3227. [Google Scholar] [CrossRef]
- Fei, F.; Choo, J.Y. Double-phase-field formulation for mixed-mode fracture in rocks. Comput. Methods Appl. Mech. Eng. 2021, 376, 113655. [Google Scholar] [CrossRef]
- Haghighat, E.; Santillán, D. An efficient phase-field model of shear fractures using deviatoric stress split. Comput. Mech. 2023, 72, 1263–1278. [Google Scholar] [CrossRef]
- Xiao, X.K.; Zhang, W.; Mu, Z.C.; Wei, G.; Guo, Z.T. Experimental and numerical investigation on the deformation and failure behavior in the Taylor test. Mater. Des. 2011, 32, 2663–2674. [Google Scholar] [CrossRef]
- Algarni, M.; Ghazali, S.; Zwawi, M. The Emerging of Stress Triaxiality and Lode Angle in Both Solid and Damage Mechanics: A Review. Mech. Solids 2021, 56, 787–806. [Google Scholar] [CrossRef]
- Rui, Y.C.; Chen, J.; Du, J.S.; Peng, X.; Zhou, Z.; Zhu, C. Optimizing microseismic sensor networks in underground space using Cramér–Rao Lower Bound and improved genetic encoding. Undergr. Space 2025, 23, 307–326. [Google Scholar] [CrossRef]
- Rui, Y.C.; Chen, J.; Pu, Y.Y.; Du, X. An innovative analytical solution of AE/MS source location with singular value decomposition and weight estimation. Measurement 2025, 253, 117652. [Google Scholar] [CrossRef]
θσ | p (MPa) | Loading Parameters (MPa/s) | ||
---|---|---|---|---|
σ1 | σ2 | σ3 | ||
−30° | 100 | +0.1 | −0.05 | −0.05 |
−20° | 100 | +0.1 | −0.0347 | −0.0653 |
−10° | 100 | +0.1 | −0.0185 | −0.0815 |
0° | 100 | +0.1 | 0 | −0.1 |
+10° | 100 | +0.1 | +0.0227 | −0.1227 |
+20° | 100 | +0.1 | +0.0532 | −0.1532 |
+30° | 100 | +0.1 | +0.1 | −0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Song, Z.; Huang, C.; Liang, Q. Lode Angle-Dependent Fracture Mechanisms in Brittle Rock Under 3D Stress Conditions. Appl. Sci. 2025, 15, 10200. https://doi.org/10.3390/app151810200
Huang J, Song Z, Huang C, Liang Q. Lode Angle-Dependent Fracture Mechanisms in Brittle Rock Under 3D Stress Conditions. Applied Sciences. 2025; 15(18):10200. https://doi.org/10.3390/app151810200
Chicago/Turabian StyleHuang, Jie, Zhenlong Song, Cheng Huang, and Qinming Liang. 2025. "Lode Angle-Dependent Fracture Mechanisms in Brittle Rock Under 3D Stress Conditions" Applied Sciences 15, no. 18: 10200. https://doi.org/10.3390/app151810200
APA StyleHuang, J., Song, Z., Huang, C., & Liang, Q. (2025). Lode Angle-Dependent Fracture Mechanisms in Brittle Rock Under 3D Stress Conditions. Applied Sciences, 15(18), 10200. https://doi.org/10.3390/app151810200