Quantum-Enhanced Sensing with Squeezed Light: From Fundamentals to Applications
Abstract
1. Introduction
2. Principles in Squeezed Light
2.1. Basic Properties of Squeezed Light
2.2. Classification of Squeezed Light
2.2.1. Quadrature-Squeezed States
2.2.2. Photon-Number-Squeezed States
2.2.3. Intensity-Difference-Squeezed States
2.3. Experimental Generation of Squeezed Light
2.3.1. Atomic Ensembles
- 1.
- Polarization self-rotation
- 2.
- Four-wave mixing
2.3.2. Nonlinear Crystals
2.3.3. Optical Fibers
3. Fundamentals of Quantum Sensing with Squeezed Light
3.1. Quantum Noise in Optical Precision Measurements
3.2. Noise-Reduction Mechanism of Squeezed States
3.3. Quantitative Enhancements and Limitations
4. Applications in Quantum-Enhanced Sensing
4.1. Interferometry
4.2. Gravitational Wave Detection
4.3. Magnetometry
4.4. Biomedical Sensing
4.5. Force and Displacement Sensing
4.6. Quantum-Enhanced Radar and Ranging
4.7. Atomic Clocks and Fundamental Physics Searches
5. Outlook and Future Perspective
- 1.
- Loss Mitigation: Developing low-loss optical interfaces and novel materials to preserve squeezing fidelity in real-world environments;
- 2.
- Bandwidth Scalability: Engineering broadband squeezed sources compatible with dynamic sensing and high-rate quantum communication;
- 3.
- Hybrid Architectures: Combining squeezed states with discrete-variable or spin-based platforms to exploit complementary quantum advantages.
- As these advances converge, squeezed light will transition from laboratory demonstrations to enabling technologies for quantum-enhanced metrology, fault-tolerant computation, and distributed quantum networks—ultimately redefining the boundaries of precision measurement and information processing [43,179,180].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pelucchi, E.; Fagas, G.; Aharonovich, I.; Englund, D.; Figueroa, E.; Gong, Q.; Hannes, H.; Liu, J.; Lu, C.Y.; Matsuda, N.; et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 2022, 4, 194–208. [Google Scholar] [CrossRef]
- Wang, J.; Sciarrino, F.; Laing, A.; Thompson, M.G. Integrated photonic quantum technologies. Nat. Photonics 2020, 14, 273–284. [Google Scholar] [CrossRef]
- Karnieli, A.; Rivera, N.; Arie, A.; Kaminer, I. The coherence of light is fundamentally tied to the quantum coherence of the emitting particle. Sci. Adv. 2021, 7, eabf8096. [Google Scholar] [CrossRef]
- Krisnanda, T.; Tham, G.Y.; Paternostro, M.; Paterek, T. Observable quantum entanglement due to gravity. Npj Quantum Inf. 2020, 6, 12. [Google Scholar] [CrossRef]
- Klauck, F.; Teuber, L.; Ornigotti, M.; Heinrich, M.; Scheel, S.; Szameit, A. Observation of PT-symmetric quantum interference. Nat. Photonics 2019, 13, 883–887. [Google Scholar] [CrossRef]
- Guo, X.; Breum, C.R.; Borregaard, J.; Izumi, S.; Larsen, M.V.; Gehring, T.; Christandl, M.; Neergaard-Nielsen, J.S.; Andersen, U.L. Distributed quantum sensing in a continuous-variable entangled network. Nat. Phys. 2020, 16, 281–284. [Google Scholar] [CrossRef]
- Kutas, M.; Haase, B.; Bickert, P.; Riexinger, F.; Molter, D.; von Freymann, G. Terahertz quantum sensing. Sci. Adv. 2020, 6, eaaz8065. [Google Scholar] [CrossRef]
- Bongs, K.; Holynski, M.; Vovrosh, J.; Bouyer, P.; Condon, G.; Rasel, E.; Schubert, C.; Schleich, W.P.; Roura, A. Taking atom interferometric quantum sensors from the laboratory to real-world applications. Nat. Rev. Phys. 2019, 1, 731–739. [Google Scholar] [CrossRef]
- Wang, X.; Su, Y.; Luo, C.; Nian, F.; Teng, L. Color image encryption algorithm based on hyperchaotic system and improved quantum revolving gate. Multimed. Tools Appl. 2022, 81, 13845–13865. [Google Scholar] [CrossRef]
- Abobeih, M.; Randall, J.; Bradley, C.; Bartling, H.; Bakker, M.; Degen, M.; Markham, M.; Twitchen, D.; Taminiau, T. Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor. Nature 2019, 576, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Barry, J.F.; Turner, M.J.; Schloss, J.M.; Glenn, D.R.; Song, Y.; Lukin, M.D.; Park, H.; Walsworth, R.L. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc. Natl. Acad. Sci. USA 2016, 113, 14133–14138. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Derkach, I.; Hajomer, A.A.; Chin, H.M.; Oruganti, A.N.; Andersen, U.L.; Usenko, V.; Gehring, T. Digital reconstruction of squeezed light for quantum information processing. Npj Quantum Inf. 2025, 11, 71. [Google Scholar] [CrossRef]
- Zhao, Y.; Aritomi, N.; Capocasa, E.; Leonardi, M.; Eisenmann, M.; Guo, Y.; Polini, E.; Tomura, A.; Arai, K.; Aso, Y.; et al. Frequency-dependent squeezed vacuum source for broadband quantum noise reduction in advanced gravitational-wave detectors. Phys. Rev. Lett. 2020, 124, 171101. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, J.; Salunkhe, K.V.; Mandal, S.; Ghatak, S.; Marchawala, A.H.; Das, I.; Watanabe, K.; Taniguchi, T.; Vijay, R.; Deshmukh, M.M. Quantum-noise-limited microwave amplification using a graphene Josephson junction. Nat. Nanotechnol. 2022, 17, 1147–1152. [Google Scholar] [CrossRef]
- Auzinsh, M.; Budker, D.; Kimball, D.; Rochester, S.; Stalnaker, J.; Sushkov, A.; Yashchuk, V. Can a Quantum Nondemolition Measurement Improve the Sensitivity of an Atomic Magnetometer? Phys. Rev. Lett. 2004, 93, 173002. [Google Scholar] [CrossRef]
- Pecoraro, A.; Cardano, F.; Marrucci, L.; Porzio, A. Continuous-variable entangled states of light carrying orbital angular momentum. Phys. Rev. A 2019, 100, 012321. [Google Scholar] [CrossRef]
- Mehmet, M.; Vahlbruch, H. The squeezed light source for the Advanced Virgo detector in the observation run O3. Galaxies 2020, 8, 79. [Google Scholar] [CrossRef]
- Gao, T.; von Helversen, M.; Antón-Solanas, C.; Schneider, C.; Heindel, T. Atomically-thin single-photon sources for quantum communication. Npj 2D Mater. Appl. 2023, 7, 4. [Google Scholar] [CrossRef]
- Lewenstein, M.; Ciappina, M.F.; Pisanty, E.; Rivera-Dean, J.; Stammer, P.; Lamprou, T.; Tzallas, P. Generation of optical Schrödinger cat states in intense laser–matter interactions. Nat. Phys. 2021, 17, 1104–1108. [Google Scholar] [CrossRef]
- Qi, S.F.; Jing, J. Generating NOON states in circuit QED using a multiphoton resonance in the presence of counter-rotating interactions. Phys. Rev. A 2020, 101, 033809. [Google Scholar] [CrossRef]
- Ge, W.; Sawyer, B.C.; Britton, J.W.; Jacobs, K.; Bollinger, J.J.; Foss-Feig, M. Trapped ion quantum information processing with squeezed phonons. Phys. Rev. Lett. 2019, 122, 030501. [Google Scholar] [CrossRef]
- Korkmaz, U.; Türkpençe, D. Transfer of quantum information via a dissipative protocol for data classification. Phys. Lett. A 2022, 426, 127887. [Google Scholar] [CrossRef]
- Tan, H.; Li, J. Einstein-Podolsky-Rosen entanglement and asymmetric steering between distant macroscopic mechanical and magnonic systems. Phys. Rev. Res. 2021, 3, 013192. [Google Scholar] [CrossRef]
- Mohamed, A.B.A.; Rahman, A.U.; Eleuch, H. Temporal quantum memory and non-locality of two trapped ions under the effect of the intrinsic decoherence: Entropic uncertainty, trace norm nonlocality and entanglement. Symmetry 2022, 14, 648. [Google Scholar] [CrossRef]
- Baccari, F.; Augusiak, R.; Šupić, I.; Tura, J.; Acín, A. Scalable bell inequalities for qubit graph states and robust self-testing. Phys. Rev. Lett. 2020, 124, 020402. [Google Scholar] [CrossRef] [PubMed]
- Eberle, T.; Steinlechner, S.; Bauchrowitz, J.; Händchen, V.; Vahlbruch, H.; Mehmet, M.; Müller-Ebhardt, H.; Schnabel, R. Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection. Phys. Rev. Lett. 2010, 104, 251102. [Google Scholar] [CrossRef] [PubMed]
- Wolfgramm, F.; Cere, A.; Beduini, F.A.; Predojević, A.; Koschorreck, M.; Mitchell, M.W. Squeezed-light optical magnetometry. Phys. Rev. Lett. 2010, 105, 053601. [Google Scholar] [CrossRef]
- Dutton, Z.; Shapiro, J.H.; Guha, S. LADAR resolution improvement using receivers enhanced with squeezed-vacuum injection and phase-sensitive amplification. J. Opt. Soc. Am. B 2010, 27, A63–A72. [Google Scholar] [CrossRef]
- Horrom, T.; Singh, R.; Dowling, J.P.; Mikhailov, E.E. Quantum-enhanced magnetometer with low-frequency squeezing. Phys. Rev. A—Atomic Mol. Opt. Phys. 2012, 86, 023803. [Google Scholar] [CrossRef]
- Troullinou, C.; Jiménez-Martínez, R.; Kong, J.; Lucivero, V.; Mitchell, M. Squeezed-light enhancement and backaction evasion in a high sensitivity optically pumped magnetometer. Phys. Rev. Lett. 2021, 127, 193601. [Google Scholar] [CrossRef]
- Li, D.; Yuan, C.H.; Ou, Z.; Zhang, W. The phase sensitivity of an SU (1, 1) interferometer with coherent and squeezed-vacuum light. New J. Phys. 2014, 16, 073020. [Google Scholar] [CrossRef]
- Liu, F.; Zhou, Y.; Yu, J.; Guo, J.; Wu, Y.; Xiao, S.; Wei, D.; Zhang, Y.; Jia, X.; Xiao, M. Squeezing-enhanced fiber Mach-Zehnder interferometer for low-frequency phase measurement. Appl. Phys. Lett. 2017, 110, 021106. [Google Scholar] [CrossRef]
- Aasi, J.; Abadie, J.; Abbott, B.; Abbott, R.; Abbott, T.; Abernathy, M.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photonics 2013, 7, 613–619. [Google Scholar] [CrossRef]
- Tse, M.; Yu, H.; Kijbunchoo, N.; Fernandez-Galiana, A.; Dupej, P.; Barsotti, L.; Blair, C.; Brown, D.; Dwyer, S.e.; Effler, A.; et al. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy. Phys. Rev. Lett. 2019, 123, 231107. [Google Scholar] [CrossRef] [PubMed]
- Feng, F.; Xu, J.M.; Ma, J.T.; Liu, Z.L.; Zhang, W.J. Quantum Lidar Based on Squeezed Sates of Light. Acta Photonica SINICA 2017, 46, 195–203. [Google Scholar]
- Wang, H.; Qin, J.; Ding, X.; Chen, M.C.; Chen, S.; You, X.; He, Y.M.; Jiang, X.; You, L.; Wang, Z.; et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1 0 14-dimensional hilbert space. Phys. Rev. Lett. 2019, 123, 250503. [Google Scholar] [CrossRef]
- Motazedifard, A.; Bemani, F.; Naderi, M.; Roknizadeh, R.; Vitali, D. Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection. New J. Phys. 2016, 18, 073040. [Google Scholar] [CrossRef]
- Brady, A.J.; Chen, X.; Xia, Y.; Manley, J.; Dey Chowdhury, M.; Xiao, K.; Liu, Z.; Harnik, R.; Wilson, D.J.; Zhang, Z.; et al. Entanglement-enhanced optomechanical sensor array with application to dark matter searches. Commun. Phys. 2023, 6, 237. [Google Scholar] [CrossRef]
- Bi, S.; Zhu, H.; Du, J.; Zhou, Z.; Chen, H.; Shen, M.; Zhang, S.; Sheng, Z. Realization of quantum lidar imaging system. In Proceedings of the Infrared Remote Sensing and Instrumentation XXVIII, Online, 24 August–4 September 2020; SPIE: Philadelphia, PA, USA, 2020; Volume 11502, pp. 10–15. [Google Scholar]
- Wu, M.C.; Brewer, N.R.; Speirs, R.W.; Jones, K.M.; Lett, P.D. Two-beam coupling in the production of quantum correlated images by four-wave mixing. Opt. Express 2021, 29, 16665–16675. [Google Scholar] [CrossRef]
- Collaboration, T.L.S. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 2011, 7, 962–965. [Google Scholar] [CrossRef]
- Taylor, M.A.; Janousek, J.; Daria, V.; Knittel, J.; Hage, B.; Bachor, H.A.; Bowen, W.P. Subdiffraction-limited quantum imaging within a living cell. Phys. Rev. X 2014, 4, 011017. [Google Scholar] [CrossRef]
- Patra, A.; Gupta, R.; Roy, S.; Das, T.; Sen, A. Quantum dense coding network using multimode squeezed states of light. Phys. Rev. A 2022, 106, 052607. [Google Scholar] [CrossRef]
- Ou, Z. Enhancement of the phase-measurement sensitivity beyond the standard quantum limit by a nonlinear interferometer. Phys. Rev. A—Atomic Mol. Opt. Phys. 2012, 85, 023815. [Google Scholar] [CrossRef]
- Park, T.; Stokowski, H.; Ansari, V.; Gyger, S.; Multani, K.K.; Celik, O.T.; Hwang, A.Y.; Dean, D.J.; Mayor, F.; McKenna, T.P.; et al. Single-mode squeezed-light generation and tomography with an integrated optical parametric oscillator. Sci. Adv. 2024, 10, eadl1814. [Google Scholar] [CrossRef]
- Wasilewski, W.; Fernholz, T.; Jensen, K.; Madsen, L.; Krauter, H.; Muschik, C.; Polzik, E. Generation of two-mode squeezed and entangled light in a single temporal and spatial mode. Opt. Express 2009, 17, 14444–14457. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.R.; Rossatto, D.Z.; Fernandes, G.P.; Higgins, G.; Villas-Boas, C.J. Superposition of two-mode squeezed states for quantum information processing and quantum sensing. Phys. Rev. A 2021, 103, 062405. [Google Scholar] [CrossRef]
- Roman-Rodriguez, V.; Fainsin, D.; Zanin, G.L.; Treps, N.; Diamanti, E.; Parigi, V. Multimode squeezed state for reconfigurable quantum networks at telecommunication wavelengths. Phys. Rev. Res. 2024, 6, 043113. [Google Scholar] [CrossRef]
- Kopylov, D.A.; Meier, T.; Sharapova, P.R. Theory of multimode squeezed light generation in lossy media. Quantum 2025, 9, 1621. [Google Scholar] [CrossRef]
- Lee, C.W.; Lee, J.H.; Seok, H. Squeezed-light-driven force detection with an optomechanical cavity in a Mach–Zehnder interferometer. Sci. Rep. 2020, 10, 17496. [Google Scholar] [CrossRef]
- Gatto, D.; Facchi, P.; Tamma, V. Heisenberg-limited estimation robust to photon losses in a Mach-Zehnder network with squeezed light. Phys. Rev. A 2022, 105, 012607. [Google Scholar] [CrossRef]
- Feng, F.; Bi, S.W.; Lu, B.Z.; Kang, M.H. Long-term stable bright amplitude-squeezed state of light at 1064 nm for quantum imaging. Optik 2013, 124, 1070–1073. [Google Scholar] [CrossRef]
- Brida, G.; Genovese, M.; Ruo Berchera, I. Experimental realization of sub-shot-noise quantum imaging. Nat. Photonics 2010, 4, 227–230. [Google Scholar] [CrossRef]
- Michel, T.; Haw, J.Y.; Marangon, D.G.; Thearle, O.; Vallone, G.; Villoresi, P.; Lam, P.K.; Assad, S.M. Real-time source-independent quantum random-number generator with squeezed states. Phys. Rev. Appl. 2019, 12, 034017. [Google Scholar] [CrossRef]
- Matekole, E.S.; Cuozzo, S.L.; Prajapati, N.; Bhusal, N.; Lee, H.; Novikova, I.; Mikhailov, E.E.; Dowling, J.P.; Cohen, L. Quantum-limited squeezed light detection with a camera. Phys. Rev. Lett. 2020, 125, 113602. [Google Scholar] [CrossRef]
- Gorlach, A.; Karnieli, A.; Dahan, R.; Cohen, E.; Pe’er, A.; Kaminer, I. Ultrafast non-destructive measurement of the quantum state of light with free electrons. In Proceedings of the CLEO: QELS_Fundamental Science, San Jose, CA, USA, 9–14 May 2021; Optica Publishing Group: Washington, DC, USA, 2021; p. FF2I–4. [Google Scholar]
- Matsko, A.; Novikova, I.; Welch, G.R.; Budker, D.; Kimball, D.; Rochester, S. Vacuum squeezing in atomic media via self-rotation. Phys. Rev. A 2002, 66, 043815. [Google Scholar] [CrossRef]
- Barreiro, S.; Valente, P.; Failache, H.; Lezama, A. Polarization squeezing of light by single passage through an atomic vapor. Phys. Rev. A—Atomic Mol. Opt. Phys. 2011, 84, 033851. [Google Scholar] [CrossRef]
- Agha, I.H.; Messin, G.; Grangier, P. Generation of pulsed and continuous-wave squeezed light with 87Rb vapor. Opt. Express 2010, 18, 4198–4205. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.; Liao, J.; Bao, G.; Wu, Y.; Chen, L. Pulsed squeezed light via self-rotation. Opt. Commun. 2019, 452, 506–509. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, S.; Guo, J.; Bao, G.; Wu, Y.; Chen, L. Enhancing vacuum squeezing via magnetic field optimization. Opt. Express 2022, 30, 17106–17114. [Google Scholar] [CrossRef] [PubMed]
- Slusher, R.; Hollberg, L.; Yurke, B.; Mertz, J.; Valley, J. Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett. 1985, 55, 2409. [Google Scholar] [CrossRef]
- McCormick, C.; Boyer, V.; Arimondo, E.; Lett, P. Strong relative intensity squeezing by four-wave mixing in rubidium vapor. Opt. Lett. 2006, 32, 178–180. [Google Scholar] [CrossRef]
- McCormick, C.; Marino, A.M.; Boyer, V.; Lett, P.D. Strong low-frequency quantum correlations from a four-wave-mixing amplifier. Phys. Rev. A—Atomic Mol. Opt. Phys. 2008, 78, 043816. [Google Scholar] [CrossRef]
- Wu, M.C.; Schmittberger, B.L.; Brewer, N.R.; Speirs, R.W.; Jones, K.M.; Lett, P.D. Twin-beam intensity-difference squeezing below 10 Hz. Opt. Express 2019, 27, 4769–4780. [Google Scholar] [CrossRef]
- Glorieux, Q.; Guidoni, L.; Guibal, S.; Likforman, J.P.; Coudreau, T. Quantum correlations by four-wave mixing in an atomic vapor in a nonamplifying regime: Quantum beam splitter for photons. Phys. Rev. A—Atomic Mol. Opt. Phys. 2011, 84, 053826. [Google Scholar] [CrossRef]
- De Araujo, L.E.; Zhou, Z.; DiMario, M.; Anderson, B.; Zhao, J.; Jones, K.M.; Lett, P.D. Characterizing two-mode-squeezed light from four-wave mixing in rubidium vapor for quantum sensing and information processing. Opt. Express 2024, 32, 1305–1313. [Google Scholar] [CrossRef]
- Heng, X.; Wang, W.; Wang, F.; Liu, W.; Xia, M.; Zhai, Y.; Wei, K. Enhanced multi-mode squeezing via a balanced regime in dual-four-wave mixing. Phys. Scr. 2025, 100, 035112. [Google Scholar] [CrossRef]
- Kim, S.; Marino, A.M. Generation of 87Rb resonant bright two-mode squeezed light with four-wave mixing. Opt. Express 2018, 26, 33366–33375. [Google Scholar] [CrossRef] [PubMed]
- Sim, G.; Kim, H.; Moon, H.S. Intensity-difference squeezing from four-wave mixing in hot 85Rb and 87Rb atoms in single diode laser pumping system. Sci. Rep. 2025, 15, 7727. [Google Scholar] [CrossRef] [PubMed]
- Neveu, P.; Delpy, J.; Liu, S.; Banerjee, C.; Lugani, J.; Bretenaker, F.; Brion, E.; Goldfarb, F. Generation of squeezed light vacuum enabled by coherent population trapping. Opt. Express 2021, 29, 10471–10479. [Google Scholar] [CrossRef]
- Wu, L.A.; Kimble, H.; Hall, J.; Wu, H. Generation of squeezed states by parametric down conversion. Phys. Rev. Lett. 1986, 57, 2520. [Google Scholar] [CrossRef] [PubMed]
- Breitenbach, G.; Schiller, S.; Mlynek, J. Measurement of the quantum states of squeezed light. Nature 1997, 387, 471–475. [Google Scholar] [CrossRef]
- Lam, P.; Ralph, T.; Buchler, B.; McClelland, D.; Bachor, H.; Gao, J. Optimization and transfer of vacuum squeezing from an optical parametric oscillator. J. Opt. B Quantum Semiclassical Opt. 1999, 1, 469. [Google Scholar] [CrossRef]
- Takeno, Y.; Yukawa, M.; Yonezawa, H.; Furusawa, A. Observation of-9 dB quadrature squeezing with improvement of phase stability in homodyne measurement. Opt. Express 2007, 15, 4321–4327. [Google Scholar] [CrossRef]
- Vahlbruch, H.; Mehmet, M.; Chelkowski, S.; Hage, B.; Franzen, A.; Lastzka, N.; Gossler, S.; Danzmann, K.; Schnabel, R. Observation of squeezed light with 10-dB quantum-noise reduction. Phys. Rev. Lett. 2008, 100, 033602. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Tian, L.; Huang, T.; Dang, H.; Zhao, D.; Shi, S.; Wang, Y.; Yin, W.; Zheng, Y. Development of a low-intensity-noise laser source based on ultra-low-noise photodetectors in the sub-millihertz band. Opt. Laser Technol. 2025, 192, 113747. [Google Scholar] [CrossRef]
- Mehmet, M.; Vahlbruch, H.; Lastzka, N.; Danzmann, K.; Schnabel, R. Observation of squeezed states with strong photon-number oscillations. Phys. Rev. A—Atomic Mol. Opt. Phys. 2010, 81, 013814. [Google Scholar] [CrossRef]
- Vahlbruch, H.; Mehmet, M.; Danzmann, K.; Schnabel, R. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Phys. Rev. Lett. 2016, 117, 110801. [Google Scholar] [CrossRef]
- Kawasaki, A.; Brunel, H.; Ide, R.; Suzuki, T.; Kashiwazaki, T.; Inoue, A.; Umeki, T.; Yamashima, T.; Sakaguchi, A.; Takase, K.; et al. Real-time observation of picosecond-timescale optical quantum entanglement towards ultrafast quantum information processing. Nat. Photonics 2025, 19, 271–276. [Google Scholar] [CrossRef]
- Shajilal, B.; Thearle, O.; Tranter, A.; Lu, Y.; Huntington, E.; Assad, S.; Lam, P.K.; Janousek, J. 12.6 dB squeezed light at 1550 nm from a bow-tie cavity for long-term high duty cycle operation. Opt. Express 2022, 30, 37213–37223. [Google Scholar] [CrossRef] [PubMed]
- Mehmet, M.; Ast, S.; Eberle, T.; Steinlechner, S.; Vahlbruch, H.; Schnabel, R. Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB. Opt. Express 2011, 19, 25763–25772. [Google Scholar] [CrossRef]
- Schönbeck, A.; Thies, F.; Schnabel, R. 13 dB squeezed vacuum states at 1550 nm from 12 mW external pump power at 775 nm. Opt. Lett. 2017, 43, 110–113. [Google Scholar] [CrossRef]
- Haus, H.A. Quantum noise, quantum measurement, and squeezing. J. Opt. B Quantum Semiclassical Opt. 2004, 6, S626. [Google Scholar] [CrossRef]
- Matsko, A.B.; Rostovtsev, Y.V.; Cummins, H.Z.; Scully, M.O. Using slow light to enhance acousto-optical effects: Application to squeezed light. Phys. Rev. Lett. 2000, 84, 5752. [Google Scholar] [CrossRef]
- Shelby, R.M.; Levenson, M.D.; Perlmutter, S.H.; DeVoe, R.G.; Walls, D.F. Broad-band parametric deamplification of quantum noise in an optical fiber. Phys. Rev. Lett. 1986, 57, 691. [Google Scholar] [CrossRef]
- Rosenbluh, M.; Shelby, R.M. Squeezed optical solitons. Phys. Rev. Lett. 1991, 66, 153. [Google Scholar] [CrossRef]
- Peuntinger, C.; Heim, B.; Müller, C.R.; Gabriel, C.; Marquardt, C.; Leuchs, G. Distribution of squeezed states through an atmospheric channel. Phys. Rev. Lett. 2014, 113, 060502. [Google Scholar] [CrossRef]
- Dong, R.; Heersink, J.; Corney, J.F.; Drummond, P.D.; Andersen, U.L.; Leuchs, G. Experimental evidence for Raman-induced limits to efficient squeezing in optical fibers. Opt. Lett. 2008, 33, 116–118. [Google Scholar] [CrossRef]
- Anashkina, E.A.; Andrianov, A.V.; Corney, J.F.; Leuchs, G. Chalcogenide fibers for Kerr squeezing. Opt. Lett. 2020, 45, 5299–5302. [Google Scholar] [CrossRef]
- Schnabel, R. Squeezed states of light and their applications in laser interferometers. Phys. Rep. 2017, 684, 1–51. [Google Scholar] [CrossRef]
- Caves, C.M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 1981, 23, 1693. [Google Scholar] [CrossRef]
- Goda, K.; Miyakawa, O.; Mikhailov, E.E.; Saraf, S.; Adhikari, R.; McKenzie, K.; Ward, R.; Vass, S.; Weinstein, A.J.; Mavalvala, N. A quantum-enhanced prototype gravitational-wave detector. Nat. Phys. 2008, 4, 472–476. [Google Scholar] [CrossRef]
- Ganapathy, D.; Jia, W.; Nakano, M.; Xu, V.; Aritomi, N.; Cullen, T.; Kijbunchoo, N.; Dwyer, S.; Mullavey, A.; McCuller, L.; et al. Broadband quantum enhancement of the LIGO detectors with frequency-dependent squeezing. Phys. Rev. X 2023, 13, 041021. [Google Scholar] [CrossRef]
- Pezzè, L.; Smerzi, A. Heisenberg-limited noisy atomic clock using a hybrid coherent and squeezed state protocol. Phys. Rev. Lett. 2020, 125, 210503. [Google Scholar] [CrossRef]
- Lawrie, B.; Pooser, R.; Maksymovych, P. Squeezing noise in microscopy with quantum light. Trends Chem. 2020, 2, 683–686. [Google Scholar] [CrossRef]
- Acernese, F.; Agathos, M.; Aiello, L.; Allocca, A.; Amato, A.; Ansoldi, S.; Antier, S.; Arène, M.; Arnaud, N.; Ascenzi, S.; et al. Increasing the astrophysical reach of the advanced virgo detector via the application of squeezed vacuum states of light. Phys. Rev. Lett. 2019, 123, 231108. [Google Scholar] [CrossRef]
- Jasperse, M.; Turner, L.; Scholten, R. Relative intensity squeezing by four-wave mixing with loss: An analytic model and experimental diagnostic. Opt. Express 2011, 19, 3765–3774. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.A.; Janousek, J.; Daria, V.; Knittel, J.; Hage, B.; Bachor, H.A.; Bowen, W.P. Biological measurement beyond the quantum limit. Nat. Photonics 2013, 7, 229–233. [Google Scholar] [CrossRef]
- Braunstein, S.L.; Caves, C.M. Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 1994, 72, 3439. [Google Scholar] [CrossRef]
- Helstrom, C.W. Quantum detection and estimation theory. J. Stat. Phys. 1969, 1, 231–252. [Google Scholar] [CrossRef]
- Holevo, A.S. Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Peredachi Informatsii 1973, 9, 3–11. [Google Scholar]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Advances in quantum metrology. Nat. Photonics 2011, 5, 222–229. [Google Scholar] [CrossRef]
- Demkowicz-Dobrzański, R.; Jarzyna, M.; Kołodyński, J. Quantum limits in optical interferometry. Prog. Opt. 2015, 60, 345–435. [Google Scholar]
- Zuo, X.; Yan, Z.; Feng, Y.; Ma, J.; Jia, X.; Xie, C.; Peng, K. Quantum interferometer combining squeezing and parametric amplification. Phys. Rev. Lett. 2020, 124, 173602. [Google Scholar] [CrossRef]
- Buchmann, L.; Schreppler, S.; Kohler, J.; Spethmann, N.; Stamper-Kurn, D. Complex squeezing and force measurement beyond the standard quantum limit. Phys. Rev. Lett. 2016, 117, 030801. [Google Scholar] [CrossRef]
- Grote, H.; Danzmann, K.; Dooley, K.L.; Schnabel, R.; Slutsky, J.; Vahlbruch, H. First long-term application of squeezed states of light in a gravitational-wave observatory. Phys. Rev. Lett. 2013, 110, 181101. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Wu, L.A.; Kimble, H.J. Precision measurement beyond the shot-noise limit. Phys. Rev. Lett. 1987, 59, 278. [Google Scholar] [CrossRef]
- Slusher, R.E.; Grangier, P.; LaPorta, A.; Yurke, B.; Potasek, M. Pulsed squeezed light. Phys. Rev. Lett. 1987, 59, 2566. [Google Scholar] [CrossRef]
- Boto, A.N.; Kok, P.; Abrams, D.S.; Braunstein, S.L.; Williams, C.P.; Dowling, J.P. Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 2000, 85, 2733. [Google Scholar] [CrossRef]
- Nagata, T.; Okamoto, R.; O’brien, J.L.; Sasaki, K.; Takeuchi, S. Beating the standard quantum limit with four-entangled photons. Science 2007, 316, 726–729. [Google Scholar] [CrossRef]
- Hudelist, F.; Kong, J.; Liu, C.; Jing, J.; Ou, Z.; Zhang, W. Quantum metrology with parametric amplifier-based photon correlation interferometers. Nat. Commun. 2014, 5, 3049. [Google Scholar] [CrossRef]
- Anderson, B.E.; Gupta, P.; Schmittberger, B.L.; Horrom, T.; Hermann-Avigliano, C.; Jones, K.M.; Lett, P.D. Phase sensing beyond the standard quantum limit with a variation on the SU (1, 1) interferometer. Optica 2017, 4, 752–756. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Z.; Liu, H.; Huang, N. Tolerance enhancement of inefficient detection and frequency detuning by non-perfect phase-sensitive amplification in broadband squeezing-based precision measurement. J. Opt. Soc. Am. B 2022, 39, 2657–2664. [Google Scholar] [CrossRef]
- Malitesta, M.; Smerzi, A.; Pezze, L. Distributed quantum sensing with squeezed-vacuum light in a configurable array of Mach-Zehnder interferometers. Phys. Rev. A 2023, 108, 032621. [Google Scholar] [CrossRef]
- Tsang, M. Quantum metrology with open dynamical systems. New J. Phys. 2013, 15, 073005. [Google Scholar] [CrossRef]
- Hild, S. Beyond the second generation of laser-interferometric gravitational wave observatories. Class. Quantum Gravity 2012, 29, 124006. [Google Scholar] [CrossRef]
- Dwyer, S.; Barsotti, L.; Chua, S.; Evans, M.; Factourovich, M.; Gustafson, D.; Isogai, T.; Kawabe, K.; Khalaidovski, A.; Lam, P.; et al. Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light. Opt. Express 2013, 21, 19047–19060. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amin, R.; Anderson, S.; Anderson, W.; Arain, M.; et al. LIGO: The laser interferometer gravitational-wave observatory. Rep. Prog. Phys. 2009, 72, 076901. [Google Scholar] [CrossRef]
- Lough, J.; Schreiber, E.; Bergamin, F.; Grote, H.; Mehmet, M.; Vahlbruch, H.; Affeldt, C.; Brinkmann, M.; Bisht, A.; Kringel, V.; et al. First demonstration of 6 dB quantum noise reduction in a kilometer scale gravitational wave observatory. Phys. Rev. Lett. 2021, 126, 041102. [Google Scholar] [CrossRef]
- Acernese, F.; Agathos, M.; Aiello, L.; Ain, A.; Allocca, A.; Amato, A.; Ansoldi, S.; Antier, S.; Arène, M.; Arnaud, N.; et al. Quantum backaction on Kg-scale mirrors: Observation of radiation pressure noise in the advanced Virgo detector. Phys. Rev. Lett. 2020, 125, 131101. [Google Scholar] [CrossRef]
- Jia, W.; Xu, V.; Kuns, K.; Nakano, M.; Barsotti, L.; Evans, M.; Mavalvala, N.; Collaboration†, L.S.; Abbott, R.; Abouelfettouh, I.; et al. Squeezing the quantum noise of a gravitational-wave detector below the standard quantum limit. Science 2024, 385, 1318–1321. [Google Scholar] [CrossRef]
- Janosek, M.; Butta, M.; Dressler, M.; Saunderson, E.; Novotny, D.; Fourie, C. 1-pT noise fluxgate magnetometer for geomagnetic measurements and unshielded magnetocardiography. IEEE Trans. Instrum. Meas. 2019, 69, 2552–2560. [Google Scholar] [CrossRef]
- Guo, Q.; Hu, T.; Chen, C.; Feng, X.; Wu, Z.; Zhang, Y.; Zhang, M.; Chang, Y.; Yang, X. A high sensitivity closed-loop spin-exchange relaxation-free atomic magnetometer with broad bandwidth. IEEE Sensors J. 2021, 21, 21425–21431. [Google Scholar] [CrossRef]
- Trabaldo, E.; Pfeiffer, C.; Andersson, E.; Chukharkin, M.; Arpaia, R.; Montemurro, D.; Kalaboukhov, A.; Winkler, D.; Lombardi, F.; Bauch, T. SQUID magnetometer based on Grooved Dayem nanobridges and a flux transformer. IEEE Trans. Appl. Supercond. 2020, 30, 1–4. [Google Scholar] [CrossRef]
- Heng, X.; Wei, K.; Zhao, T.; Xu, Z.; Cao, Q.; Huang, X.; Zhai, Y.; Ye, M.; Quan, W. Ultrasensitive optical rotation detection with closed-loop suppression of spin polarization error. IEEE Trans. Instrum. Meas. 2023, 72, 1501012. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, C.; Wei, K.; Gong, D.; Heng, X.; Huang, X.; Gong, D.; Wang, F.; Wang, W.; Zhai, Y.; et al. Quantification and suppression of optical non-orthogonality and light intensity noise in all-optical hot atomic sensing systems. Opt. Laser Technol. 2024, 174, 110554. [Google Scholar] [CrossRef]
- Heng, X.; Huang, X.; Wang, W.; Wang, F.; Gong, D.; Liu, C.; Tian, G.; Zheng, J.; Zhai, Y.; Wei, K. Shot-noise-limited optical polarimetry with spin-alignment and magnetism decoupling. Results Phys. 2024, 65, 107960. [Google Scholar] [CrossRef]
- Kupriyanov, D.; Sokolov, I. Optical detection of magnetic resonance by classical and squeezed light. Quantum Opt. J. Eur. Opt. Soc. Part B 1992, 4, 55. [Google Scholar] [CrossRef]
- Petersen, V.; Madsen, L.B.; Mølmer, K. Gaussian-state description of squeezed light. Phys. Rev. A—Atomic Mol. Opt. Phys. 2005, 72, 053812. [Google Scholar] [CrossRef]
- Otterstrom, N.; Pooser, R.; Lawrie, B.J. Nonlinear optical magnetometry with accessible in situ optical squeezing. Opt. Lett. 2014, 39, 6533–6536. [Google Scholar] [CrossRef]
- Novikova, I.; Mikhailov, E.E.; Xiao, Y. Excess optical quantum noise in atomic sensors. Phys. Rev. A 2015, 91, 051804. [Google Scholar] [CrossRef]
- Li, J.; Novikova, I. Improving sensitivity of an amplitude-modulated magneto-optical atomic magnetometer using squeezed light. J. Opt. Soc. Am. B 2022, 39, 2998–3003. [Google Scholar] [CrossRef]
- Li, B.B.; Bílek, J.; Hoff, U.B.; Madsen, L.S.; Forstner, S.; Prakash, V.; Schäfermeier, C.; Gehring, T.; Bowen, W.P.; Andersen, U.L. Quantum enhanced optomechanical magnetometry. Optica 2018, 5, 850–856. [Google Scholar] [CrossRef]
- Troullinou, C.; Lucivero, V.G.; Mitchell, M.W. Quantum-enhanced magnetometry at optimal number density. Phys. Rev. Lett. 2023, 131, 133602. [Google Scholar] [CrossRef]
- Sierant, A.; Méndez-Avalos, D.; Giraldo, S.T.; Mitchell, M.W. Quantum noise in a squeezed-light-enhanced multiparameter quantum sensor. arXiv 2025, arXiv:2506.08190. [Google Scholar]
- Zhang, X.; Jin, S.; Qu, W.; Xiao, Y. Dichroism and birefringence optical atomic magnetometer with or without self-generated light squeezing. Appl. Phys. Lett. 2021, 119, 054001. [Google Scholar] [CrossRef]
- Shibata, K.; Sekiguchi, N.; Torii, A.; Takai, J.; Hirano, T. Precise magnetometry with a spin squeezed ultracold gas and squeezed light. In Proceedings of the JSAP Annual Meetings Extended Abstracts the 82nd JSAP Autumn Meeting, Online, 10–13 September 2021; The Japan Society of Applied Physics: Tokyo, Japan, 2021; p. 1206. [Google Scholar]
- Lucivero, V.G.; Jiménez-Martínez, R.; Kong, J.; Mitchell, M.W. Squeezed-light spin noise spectroscopy. Phys. Rev. A 2016, 93, 053802. [Google Scholar] [CrossRef]
- Bai, L.; Zhang, L.; Yang, Y.; Chang, R.; Qin, Y.; He, J.; Wen, X.; Wang, J. Enhancement of spin noise spectroscopy of rubidium atomic ensemble by using the polarization squeezed light. Opt. Express 2022, 30, 1925–1935. [Google Scholar] [CrossRef]
- Bai, L.; Wen, X.; Yang, Y.; Zhang, L.; He, J.; Wang, Y.; Wang, J. Quantum-enhanced rubidium atomic magnetometer based on Faraday rotation via 795 nm stokes operator squeezed light. J. Opt. 2021, 23, 085202. [Google Scholar] [CrossRef]
- Wu, S.; Bao, G.; Guo, J.; Chen, J.; Du, W.; Shi, M.; Yang, P.; Chen, L.; Zhang, W. Quantum magnetic gradiometer with entangled twin light beams. Sci. Adv. 2023, 9, eadg1760. [Google Scholar] [CrossRef]
- Monsa, S.; Chasid, Y.; Shuldiner, M.; Sternklar, S.; Talker, E. Vacuum squeezing enhanced micrometer scale vapor cell magnetometer. arXiv 2025, arXiv:2507.07672. [Google Scholar] [CrossRef]
- Kim, S.; Yoon, J.; Ko, G.; Kang, I.; Tian, H.; Fan, L.Z.; Li, Y.; Xiao, G.; Zhang, Q.; Cohen, A.E.; et al. Optical segmentation-based compressed readout of neuronal voltage dynamics. Nat. Commun. 2025, 16, 7194. [Google Scholar] [CrossRef]
- de Andrade, R.B.; Kerdoncuff, H.; Berg-Sørensen, K.; Gehring, T.; Lassen, M.; Andersen, U.L. Quantum-enhanced continuous-wave stimulated Raman scattering spectroscopy. Optica 2020, 7, 470–475. [Google Scholar] [CrossRef]
- Triginer Garces, G.; Chrzanowski, H.M.; Daryanoosh, S.; Thiel, V.; Marchant, A.L.; Patel, R.B.; Humphreys, P.C.; Datta, A.; Walmsley, I.A. Quantum-enhanced stimulated emission detection for label-free microscopy. Appl. Phys. Lett. 2020, 117, 024002. [Google Scholar] [CrossRef]
- Casacio, C.A.; Madsen, L.S.; Terrasson, A.; Waleed, M.; Barnscheidt, K.; Hage, B.; Taylor, M.A.; Bowen, W.P. Quantum-enhanced nonlinear microscopy. Nature 2021, 594, 201–206. [Google Scholar] [CrossRef]
- Villabona-Monsalve, J.P.; Varnavski, O.; Palfey, B.A.; Goodson III, T. Two-photon excitation of flavins and flavoproteins with classical and quantum light. J. Am. Chem. Soc. 2018, 140, 14562–14566. [Google Scholar] [CrossRef]
- Pooser, R.; Savino, N.; Batson, E.; Beckey, J.; Garcia, J.; Lawrie, B. Truncated nonlinear interferometry for quantum-enhanced atomic force microscopy. Phys. Rev. Lett. 2020, 124, 230504. [Google Scholar] [CrossRef]
- Ockeloen-Korppi, C.; Damskägg, E.; Paraoanu, G.S.; Massel, F.; Sillanpää, M. Revealing hidden quantum correlations in an electromechanical measurement. Phys. Rev. Lett. 2018, 121, 243601. [Google Scholar] [CrossRef]
- Aggarwal, N.; Cullen, T.J.; Cripe, J.; Cole, G.D.; Lanza, R.; Libson, A.; Follman, D.; Heu, P.; Corbitt, T.; Mavalvala, N. Room-temperature optomechanical squeezing. Nat. Phys. 2020, 16, 784–788. [Google Scholar] [CrossRef]
- Peano, V.; Schwefel, H.; Marquardt, C.; Marquardt, F. Intracavity squeezing can enhance quantum-limited optomechanical position detection through deamplification. Phys. Rev. Lett. 2015, 115, 243603. [Google Scholar] [CrossRef]
- Huang, S.; Agarwal, G. Robust force sensing for a free particle in a dissipative optomechanical system with a parametric amplifier. Phys. Rev. A 2017, 95, 023844. [Google Scholar] [CrossRef]
- Huang, S.; Chen, A. Improving the cooling of a mechanical oscillator in a dissipative optomechanical system with an optical parametric amplifier. Phys. Rev. A 2018, 98, 063818. [Google Scholar] [CrossRef]
- Agarwal, G.; Huang, S. Strong mechanical squeezing and its detection. Phys. Rev. A 2016, 93, 043844. [Google Scholar] [CrossRef]
- Zhang, J.S.; Li, M.C.; Chen, A.X. Enhancing quadratic optomechanical coupling via a nonlinear medium and lasers. Phys. Rev. A 2019, 99, 013843. [Google Scholar] [CrossRef]
- Xia, Y.; Agrawal, A.R.; Pluchar, C.M.; Brady, A.J.; Liu, Z.; Zhuang, Q.; Wilson, D.J.; Zhang, Z. Entanglement-enhanced optomechanical sensing. Nat. Photonics 2023, 17, 470–477. [Google Scholar] [CrossRef]
- Subhash, S.; Das, S.; Dey, T.N.; Li, Y.; Davuluri, S. Enhancing the force sensitivity of a squeezed light optomechanical interferometer. Opt. Express 2022, 31, 177–191. [Google Scholar] [CrossRef]
- Silvestri, R.; Yu, H.; Stroemberg, T.; Hilweg, C.; Peterson, R.W.; Walther, P. Experimental observation of earth’s rotation with quantum entanglement. Sci. Adv. 2024, 10, eado0215. [Google Scholar] [CrossRef]
- Iwasawa, K.; Makino, K.; Yonezawa, H.; Tsang, M.; Davidovic, A.; Huntington, E.; Furusawa, A. Quantum-limited mirror-motion estimation. Phys. Rev. Lett. 2013, 111, 163602. [Google Scholar] [CrossRef]
- Lee, C.W.; Lee, J.H.; Joo, J.; Seok, H. Quantum fisher information of an optomechanical force sensor driven by a squeezed vacuum field. Opt. Express 2022, 30, 25249–25261. [Google Scholar] [CrossRef]
- Purdy, T.P.; Yu, P.L.; Peterson, R.W.; Kampel, N.S.; Regal, C.A. Strong optomechanical squeezing of light. Phys. Rev. X 2013, 3, 031012. [Google Scholar] [CrossRef]
- Nair, R.; Yen, B.J.; Shapiro, J.H.; Chen, J.; Dutton, Z.; Guha, S.; da Silva, M.P. Quantum-enhanced ladar ranging with squeezed-vacuum injection, phase-sensitive amplification, and slow photodetectors. In Proceedings of the Quantum Communications and Quantum Imaging IX, San Diego, CA, USA, 21–25 August 2011; SPIE: Philadelphia, PA, USA, 2011; Volume 8163, pp. 203–216. [Google Scholar]
- Masada, G. Two-mode squeezed light source for quantum illumination and quantum imaging II. In Proceedings of the Quantum Communications and Quantum Imaging XIV, San Diego, CA, USA, 28 August–1 September 2016; SPIE: Philadelphia, PA, USA, 2016; Volume 9980, pp. 142–152. [Google Scholar]
- Masada, G. Verification of quantum entanglement of two-mode squeezed light source towards quantum radar and imaging. In Proceedings of the Quantum Communications and Quantum Imaging XV, San Diego, CA, USA, 6–10 August 2017; SPIE: Philadelphia, PA, USA, 2017; Volume 10409, pp. 92–97. [Google Scholar]
- Luong, D.; Chang, C.S.; Vadiraj, A.; Damini, A.; Wilson, C.M.; Balaji, B. Receiver operating characteristics for a prototype quantum two-mode squeezing radar. IEEE Trans. Aerosp. Electron. Syst. 2019, 56, 2041–2060. [Google Scholar] [CrossRef]
- Norouzi, M.; Hosseiny, S.M.; Seyed-Yazdi, J.; Ghamat, M.H. Design and Simulation of Engineered Josephson Parametric Amplifier in Quantum Two-Mode Squeezed Radar. 2022. Available online: https://assets-eu.researchsquare.com/files/rs-1948219/v1_covered.pdf (accessed on 10 August 2025).
- Ludlow, A.D.; Boyd, M.M.; Ye, J.; Peik, E.; Schmidt, P.O. Optical atomic clocks. Rev. Mod. Phys. 2015, 87, 637–701. [Google Scholar] [CrossRef]
- Safronova, M.; Budker, D.; DeMille, D.; Kimball, D.F.J.; Derevianko, A.; Clark, C.W. Search for new physics with atoms and molecules. Rev. Mod. Phys. 2018, 90, 025008. [Google Scholar] [CrossRef]
- Roberts, B.M.; Blewitt, G.; Dailey, C.; Murphy, M.; Pospelov, M.; Rollings, A.; Sherman, J.; Williams, W.; Derevianko, A. Search for domain wall dark matter with atomic clocks on board global positioning system satellites. Nat. Commun. 2017, 8, 1195. [Google Scholar] [CrossRef]
- Borregaard, J.; Sørensen, A.S. Efficient atomic clocks operated with several atomic ensembles. Phys. Rev. Lett. 2013, 111, 090802. [Google Scholar] [CrossRef]
- Appel, J.; Windpassinger, P.J.; Oblak, D.; Hoff, U.B.; Kjærgaard, N.; Polzik, E.S. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. Proc. Natl. Acad. Sci. USA 2009, 106, 10960–10965. [Google Scholar] [CrossRef]
- Braverman, B.; Kawasaki, A.; Vuletić, V. Impact of non-unitary spin squeezing on atomic clock performance. New J. Phys. 2018, 20, 103019. [Google Scholar] [CrossRef]
- Pedrozo-Peñafiel, E.; Colombo, S.; Shu, C.; Adiyatullin, A.F.; Li, Z.; Mendez, E.; Braverman, B.; Kawasaki, A.; Akamatsu, D.; Xiao, Y.; et al. Entanglement on an optical atomic-clock transition. Nature 2020, 588, 414–418. [Google Scholar] [CrossRef]
- Derevianko, A.; Pospelov, M. Hunting for topological dark matter with atomic clocks. Nat. Phys. 2014, 10, 933–936. [Google Scholar] [CrossRef]
- Huang, J.; Zhuang, M.; Lee, C. Entanglement-enhanced quantum metrology: From standard quantum limit to Heisenberg limit. Appl. Phys. Rev. 2024, 11, 031302. [Google Scholar] [CrossRef]
- Yang, W.; Diao, W.; Cai, C.; Wu, T.; Wu, K.; Li, Y.; Li, C.; Duan, C.; Leng, H.; Zi, N.; et al. A bright squeezed light source for quantum sensing. Chemosensors 2022, 11, 18. [Google Scholar] [CrossRef]
- Sheng, D.; Li, S.; Dural, N.; Romalis, M.V. Subfemtotesla scalar atomic magnetometry using multipass cells. Phys. Rev. Lett. 2013, 110, 160802. [Google Scholar] [CrossRef]
- Su, X.; Wang, M.; Yan, Z.; Jia, X.; Xie, C.; Peng, K. Quantum network based on non-classical light. Sci. China Inf. Sci. 2020, 63, 180503. [Google Scholar] [CrossRef]
- Montaña Guerrero, A.; Rincón Celis, R.; Nussenzveig, P.; Martinelli, M.; Marino, A.M.; Florez, H. Continuous variable entanglement in an optical parametric oscillator based on a nondegenerate four wave mixing process in hot alkali atoms. Phys. Rev. Lett. 2022, 129, 163601. [Google Scholar] [CrossRef] [PubMed]
Year | Institution | Squeezing Degree of Light (dB) | Noise Suppression | Reference |
---|---|---|---|---|
2008 | LIGO | [93] | ||
2011 | GEO 600 | 10 | [41] | |
2013 | Advanced LIGO | [33] | ||
2013 | GEO 600 | 10 | [107] | |
2019 | Virgo | 10 | [97] | |
2019 | LIGO O3 | [34] | ||
2020 | Advanced Virgo | [121] | ||
2021 | GEO 600 | 10 | [120] | |
2023 | LIGO O4 | [94] | ||
2024 | LIGO | [122] |
Year | Institution | Squeezing Degree of Light (dB) | Noise Suppression (Sensitivity) * | Reference |
---|---|---|---|---|
2010 | ICFO (Spain) | [27] | ||
2012 | College of William and Mary (USA) | [29] | ||
2014 | Brigham Young University (USA) | [131] | ||
2015 | College of William and Mary (USA) | 2 dB | [132] | |
2018 | University of Queensland (Australia) | [134] | ||
2021 | ICFO (Spain) | [30] | ||
2021 | Shanxi University (China) | [141] | ||
2021 | Gakushuin University (Japan) | – | [138] | |
2021 | Fudan University (China) | >200 fT/Hz1/2 | [137] | |
2022 | College of William and Mary (USA) | >250 pT/Hz1/2 | [133] | |
2023 | Shanghai Jiao Tong University (China) | [142] | ||
2025 | Ariel University (Israel) | [143] |
Year | Institution | Squeezing Degree of Light | Noise Suppression | Reference |
---|---|---|---|---|
2013 | University of Queensland (Australia) | [99] | ||
2014 | University of Queensland (Australia) | [42] | ||
2020 | Oak Ridge National Laboratory (USA) | [149] | ||
2020 | Technical University of Denmark (Denmark) | [145] | ||
2020 | University of Oxford (UK) | – | [146] | |
2021 | University of Queensland (Australia) | [147] |
Year | Institution | Squeezing Degree of Light | Noise Suppression | Reference |
---|---|---|---|---|
2013 | University of Colorado (USA) | [162] | ||
2013 | University of Tokyo (Japan) | [160] | ||
2018 | Aalto University (Finland) | [150] | ||
2020 | Northwestern University (USA) | [151] | ||
2023 | University of Arizona (USA) | [157] | ||
2023 | University of Arizona (USA) | [38] | ||
2024 | Hunan Normal University (China) | – | [122] | |
2024 | University of Vienna (Australia) | 5 μrad/s | [159] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heng, X.; Zhang, L.; Yin, Q.; Liu, W.; Tang, L.; Zhai, Y.; Wei, K. Quantum-Enhanced Sensing with Squeezed Light: From Fundamentals to Applications. Appl. Sci. 2025, 15, 10179. https://doi.org/10.3390/app151810179
Heng X, Zhang L, Yin Q, Liu W, Tang L, Zhai Y, Wei K. Quantum-Enhanced Sensing with Squeezed Light: From Fundamentals to Applications. Applied Sciences. 2025; 15(18):10179. https://doi.org/10.3390/app151810179
Chicago/Turabian StyleHeng, Xing, Lingchen Zhang, Qingyun Yin, Wei Liu, Lulu Tang, Yueyang Zhai, and Kai Wei. 2025. "Quantum-Enhanced Sensing with Squeezed Light: From Fundamentals to Applications" Applied Sciences 15, no. 18: 10179. https://doi.org/10.3390/app151810179
APA StyleHeng, X., Zhang, L., Yin, Q., Liu, W., Tang, L., Zhai, Y., & Wei, K. (2025). Quantum-Enhanced Sensing with Squeezed Light: From Fundamentals to Applications. Applied Sciences, 15(18), 10179. https://doi.org/10.3390/app151810179