Pharmacophore-Based Virtual Screening of Alkaloids and Flavonoids for Designing Drugs with Inhibitory Activity on the Enzyme Monoamine Oxidase B
Abstract
1. Introduction
2. Material and Methods
2.1. Elaboration of a Pharmacophoric Model of Molecules from the Groups of Alkaloids and Flavonoids
2.2. Pharmacophore-Based Virtual Screening
2.3. Prediction of Pharmacokinetic and Toxicological Properties (ADME/Tox)
2.4. Molecular Docking Using the GOLD Program
2.5. Activity Prediction of the Best Results: SEA and PASS
3. Results and Discussion
3.1. Literature Search: Alkaloids and Flavonoids
3.2. Pharmacophoric Model
3.3. Virtual Screening Results
3.4. Pharmacokinetic Predictions
3.5. Toxicology Prediction
3.6. Molecular Docking
3.7. Molecular Docking of the Alkaloid Group: Natural Products and Screened Molecules
3.8. Molecular Docking of the Flavonoid Group: Natural Products and Screened Molecules
3.9. Activity Prediction of the Best Results: SEA and PASS
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
%HOA | Human Oral Absorption Percentage |
HOA | Human Oral Absorption |
MAO-B | Monoamine Oxidase B |
MPP+ | 1-methyl-4-phenylpyridine |
MPTP | 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine |
PD | Parkinson Disease |
RMSD | Root Mean Square Deviation |
SAR | Structure–activity relationship |
References
- Balestrino, R.; Schapira, A.H.V. Parkinson Disease. Eur. J. Neurol. 2020, 27, 27–42. [Google Scholar] [CrossRef]
- Meder, D.; Herz, D.M.; Rowe, J.B.; Lehéricy, S.; Siebner, H.R. The Role of Dopamine in the Brain—Lessons Learned from Parkinson’s Disease. Neuroimage 2019, 190, 79–93. [Google Scholar] [CrossRef]
- Zesiewicz, T.A. Parkinson Disease. In Preoperative Assessment: A Case-Based Approach; Springer: Cham, Switzerland, 2021; pp. 227–231. [Google Scholar] [CrossRef]
- Simon, D.K.; Tanner, C.M.; Brundin, P. Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clin. Geriatr. Med. 2020, 36, 1–12. [Google Scholar] [CrossRef]
- Aarsland, D.; Batzu, L.; Halliday, G.M.; Geurtsen, G.J.; Ballard, C.; Ray Chaudhuri, K.; Weintraub, D. Parkinson Disease-Associated Cognitive Impairment. Nat. Rev. Dis. Primers 2021, 7, 47. [Google Scholar] [CrossRef]
- Armstrong, M.J.; Okun, M.S. Diagnosis and Treatment of Parkinson Disease: A Review. JAMA—J. Am. Med. Assoc. 2020, 323, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Dezsi, L.; Vecsei, L. Monoamine Oxidase B Inhibitors in Parkinson’s Disease. CNS Neurol. Disord. Drug Targets 2017, 16, 425–439. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.Y.; Jenner, P.; Chen, S. Di Monoamine Oxidase-B Inhibitors for the Treatment of Parkinson’s Disease: Past, Present, and Future. J. Park. Dis. 2022, 12, 477–493. [Google Scholar] [CrossRef]
- Hage-Melim, L.I.D.S.; Ferreira, J.V.; de Oliveira, N.K.S.; Correia, L.C.; Almeida, M.R.S.; Poiani, J.G.C.; Taft, C.A.; de Paula da Silva, C.H.T. The Impact of Natural Compounds on the Treatment of Neurodegenerative Diseases. Curr. Org. Chem. 2019, 23, 335–360. [Google Scholar] [CrossRef]
- Crowley, E.K.; Nolan, Y.M.; Sullivan, A.M. Exercise as a Therapeutic Intervention for Motor and Non-Motor Symptoms in Parkinson’s Disease: Evidence from Rodent Models. Prog. Neurobiol. 2019, 172, 2–22. [Google Scholar] [CrossRef]
- Zahoor, I.; Shafi, A.; Haq, E. Pharmacological Treatment of Parkinson’s Disease; Exon Publications: Brisbane City, QLD, Australia, 2018; pp. 129–144. [Google Scholar]
- Singh, G.; Shankar, B.; Bhupinder, G.; Preeti, K.; Vivek, P. Recent Updates on Structural Insights of MAO—B Inhibitors: A Review on Target—Based Approach. Mol. Divers. 2024, 28, 1823–1845. [Google Scholar] [CrossRef]
- Fu, L.; Shi, S.; Yi, J.; Wang, N.; He, Y.; Wu, Z.; Peng, J.; Deng, Y.; Wang, W.; Wu, C.; et al. ADMETlab 3.0: An Updated Comprehensive Online ADMET Prediction Platform Enhanced with Broader Coverage, Improved Performance, API Functionality and Decision Support. Nucleic Acids Res. 2024, 52, W422–W431. [Google Scholar] [CrossRef] [PubMed]
- Roy, A. A Review on the Alkaloids an Important Therapeutic Compound from Plants Remediation of Environmental Contamination View Project Micropropagation of Centella Asiatica View Project. Int. J. Plant Biotechnol. 2017, 3, 1–9. [Google Scholar]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef] [PubMed]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.; Jaremko, M. Important Flavonoids and Their Role as ATherapeutic Agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef] [PubMed]
- Winiwarter, S.; Ahlberg, E.; Watson, E.; Oprisiu, I.; Mogemark, M.; Noeske, T.; Greene, N. In Silico ADME in Drug Design—Enhancing the Impact. ADMET DMPK 2018, 6, 15–33. [Google Scholar] [CrossRef]
- Tuvi-Arad, I. Computational Chemistry in the Undergraduate Classroom—Pedagogical Considerations and Teaching Challenges. Isr. J. Chem. 2022, 62, e202100042. [Google Scholar] [CrossRef]
- Zhang, H.; Bai, L.; He, J.; Zhong, L.; Duan, X.; Ouyang, L.; Zhu, Y.; Wang, T.; Zhang, Y.; Shi, J. Recent Advances in Discovery and Development of Natural Products as Source for Anti-Parkinson’s Disease Lead Compounds. Eur. J. Med. Chem. 2017, 141, 257–272. [Google Scholar] [CrossRef]
- Rabiei, Z.; Solati, K.; Amini-Khoei, H. Phytotherapy in Treatment of Parkinson’s Disease: A Review. Pharm. Biol. 2019, 57, 355–362. [Google Scholar] [CrossRef]
- Rahman, M.M.; Wang, X.; Islam, M.R.; Akash, S.; Supti, F.A.; Mitu, M.I.; Harun-Or-Rashid, M.; Aktar, M.N.; Khatun Kali, M.S.; Jahan, F.I.; et al. Multifunctional Role of Natural Products for the Treatment of Parkinson’s Disease: At a Glance. Front. Pharmacol. 2022, 13, 976385. [Google Scholar] [CrossRef] [PubMed]
- Gutowska, I.; Machoy, Z.; Machaliński, B. The Role of Bivalent Metals in Hydroxyapatite Structures as Revealed by Molecular Modeling with the HyperChem Software. J. Biomed. Mater. Res. A 2005, 75, 788–793. [Google Scholar] [CrossRef]
- Schneidman-Duhovny, D.; Dror, O.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. PharmaGist: A Webserver for Ligand-Based Pharmacophore Detection. Nucleic Acids Res. 2008, 36, 223–228. [Google Scholar] [CrossRef]
- Schaller, D.; Šribar, D.; Noonan, T.; Deng, L.; Nguyen, T.N.; Pach, S.; Machalz, D.; Bermudez, M.; Wolber, G. Next Generation 3D Pharmacophore Modeling. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2020, 10, e1468. [Google Scholar] [CrossRef]
- Koes, D.R.; Camacho, C.J. ZINCPharmer: Pharmacophore Search of the ZINC Database. Nucleic Acids Res. 2012, 40, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Ntie-Kang, F. An in Silico Evaluation of the ADMET Profile of the StreptomeDB Database. Springerplus 2013, 2, 353. [Google Scholar] [CrossRef] [PubMed]
- Marchant, C.A. Prediction of Rodent Carcinogenicity Using the DEREK System for 30 Chemicals Currently Being Tested by the National Toxicology Program. Environ. Health Perspect. 1996, 104, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Lim-Wilby, M. Molecular Docking. Methods Mol. Biol. 2008, 443, 365–382. [Google Scholar] [CrossRef] [PubMed]
- Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved Protein-Ligand Docking Using GOLD. Proteins Struct. Funct. Genet. 2003, 52, 609–623. [Google Scholar] [CrossRef]
- Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource. Chem. Heterocycl. Compd. 2014, 50, 444–457. [Google Scholar] [CrossRef]
- Lagunin, A.; Stepanchikova, A.; Filimonov, D.; Poroikov, V. PASS: Prediction of Activity Spectra for Biologically Active Substances. Bioinformatics 2000, 16, 747–748. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, L.; Yin, Z.; Lin, J. Improving Chemical Similarity Ensemble Approach in Target Prediction. J. Cheminform. 2016, 8, 20. [Google Scholar] [CrossRef] [PubMed]
- Aniszewiski, T. Alkaloids Chemistry, Biology, Ecology, and Applications, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Kukula-Koch, W.A.; Widelski, J. Alkaloids; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780128020999. [Google Scholar]
- Kishimoto, S.; Sato, M.; Tsunematsu, Y.; Watanabe, K. Evaluation of Biosynthetic Pathway and Engineered Biosynthesis of Alkaloids. Molecules 2016, 21, 1078. [Google Scholar] [CrossRef] [PubMed]
- Karak, P. Biological Activities of Flavonoids: An Overview. Int. J. Pharm. Sci. Res. 2019, 10, 1567–1574. [Google Scholar] [CrossRef]
- Carvalho, I.; Pupo, M.T.; Borges, Á.D.I.; Bernardes, L.S.C. Introdução a Modelagem Molecular de Fármacos No Curso Experimental de Química Farmacêutica. Quim. Nova 2003, 26, 428–438. [Google Scholar] [CrossRef]
- Yang, S.Y. Pharmacophore Modeling and Applications in Drug Discovery: Challenges and Recent Advances. Drug Discov. Today 2010, 15, 444–450. [Google Scholar] [CrossRef]
- Leach, A.R.; Gillet, V.J.; Lewis, R.A.; Taylor, R. Three-Dimensional Pharmacophore Methods in Drug Discovery. J. Med. Chem. 2010, 53, 539–558. [Google Scholar] [CrossRef] [PubMed]
- Giordano, D.; Biancaniello, C.; Argenio, M.A.; Facchiano, A. Drug Design by Pharmacophore and Virtual Screening Approach. Pharmaceuticals 2022, 15, 646. [Google Scholar] [CrossRef] [PubMed]
- Brogi, S. Computational Approaches for Drug Discovery. Molecules 2019, 24, 3061. [Google Scholar] [CrossRef] [PubMed]
- Angelino, D.; Carregosa, D.; Domenech-Coca, C.; Savi, M.; Figueira, I.; Brindani, N.; Jang, S.; Lakshman, S.; Molokin, A.; Urban, J.F.; et al. 5-(Hydroxyphenyl)-γ-Valerolactone-Sulfate, a Key Microbial Metabolite of Flavan-3-Ols, Is Able to Reach the Brain: Evidence from Different in Silico, in Vitro and in Vivo Experimental Models. Nutrients 2019, 11, 2678. [Google Scholar] [CrossRef] [PubMed]
- Schrödinger QikProp; Version 4.4; Schrodinger Press: New York, NY, USA, 2021; pp. 1–45.
- Ding, X.; Hu, X.; Chen, Y.; Xie, J.; Ying, M.; Wang, Y.; Yu, Q. Differentiated Caco-2 Cell Models in Food-Intestine Interaction Study: Current Applications and Future Trends. Trends Food Sci. Technol. 2021, 107, 455–465. [Google Scholar] [CrossRef]
- Volpe, D.A. Drug-Permeability and Transporter Assays in Caco-2 and MDCK Cell Lines. Future Sci. 2011, 16, 2063–2077. [Google Scholar] [CrossRef] [PubMed]
- Shuler, L.; Hickman, J.J. TEER Measurement Techniques for in Vitro Barrier Model Systems. J. Lab. Autom. 2016, 20, 107–126. [Google Scholar] [CrossRef]
- De Souza, J.; Freitas, Z.M.F.; Storpirtis, S. In Vitro Models for the Determination of Drug Absorption and a Prediction of Dissolution/Absorption Relationships. Rev. Bras. Cienc. Farm./Braz. J. Pharm. Sci. 2007, 43, 515–527. [Google Scholar] [CrossRef]
- Alavijeh, M.S.; Chishty, M.; Qaiser, M.Z.; Palmer, A.M. Drug Metabolism and Pharmacokinetics, the Blood-Brain Barrier, and Central Nervous System Drug Discovery. NeuroRx 2005, 2, 554–571. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, C.; Moir, E.M.; Rankovic, Z.; Wishart, G. Medicinal Chemistry of HERG Optimizations: Higlights and Hang-Ups. J. Med. Chem. 2006, 49, 12–14. [Google Scholar] [CrossRef] [PubMed]
- Raschi, E.; Vasina, V.; Poluzzi, E.; De Ponti, F. The HERG K+ Channel: Target and Antitarget Strategies in Drug Development. Pharmacol. Res. 2008, 57, 181–195. [Google Scholar] [CrossRef] [PubMed]
- Sanguinetti, M.C.; Tristani-Firouzi, M. HERG Potassium Channels and Cardiac Arrhytmia. Insight Rev. 2006, 440, 463–469. [Google Scholar]
- Greene, N.; Judson, P.N.; Langowski, J.J.; Marchant, C.A. Knowledge-Based Expert Systems for Toxicity and Metabolism Prediction: DEREK, StAR and METEOR. SAR QSAR Environ. Res. 1999, 10, 299–314. [Google Scholar] [CrossRef]
- Greene, N. Computer Systems for the Prediction of Toxicity: An Update. Adv. Drug Deliv. Rev. 2002, 54, 417–431. [Google Scholar] [CrossRef]
- Ridings, J.E.; Barratt, M.D.; Cary, R.; Earnshaw, C.G.; Eggington, C.E.; Ellis, M.K.; Judson, P.N.; Langowski, J.J.; Marchant, C.A.; Payne, M.P.; et al. Computer Prediction of Possible Toxic Action from Chemical Structure: An Update on the DEREK System. Toxicology 1996, 106, 267–279. [Google Scholar] [CrossRef]
- Moore, J.J.; Saadabadi, A. Selegiline. Available online: https://pubmed.ncbi.nlm.nih.gov/30252350/ (accessed on 10 August 2025).
- Hevener, K.E.; Zhao, W.; Ball, D.M.; Babaoglu, K.; Qi, J.; White, S.W.; Lee, R.E. Validation of Molecular Docking Programs for Virtual Screening against Dihydropteroate Synthase. J. Chem. Inf. Model. 2009, 49, 444–460. [Google Scholar] [CrossRef]
- López-Camacho, E.; García-Godoy, M.J.; García-Nieto, J.; Nebro, A.J.; Aldana-Montes, J.F. A New Multi-Objective Approach for Molecular Docking Based on Rmsd and Binding Energy. In Algorithms for Computational Biology; Lecture Notes in Computer Science (Including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer International Publishing: Cham, Switzerland, 2016; Volume 9702, pp. 65–77. [Google Scholar] [CrossRef]
- Vina, D.; Serra, S.; Lamela, M.; Delogu, G. Herbal Natural Products As a Source of Monoamine Oxidase Inhibitors: A Review. Curr. Top. Med. Chem. 2013, 12, 2131–2144. [Google Scholar] [CrossRef]
- Arunan, E.; Desiraju, G.R.; Klein, R.A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D.C.; Crabtree, R.H.; Dannenber, J.J.; Hobza, P.; et al. Definition of the Hydrogen Bond (IUPAC Recommendations 2011). Pure Appl. Chem. 2011, 83, 1637–1641. [Google Scholar] [CrossRef]
- Chen, T.; Li, M.; Liu, J. π-π Stacking Interaction: A Nondestructive and Facile Means in Material Engineering for Bioapplications. Cryst. Growth Des. 2018, 18, 2765–2783. [Google Scholar] [CrossRef]
- De Colibus, L.; Li, M.; Binda, C.; Lustig, A.; Edmondson, D.E.; Mattevi, A. Three-Dimensional Structure of Human Monoamine Oxidase A (MAO A): Relation to the Structures of Rat MAO A and Human MAO B. Proc. Natl. Acad. Sci. USA 2005, 102, 12684–12689. [Google Scholar] [CrossRef] [PubMed]
- Viña, D.; Matos, M.J.; Ferino, G.; Cadoni, E.; Laguna, R.; Borges, F.; Uriarte, E.; Santana, L. 8-Substituted 3-Arylcoumarins as Potent and Selective MAO-B Inhibitors: Synthesis, Pharmacological Evaluation, and Docking Studies. ChemMedChem 2012, 7, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.; Braun, G.H.; Jorge, D.M.M.; Ramos, H.P.; Alves, R.M.; Silva, B.; Giuliatti, S.; Sampaio, S.V.; Taft, C.A.; Carlos, H.T.P. Molecular Dynamics, Flexible Docking, Virtual Screening, ADMET Predictions, and Molecular Interaction Field Studies to Design Novel Potential MAO-B Inhibitors. J. Biomol. Struct. Dyn. 2012, 25, 37–41. [Google Scholar]
- Mellado, M.; Salas, C.O.; Uriarte, E.; Viña, D.; Jara-Gutiérrez, C.; Matos, M.J.; Cuellar, M. Design, Synthesis and Docking Calculations of Prenylated Chalcones as Selective Monoamine Oxidase B Inhibitors with Antioxidant Activity. ChemistrySelect 2019, 4, 7698–7703. [Google Scholar] [CrossRef]
- Al-Baghdadi, O.B.; Prater, N.I.; Van Der Schyf, C.J.; Geldenhuys, W.J. Inhibition of Monoamine Oxidase by Derivatives of Piperine, an Alkaloid from the Pepper Plant Piper Nigrum, for Possible Use in Parkinson’s Disease. Bioorg. Med. Chem. Lett. 2012, 22, 7183–7188. [Google Scholar] [CrossRef]
- Zhi, K.K.; Yang, Z.D.; Shi, D.F.; Yao, X.J.; Wang, M.G. Desmodeleganine, a New Alkaloid from the Leaves of Desmodium Elegans as a Potential Monoamine Oxidase Inhibitor. Fitoterapia 2014, 98, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, D.; Roy, A.; Slavětínská, L.P.; Chukwujekwu, J.C.; Gupta, S.; Van Staden, J. New Role for Crinamine as a Potent, Safe and Selective Inhibitor of Human Monoamine Oxidase B: In Vitro and in Silico Pharmacology and Modeling. J. Ethnopharmacol. 2020, 248, 112305. [Google Scholar] [CrossRef]
- Othman, A.; Sayed, A.M.; Amen, Y.; Shimizu, K. Possible Neuroprotective Effects of Amide Alkaloids from Bassia Indica and Agathophora Alopecuroides: In Vitro and in Silico Investigations. RSC Adv. 2022, 12, 18746–18758. [Google Scholar] [CrossRef] [PubMed]
- Turkmenoglu, F.P.; Baysal, I.; Ciftci-Yabanoglu, S.; Yelekci, K.; Temel, H.; Paşa, S.; Ezer, N.; Çaliş, I.; Ucar, G. Flavonoids from Sideritis Species: Human Monoamine Oxidase (HMAO) Inhibitory Activities, Molecular Docking Studies and Crystal Structure of Xanthomicrol. Molecules 2015, 20, 7454–7473. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.F.M.; De Viana, J.O.; Nayarisseri, A.; Zondegoumba, E.N.; Mendonça Junior, F.J.B.; Scotti, M.T.; Scotti, L. Computational Studies Applied to Flavonoids against Alzheimer’s and Parkinson’s Diseases. Oxidative Med. Cell. Longev. 2018, 2018, 7912765. [Google Scholar] [CrossRef] [PubMed]
- Chaurasiya, N.D.; Midiwo, J.; Pandey, P.; Bwire, R.N.; Doerksen, R.J.; Muhammad, I.; Tekwani, B.L. Selective Interactions of O -Methylated Flavonoid Natural Products with Human Monoamine Oxidase-A and -B. Molecules 2020, 25, 5358. [Google Scholar] [CrossRef] [PubMed]
- Rácz, A.; Bajusz, D.; Héberger, K. Life beyond the Tanimoto Coefficient: Similarity Measures for Interaction Fingerprints. J. Cheminform. 2018, 10, 48. [Google Scholar] [CrossRef] [PubMed]
Molecules | Similarity | Absorption | Distribution | |||||
---|---|---|---|---|---|---|---|---|
Stars | HOA | %HOA | pCaco-2 | pMDCK | CNSA | logBB | logHERG | |
Selegiline | 2 | 3 | 100 | 2.23433 | 1.30502 | 2 | 0.621 | −5.35 |
Palmatine | 1 | 3 | 100 | 6602.97 | 3805.32 | 1 | 0.134 | −5.467 |
Genistein | 0 | 3 | 76.738 | 187.317 | 80.927 | −2 | −4.393 | −6.74 |
ZINC00597214 | 2 | 3 | 100 | 9831.48 | 5851.31 | 1 | 0.319 | −4.799 |
ZINC72342127 | 0 | 3 | 100 | 3428.01 | 1873.56 | 0 | −0.095 | −5.803 |
Compound | Total of Alerts | Condition | Alert |
---|---|---|---|
Selegiline | 1 | Renal disorders in mammals (equivocal) | Benzphetamine-like |
Palmatine | 1 | Skin sensitization (plausible) | Vinylic or allylic anisole |
Genistein | 5 | Skin sensitization (plausible) Estrogen receptor modulation (plausible) Teratogenicity (equivocal) | Enol ether Substituted phenol Resorcinol or precursor Hydroxynaphthalene or derivative 4′,7-Dihydroxyflavone or derivative |
ZINC00597214 | 1 | Skin sensitization (plausible) | Vinylic or allylic anisole |
ZINC72342127 | 1 | Skin sensitization (equivocal) | Hydrazine or precursor |
Compound | AA | Atom | Interaction | Type | Distance | Score |
---|---|---|---|---|---|---|
Palmatine | Cys172 | O25 | Hydrogen Bond | Carbon–Hydrogen Bond | 2.70 | 84.76 |
Ile199 | H44 | Hydrogen Bond | Carbon–Hydrogen Bond | 2.37 | ||
Tyr435 | H47 | Hydrogen Bond | Carbon–Hydrogen Bond | 2.59 | ||
Cys172 | H48 | Hydrogen Bond | Carbon–Hydrogen Bond | 2.81 | ||
Cys172 | Ligand | Other | π–Sulfur | 5.06 | ||
Tyr326 | Ligand | Hydrophobic | π–π T-shaped | 4.91 | ||
Leu171 | Ligand | Hydrophobic | Alkyl | 4.47 | ||
Cys172 | Ligand | Hydrophobic | Alkyl | 5.13 | ||
Ile199 | Ligand | Hydrophobic | Alkyl | 4.55 | ||
Leu164 | C22 | Hydrophobic | Alkyl | 4.54 | ||
Ile199 | C22 | Hydrophobic | Alkyl | 4.58 | ||
Ile316 | C24 | Hydrophobic | Alkyl | 5.17 | ||
Trp119 | C22 | Hydrophobic | π–Alkyl | 5.43 | ||
Trp119 | C22 | Hydrophobic | π–Alkyl | 4.37 | ||
Phe168 | Ligand | Hydrophobic | π–Alkyl | 5.22 | ||
Tyr326 | C24 | Hydrophobic | π–Alkyl | 4.83 | ||
Leu171 | Ligand | Hydrophobic | π–Alkyl | 4.66 | ||
Leu171 | Ligand | Hydrophobic | π–Alkyl | 3.88 | ||
Ile199 | Ligand | Hydrophobic | π–Alkyl | 3.86 | ||
FAD600 | H27 | Hydrogen Bond | Carbon–Hydrogen Bond | 2.66 | ||
FAD600 | H29 | Hydrogen Bond | Carbon–Hydrogen Bond | 3.00 | ||
ZINC00597214 | Ile199 | H51 | Hydrogen Bond | Carbon–Hydrogen Bond | 2.92 | 78.62 |
Ile199 | Ligand | Hydrophobic | π–Sigma | 3.65 | ||
Tyr398 | Ligand | Hydrophobic | π–π Stacked | 5.64 | ||
Tyr326 | Ligand | Hydrophobic | π–π T-shaped | 4.85 | ||
Leu171 | Ligand | Hydrophobic | Alkyl | 4.28 | ||
Ile198 | C21 | Hydrophobic | Alkyl | 3.73 | ||
Leu171 | C23 | Hydrophobic | Alkyl | 4.93 | ||
Ile198 | C23 | Hydrophobic | Alkyl | 5.16 | ||
Phe168 | C23 | Hydrophobic | π–Alkyl | 4.17 | ||
Tyr188 | C21 | Hydrophobic | π–Alkyl | 4.88 | ||
Tyr326 | Ligand | Hydrophobic | π–Alkyl | 4.87 | ||
Tyr398 | C22 | Hydrophobic | π–Alkyl | 4.54 | ||
Tyr435 | C21 | Hydrophobic | π–Alkyl | 5.26 | ||
Tyr435 | C22 | Hydrophobic | π–Alkyl | 4.94 | ||
Leu171 | Ligand | Hydrophobic | π–Alkyl | 4.34 | ||
Ile199 | Ligand | Hydrophobic | π–Alkyl | 4.73 | ||
Leu171 | Ligand | Hydrophobic | π–Alkyl | 5.29 | ||
FAD600 | C22 | Hydrophobic | π–Alkyl | 4.11 | ||
FAD600 | C22 | Hydrophobic | π–Alkyl | 4.31 |
Compound | AA | Atom | Interaction | Type | Distance | Score |
---|---|---|---|---|---|---|
Genistein | Tyr326 | O17 | Hydrogen Bond | Conventional Hydrogen Bond | 3.05 | 76.56 |
Tyr326 | O18 | Hydrogen Bond | Conventional Hydrogen Bond | 2.05 | ||
Ile199 | H28 | Hydrogen Bond | Conventional Hydrogen Bond | 1.75 | ||
Phe168 | O9 | Hydrogen Bond | Carbon–Hydrogen Bond | 2.23 | ||
Phe168 | H25 | Hydrogen Bond | Carbon–Hydrogen Bond | 2.59 | ||
Leu171 | Ligand | Hydrophobic | π–Alkyl | 4.99 | ||
Cys172 | Ligand | Hydrophobic | π–Alkyl | 4.30 | ||
Ile198 | Ligand | Hydrophobic | π–Alkyl | 5.40 | ||
Leu171 | Ligand | Hydrophobic | π–Alkyl | 4.03 | ||
Cys172 | Ligand | Hydrophobic | π–Alkyl | 5.23 | ||
Ile199 | Ligand | Hydrophobic | π–Alkyl | 4.94 | ||
Leu171 | Ligand | Hydrophobic | π–Alkyl | 5.29 | ||
Ile199 | Ligand | Hydrophobic | π–Alkyl | 4.37 | ||
Ile316 | Ligand | Hydrophobic | π–Alkyl | 5.21 | ||
ZINC72342127 | Leu171 | Ligand | Hydrophobic | π–Sigma | 2.51 | 85.35 |
Cys172 | Ligand | Other | π–Sulfur | 5.33 | ||
Cys172 | Ligand | Other | π–Sulfur | 4.61 | ||
Tyr398 | Ligand | Hydrophobic | π–π Stacked | 5.15 | ||
Tyr398 | Ligand | Hydrophobic | π–π Stacked | 3.90 | ||
Tyr435 | Ligand | Hydrophobic | π–π Stacked | 4.51 | ||
Tyr326 | Ligand | Hydrophobic | π–π T-shaped | 5.32 | ||
Leu164 | C1 | Hydrophobic | Alkyl | 5.09 | ||
Leu167 | C1 | Hydrophobic | Alkyl | 4.49 | ||
Ile316 | C1 | Hydrophobic | Alkyl | 3.95 | ||
Leu328 | Ligand | Hydrophobic | Alkyl | 5.48 | ||
Tyr60 | Ligand | Hydrophobic | π–Alkyl | 5.01 | ||
Tyr326 | Ligand | Hydrophobic | π–Alkyl | 4.93 | ||
Phe343 | Ligand | Hydrophobic | π–Alkyl | 4.73 | ||
Ile199 | Ligand | Hydrophobic | π–Alkyl | 4.51 | ||
Leu171 | Ligand | Hydrophobic | π–Alkyl | 5.11 | ||
Ile198 | Ligand | Hydrophobic | π–Alkyl | 5.43 | ||
FAD600 | Ligand | Hydrophobic | π–π T-shaped | 4.94 | ||
FAD600 | Ligand | Hydrophobic | π–π T-shaped | 4.91 |
Compound | Pa a | Pi b | Activity |
---|---|---|---|
Selegiline | 0.366 | 0.004 | MAO-B inhibitor |
0.580 | 0.008 | Antiparkinsonian | |
Genistein | 0.615 | 0.03 | MAO-B inhibitor |
0.188 | 0.180 | Antiparkinsonian | |
Palmatine | - | - | - |
ZINC00597214 | - | - | - |
ZINC72342127 | 0.651 | 0.005 | MAO-B inhibitor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Jesus Silva, A.C.; dos Santos, A.B.B.; Barcelos, M.P.; de Paula da Silva, C.H.T.; da Silva Hage-Melim, L.I. Pharmacophore-Based Virtual Screening of Alkaloids and Flavonoids for Designing Drugs with Inhibitory Activity on the Enzyme Monoamine Oxidase B. Appl. Sci. 2025, 15, 10162. https://doi.org/10.3390/app151810162
de Jesus Silva AC, dos Santos ABB, Barcelos MP, de Paula da Silva CHT, da Silva Hage-Melim LI. Pharmacophore-Based Virtual Screening of Alkaloids and Flavonoids for Designing Drugs with Inhibitory Activity on the Enzyme Monoamine Oxidase B. Applied Sciences. 2025; 15(18):10162. https://doi.org/10.3390/app151810162
Chicago/Turabian Stylede Jesus Silva, Ana Carolina, Ana Beatriz Bezerra dos Santos, Mariana Pegrucci Barcelos, Carlos Henrique Tomich de Paula da Silva, and Lorane Izabel da Silva Hage-Melim. 2025. "Pharmacophore-Based Virtual Screening of Alkaloids and Flavonoids for Designing Drugs with Inhibitory Activity on the Enzyme Monoamine Oxidase B" Applied Sciences 15, no. 18: 10162. https://doi.org/10.3390/app151810162
APA Stylede Jesus Silva, A. C., dos Santos, A. B. B., Barcelos, M. P., de Paula da Silva, C. H. T., & da Silva Hage-Melim, L. I. (2025). Pharmacophore-Based Virtual Screening of Alkaloids and Flavonoids for Designing Drugs with Inhibitory Activity on the Enzyme Monoamine Oxidase B. Applied Sciences, 15(18), 10162. https://doi.org/10.3390/app151810162