Unseen Hazards—Toxicological Effects and Human Health Impacts of Nanoplastics and Microplastics
Abstract
1. Introduction
Properties | MPs | NPs | Reference |
---|---|---|---|
Size | 0.1 to 5000 µm | 1 to 100 nm (0.001–0.1 μm) | [1] |
Main sources | Intentionally manufactured, fragmentation/degradation of larger pieces of plastics | Fragmentation of MPs | [11,26] |
Environmental behavior and transport | Tend to settle, float or be trapped in sediments; mobility depends on shape and size | Tend to create colloidal solution; high mobility through porous media and biological barriers | [27,28] |
Detection and analytical method | µ-FTIR, μ-Raman, LDIR, PLM, Py-GC/MS, SEM-EDX | AFM, fluorescence microscopy, LIBD, NTA, Py-GC/MS, SERS, TEM | [27,29,30] |
2. Materials and Methods
3. Routes of Exposure to MPs and NPs
Human Body System | Type of Sample | Determination Method | Polymer Composition | Shape | Size | Quantity/Concentration | Region | Reference |
---|---|---|---|---|---|---|---|---|
Digestive System | Feces | μ-Raman | PP, HDPE, PS, PET | Unspecified | Unspecified | 10.19 μg/g | Indonesia | [70] |
µ-FTIR | PP, PET, PS, PE, PVC, PC, PA, PU | Unspecified | 20–800 μm | 1–36 particles/g | China | [71] | ||
μ-Raman | PS, PP, PE, PET, PVC | Unspecified | 30–1800 µm | 20.4–138.9 particles/g wet weight | China | [72] | ||
µ-FTIR | PA, PE, PET, PMMA, PCM, PP, PS, PU, PVC | Fragments, fibers | 5–5000 μm | 3.5 particles/g feces | Austria | [73] | ||
μ-Raman | PET, PA, PP, PE, PC, PVC, POM, PTFE, EVA, PS, PMMA, PBT, AS, PES, TPU | Sheets, fibers, fragments, pellets | 50–300 μm | 41.8 items/g (IBD patients) 28.0 items/g (healthy people) | China | [74] | ||
LDIR | PET, PA, PE, PP, PC, PS, PVC, POM, PTFE, EVA, PMMA, PES, TPU, PBT, PBAT, PU, AS | Unspecified | 5–500 μm | 62 items/g (CRC patients) 43 items/g (healthy people) | Iran | [75] | ||
Respiratory System | Bronchoalveolar fluid | μ-Raman | PE, PS, PP, PET | Fibers, fragments | 20–500 μm | 4.1 particles/sample | Iran | [76] |
µ-FTIR, SEM-EDX | PET, semi-synthetic polymers | Fibers | 2.34 mm (median length) | 9.18 ± 2.45 particles/100 mL | Spain | [77] | ||
Circulatory System | Serum | Py-GC/MS | PE, PVC, PS, PET, N66, PP | Unspecified | Unspecified | 20.81 μg/g (median) | China | [58] |
Thrombi | Py-GC/MS, LDIR, SEM | PE, N66, PVC | Irregular fragments | 20–100 μm | 61.75–141.8 μg/g (median) | China | [68] | |
Blood | Py-GC/MS | PE, PS, PP, PET, PMMA | Unspecified | 0.7–500 μm | 3.53 µg/mL (average) | Netherlands | [78] | |
Plaques | Py-GC/MS | PE / PVC | Irregular fragments | <1 μm | PE 21.7 ± 24.5 μg/mg of plaque (mean) PVC 5.2 ± 2.4 μg/mg of plaque (mean) | Italy | [79] | |
Urinary/excretory system | Urine | µ-Raman | PE, PP, PVA, PVC | Irregular fragments, spheres | 4–15 μm | 0–3 particles/sample | Italy | [69] |
µ-Raman | PE, PS, PP | Fibers | 20–100 μm | 0–2 particles/sample | Iran | [76] | ||
µ-Raman | PE, PS, Styrene-Isoprene | Fiber, fragments | 3–13 μm | 2.3 particles/sample | Italy | [80] | ||
µ-Raman | PE, PS, Styrene-Isoprene | Fragments | >0.2 μm | 1.28 ± 0.49/sample (mean) | Italy | [81] | ||
µ-FTIR, SEM-EDX | PE, PS, PP, PTFE, resins | Fragments, films, fibers | 19–400 μm (length) 10–128 μm (width) 15–>300 μm (length) 9–>300 μm (width) | 0–9600 particles/L (healthy patients) 0–36,000 particles/L (endometriosis patients) | Great Britain | [82] | ||
Py-GC/MS, LDIR | PE, PVC, N66, PMMA, PU, PP, PET | Diversity of shape | <50 μm | 1.50 mg/kg 15.17 particles/kg | China | [83] | ||
Kidney | µ-Raman | PE, PS | Fragments | 1–29 μm | 4.3 particles/sample | Italy | [80] | |
µ-Raman | PE, PS, Styrene-Isoprene | Fragments | >0.2 μm | 1.7 ± 2.11/sample (mean) | Italy | [81] | ||
Reproductive System | Sperm | µ-Raman | PS, PP, PVC, PTFE, PET, PE, ABS, PC | Unspecified | 1.2–20 μm | Unspecified | China | [84] |
Placenta | Py-GC/MS | PE, PVC, N66, SBR, ABS, PET, N6, PMMA, PU, PC, PP, PS | Unspecified | 1–20 µm | 6.5–685 µg/g | U.S. | [85] | |
Amniotic fluid | Raman, Py-GC/MS | PTFE, PS, ABS, PE, PC, PVC | Unspecified | 3.05 ± 1.05 µm | Unspecified | China | [86] | |
Nervous System | Brain | Py-GC/MS, TEM, SEM-EDS | PE, PP, PVC, styrene-butadiene rubber | Unspecified | 1–5 μm (brain tissues) <1 μm (brain parenchyma) 100–200 nm (brain pellets) | median = 1254 μg/g (East Coast samples) median = 26,076 μg/g (dementia samples) | U.S. | [87] |
Olfactory bulb | µ-FTIR | PP, PA, NYL, N6, PVA, PE, wool-PP | 83.4% of fragments 16.6% of spheres 25% of fibers | 5.5–26.4 μm (length) 3.0–25.4 μm (width) | 1–4 particles/olfactory bulb | Brazil | [88] | |
Cerebrospinal fluid | LDIR, Py-GC/MS | PP, PE, PS, PVC | Unspecified | <100 μm | 0–3 μg of polymer/g of cerebrospinal fluid | China | [89] |
3.1. Oral Exposure
3.2. Inhalation Exposure
3.3. Dermal Exposure
4. Mechanisms of MPs and NPs Toxicity
4.1. Shape and Size
4.2. Chemical Composition
4.3. Toxicological Effects
4.4. Oxidative Stress
4.5. Challenges Related to Human Toxicity Assessment
5. Impact of MPs and NPs on Different Human Body Systems
5.1. Digestive System
5.2. Respiratory System
5.3. Circulatory System
5.4. Urinary/Excretory System
5.5. Reproductive System
5.6. Nervous System
5.7. Exposure Risk Assessment
Analytical Methods | Advantages | Limitations | Reference |
---|---|---|---|
LDIR | Characterization of MPs by size, shape, and polymer type | Not suitable for determining NPs | [68] |
μ-Raman | Identification and quantification of MPs | Not suitable for determining NPs | [76] |
SEM-EDX | Observation of surface morphology and elemental composition of MPs and NPs | - | [77] |
µ-FTIR | Identification and quantification of MPs | Not suitable for determining NPs | [82] |
FTIR with attenuated total reflectance | Assessment of the functional chemistry and polymer type of MPs | Limited to particles with a size >1–20 µm | [85] |
Py-GC/MS | Speciation and quantification of MPs and NPs in native human tissues | Lipids in the human matrix may interfere with analysis Oxidative degradation during pyrolysis may underestimate MPs/NPs | [85,87] |
TEM | Observation of shapes and sizes of NPs and MPs in different tissue types | Polymer composition of MPs/NPs cannot be confirmed | [87] |
General limitations and challenges with MPs and NPs analysis in human matrices | Lack of standardization of methodological protocols Lack of consistent concentration units within the matrix Method validation rarely performed Limited number of studies on human matrices |
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Presence of Microplastics and Nanoplastics in Food, with Particular Focus on Seafood. EFSA J. 2016, 14, e04501. [Google Scholar] [CrossRef]
- Marrone, A.; La Russa, M.F.; Randazzo, L.; La Russa, D.; Cellini, E.; Pellegrino, D. Microplastics in the Center of Mediterranean: Comparison of the Two Calabrian Coasts and Distribution from Coastal Areas to the Open Sea. Int. J. Environ. Res. Public Health 2021, 18, 10712. [Google Scholar] [CrossRef] [PubMed]
- Vdovchenko, A.; Resmini, M. Mapping Microplastics in Humans: Analysis of Polymer Types, and Shapes in Food and Drinking Water—A Systematic Review. Int. J. Mol. Sci. 2024, 25, 7074. [Google Scholar] [CrossRef] [PubMed]
- D’Hont, A.; Gittenberger, A.; Leuven, R.S.E.W.; Hendriks, A.J. Dropping the Microbead: Source and Sink Related Microplastic Distribution in the Black Sea and Caspian Sea Basins. Mar. Pollut. Bull. 2021, 173, 112982. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Nag, R.; Cummins, E. Ranking of Potential Hazards from Microplastics Polymers in the Marine Environment. J. Hazard. Mater. 2022, 429, 128399. [Google Scholar] [CrossRef]
- Yu, R.S.; Singh, S. Microplastic Pollution: Threats and Impacts on Global Marine Ecosystems. Sustainability 2023, 15, 13252. [Google Scholar] [CrossRef]
- Lozano, Y.M.; Lehnert, T.; Linck, L.T.; Lehmann, A.; Rillig, M.C. Microplastic Shape, Polymer Type, and Concentration Affect Soil Properties and Plant Biomass. Front. Plant Sci. 2021, 12, 616645. [Google Scholar] [CrossRef]
- Gan, Q.; Cui, J.; Jin, B. Environmental Microplastics: Classification, Sources, Fates, and Effects on Plants. Chemosphere 2023, 313, 137559. [Google Scholar] [CrossRef]
- Kadac-Czapska, K.; Knez, E.; Grembecka, M. Food and Human Safety: The Impact of Microplastics. Crit. Rev. Food Sci. Nutr. 2024, 64, 3502–3521. [Google Scholar] [CrossRef]
- Song, J.; Wang, C.; Li, G. Defining Primary and Secondary Microplastics: A Connotation Analysis. ACS ES&T Water 2024, 4, 2330–2332. [Google Scholar] [CrossRef]
- Ziani, K.; Ioniță-Mîndrican, C.B.; Mititelu, M.; Neacșu, S.M.; Negrei, C.; Moroșan, E.; Drăgănescu, D.; Preda, O.T. Microplastics: A Real Global Threat for Environment and Food Safety: A State of the Art Review. Nutrients 2023, 15, 617. [Google Scholar] [CrossRef]
- Lindfors, S.; Österlund, H.; Lorenz, C.; Vianello, A.; Nordqvist, K.; Gopinath, K.; Lykkemark, J.; Lundy, L.; Vollertsen, J.; Viklander, M. Microplastics and Tyre Wear Particles in Urban Runoff from Different Urban Surfaces. Sci. Total Environ. 2025, 980, 179527. [Google Scholar] [CrossRef]
- Acharya, S.; Rumi, S.S.; Hu, Y.; Abidi, N. Microfibers from Synthetic Textiles as a Major Source of Microplastics in the Environment: A Review. Text. Res. J. 2021, 91, 2136–2156. [Google Scholar] [CrossRef]
- Huber, M.; Archodoulaki, V.M.; Pomakhina, E.; Pukánszky, B.; Zinöcker, E.; Gahleitner, M. Environmental Degradation and Formation of Secondary Microplastics from Packaging Material: A Polypropylene Film Case Study. Polym. Degrad. Stab. 2022, 195, 109794. [Google Scholar] [CrossRef]
- Wright, L.S.; Napper, I.E.; Thompson, R.C. Potential Microplastic Release from Beached Fishing Gear in Great Britain’s Region of Highest Fishing Litter Density. Mar. Pollut. Bull. 2021, 173, 113115. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, L.; Zhou, N.; Chen, Y.; Ling, Z.; Xiang, P. Microplastics in the Human Body: A Comprehensive Review of Exposure, Distribution, Migration Mechanisms, and Toxicity. Sci. Total Environ. 2024, 946, 174215. [Google Scholar] [CrossRef]
- Roslan, N.S.; Lee, Y.Y.; Ibrahim, Y.S.; Anuar, S.T.; Yusof, K.M.K.K.; Lai, L.A.; Brentnall, T. Detection of Microplastics in Human Tissues and Organs: A Scoping Review. J. Glob. Health 2024, 14, 04179. [Google Scholar] [CrossRef]
- Sofield, C.E.; Anderton, R.S.; Gorecki, A.M. Mind over Microplastics: Exploring Microplastic-Induced Gut Disruption and Gut-Brain-Axis Consequences. Curr. Issues Mol. Biol. 2024, 46, 4186–4202. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, C.; Duan, X.; Liang, B.; Genbo Xu, E.; Huang, Z. Micro- and Nanoplastics: A New Cardiovascular Risk Factor? Environ. Int. 2023, 171, 107662. [Google Scholar] [CrossRef]
- Saha, S.C.; Saha, G. Effect of Microplastics Deposition on Human Lung Airways: A Review with Computational Benefits and Challenges. Heliyon 2024, 10, e24355. [Google Scholar] [CrossRef]
- Bora, S.S.; Gogoi, R.; Sharma, M.R.; Anshu; Borah, M.P.; Deka, P.; Bora, J.; Naorem, R.S.; Das, J.; Teli, A.B. Microplastics and Human Health: Unveiling the Gut Microbiome Disruption and Chronic Disease Risks. Front. Cell Infect. Microbiol. 2024, 14, 1492759. [Google Scholar] [CrossRef]
- Prabhu, K.; Ghosh, S.; Sethulekshmi, S.; Shriwastav, A. In Vitro Digestion of Microplastics in Human Digestive System: Insights into Particle Morphological Changes and Chemical Leaching. Sci. Total Environ. 2024, 934, 173173. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, L.; Olsen, M.; Tajouri, L.; Beaver, D.; Hudson, C.; Alghafri, R.; McKirdy, S.; Goldsworthy, A. Plastic Induced Urinary Tract Disease and Dysfunction: A Scoping Review. J. Expo. Sci. Environ. Epidemiol. 2024, 35, 770–784. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wu, Y.; Li, G.; Xiong, Y.; Zhang, Y.; Zhang, M. The Hidden Threat: Unraveling the Impact of Microplastics on Reproductive Health. Sci. Total Environ. 2024, 935, 173177. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Xu, S.; Liu, J.; Liu, Z. The Effects of Micro- and Nanoplastics on the Central Nervous System: A New Threat to Humanity? Toxicology 2024, 504, 153799. [Google Scholar] [CrossRef]
- Yee, M.S.L.; Hii, L.W.; Looi, C.K.; Lim, W.M.; Wong, S.F.; Kok, Y.Y.; Tan, B.K.; Wong, C.Y.; Leong, C.O. Impact of Microplastics and Nanoplastics on Human Health. Nanomaterials 2021, 11, 496. [Google Scholar] [CrossRef]
- Strojny, W.; Gruca-Rokosz, R.; Cieśla, M. Microplastics in Water Resources: Threats and Challenges. Appl. Sci. 2025, 15, 4118. [Google Scholar] [CrossRef]
- Wang, S.; AL-Hasni, N.S.; Liu, Z.; Liu, A. Multifaceted Aquatic Environmental Differences between Nanoplastics and Microplastics: Behavior and Fate. Environ. Health 2024, 2, 688–701. [Google Scholar] [CrossRef]
- Pandey, B.; Pathak, J.; Singh, P.; Kumar, R.; Kumar, A.; Kaushik, S.; Thakur, T.K. Microplastics in the Ecosystem: An Overview on Detection, Removal, Toxicity Assessment, and Control Release. Water 2023, 15, 51. [Google Scholar] [CrossRef]
- Ośko, J.; Kadac-Czapska, K.; Jażdżewska, K.; Nowak, N.; Kowalczyk, P.; Grembecka, M. Nanoplastics: From Separations to Analysis—Challenges and Limitations. Separations 2025, 12, 185. [Google Scholar] [CrossRef]
- Wang, T.; Wang, L.; Chen, Q.; Kalogerakis, N.; Ji, R.; Ma, Y. Interactions between Microplastics and Organic Pollutants: Effects on Toxicity, Bioaccumulation, Degradation, and Transport. Sci. Total Environ. 2020, 748, 142427. [Google Scholar] [CrossRef]
- Selvam, S.; Jesuraja, K.; Venkatramanan, S.; Roy, P.D.; Jeyanthi Kumari, V. Hazardous Microplastic Characteristics and Its Role as a Vector of Heavy Metal in Groundwater and Surface Water of Coastal South India. J. Hazard. Mater. 2021, 402, 123786. [Google Scholar] [CrossRef]
- Kirstein, I.V.; Kirmizi, S.; Wichels, A.; Garin-Fernandez, A.; Erler, R.; Löder, M.; Gerdts, G. Dangerous Hitchhikers? Evidence for Potentially Pathogenic Vibrio Spp. on Microplastic Particles. Mar. Environ. Res. 2016, 120, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Zhang, Y.; Shao, Y.; Ray, S.S.; Wang, B.; Zhao, Z.; Yu, B.; Zhang, X.; Li, W.; Ding, J.; et al. A Review on the Occurrence, Detection Methods, and Ecotoxicity of Biodegradable Microplastics in the Aquatic Environment: New Cause for Concern. Trends Anal. Chem. 2024, 178, 117832. [Google Scholar] [CrossRef]
- Muñiz, R.; Rahman, M.S. Microplastics in Coastal and Marine Environments: A Critical Issue of Plastic Pollution on Marine Organisms, Seafood Contaminations, and Human Health Implications. J. Hazard. Mater. Adv. 2025, 18, 100663. [Google Scholar] [CrossRef]
- Kumar, M.; Chaudhary, V.; Kumar, R.; Chaudhary, V.; Srivastav, A.L. Microplastics, Their Effects on Ecosystems, and General Strategies for Mitigation of Microplastics: A Review of Recent Developments, Challenges, and Future Prospects. Environ. Pollut. Manag. 2025, 2, 87–105. [Google Scholar] [CrossRef]
- Sinha, P.; Saini, V.; Varshney, N.; Pandey, R.K.; Jha, H.C. The Infiltration of Microplastics in Human Systems: Gastrointestinal Accumulation and Pathogenic Impacts. Heliyon 2025, 11, e42606. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, L. Microplastic Migration and Transformation Pathways and Exposure Health Risks. Environ. Pollut. 2025, 368, 125700. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, J. From Gonads to Generations: Mechanistic Insights into Reproductive Disruption by Polystyrene Nanoplastics and Co-Contaminants in Fish. Environ. Chem. Ecotoxicol. 2025, 7, 1871–1883. [Google Scholar] [CrossRef]
- Thakur, R.; Joshi, V.; Sahoo, G.C.; Jindal, N.; Tiwari, R.R.; Rana, S. Review of Mechanisms and Impacts of Nanoplastic Toxicity in Aquatic Organisms and Potential Impacts on Human Health. Toxicol. Rep. 2025, 14, 102013. [Google Scholar] [CrossRef]
- Permana, R.; Chakraborty, S.; Valsami-Jones, E. Nanoplastics in Aquatic Environments: The Hidden Impact of Aging on Fate and Toxicity. Environ. Chem. Ecotoxicol. 2025, 7, 429–444. [Google Scholar] [CrossRef]
- Barría, C.; Balasch, J.C.; Brandts, I.; Oliva, D.; Iriarte, J.L.; Teles, M. Immunological Responses, Oxidative Stress, and Histopathological Effects of Nanoplastics on Commercially Relevant Mussel Species: A Review. J. Hazard. Mater. Adv. 2025, 17, 100540. [Google Scholar] [CrossRef]
- Gupta, C.; Kaushik, S.; Himanshu; Jain, S.; Dhanwani, I.; Mansi; Garg, S.; Paul, A.; Pant, P.; Gupta, N. Bioaccumulation and Toxicity of Polystyrene Nanoplastics on Marine and Terrestrial Organisms with Possible Remediation Strategies: A Review. Environ. Adv. 2022, 8, 100227. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Lin, Y.-C.; Liu, W.-C.; Lee, Y.-H.; Chiu, H.-W. Air Pollution and Its Impacts on Health: Focus on Microplastics and Nanoplastics. Ecotoxicol. Environ. Saf. 2025, 299, 118402. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhou, N.; Gao, Q.; Peijnenburg, W.J.G.M.; Yin, K.; Li, L.; Wang, Y. Microplastics and Nanoplastics in the Ocular Environment: Pathways, Toxic Effects, and Future Challenges. Curr. Res. Toxicol. 2025, 9, 100251. [Google Scholar] [CrossRef] [PubMed]
- Tsochatzis, E.D.; Gika, H.; Theodoridis, G.; Maragou, N.; Thomaidis, N.; Corredig, M. Microplastics and Nanoplastics: Exposure and Toxicological Effects Require Important Analysis Considerations. Heliyon 2024, 10, e32261. [Google Scholar] [CrossRef]
- Jahedi, F.; Jaafarzadeh Haghighi Fard, N. Micro- and Nanoplastic Toxicity in Humans: Exposure Pathways, Cellular Effects, and Mitigation Strategies. Toxicol. Rep. 2025, 14, 102043. [Google Scholar] [CrossRef]
- Sadique, S.A.; Konarova, M.; Niu, X.; Szilagyi, I.; Nirmal, N.; Li, L. Impact of Microplastics and Nanoplastics on Human Health: Emerging Evidence and Future Directions. Emerg. Contam. 2025, 11, 100545. [Google Scholar] [CrossRef]
- Kochanek, A.; Grąz, K.; Potok, H.; Gronba-Chyła, A.; Kwaśny, J.; Wiewiórska, I.; Ciuła, J.; Basta, E.; Łapiński, J. Micro- and Nanoplastics in the Environment: Current State of Research, Sources of Origin, Health Risks, and Regulations—A Comprehensive Review. Toxics 2025, 13, 564. [Google Scholar] [CrossRef]
- Choudhury, M.; Roy, P. Challenges with Microplastic Pollution in the Regime of UN Sustainable Development Goals. World Dev. Sustain. 2025, 6, 100216. [Google Scholar] [CrossRef]
- Kadac-Czapska, K.; Knez, E.; Gierszewska, M.; Olewnik-Kruszkowska, E.; Grembecka, M. Microplastics Derived from Food Packaging Waste—Their Origin and Health Risks. Materials 2023, 16, 674. [Google Scholar] [CrossRef]
- Ghosh, S.; Sane, A.; Gohil, S.; Vashishtha, V.; Kumar, S.K.; Kumaraswamy, G. Mechanism of Microplastic and Nanoplastic Emission from Tire Wear. Soft Matter 2025, 21, 2782–2786. [Google Scholar] [CrossRef]
- Tanjil, R.H.; Islam, M.S.; Islam, Z.; Roy, S.; Nahian, S.; Salam, A. Atmospheric Microplastic Pollution in Textile Industrial Areas: Source, Composition, and Health Risk Assessment. Bull. Environ. Contam. Toxicol. 2025, 114, 51. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Cheng, Q.; Kumar, A.; Zhang, W.; Yu, Z.; Hui, D.; Zhang, C.; Shan, S. Effect of Degradable Microplastics, Biochar and Their Coexistence on Soil Organic Matter Decomposition: A Critical Review. Trends Anal. Chem. 2025, 183, 118082. [Google Scholar] [CrossRef]
- Miao, H.; Zhang, S.; Gao, W.; Zhou, J.; Cai, H.; Wu, L.; Liu, J.; Wang, Z.; Liu, T. Microplastics Occurrence and Distribution Characteristics in Mulched Agricultural Soils of Guizhou Province. Sci. Rep. 2024, 14, 21505. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Chen, S.Y.; Liao, C.M. Regional and Population-Scale Trends in Human Inhalation Exposure to Airborne Microplastics: Implications for Health Risk Assessment. Environ. Pollut. 2025, 371, 125950. [Google Scholar] [CrossRef]
- Chen, C.Y.; Kamineni, V.N.; Lin, Z. A Physiologically Based Toxicokinetic Model for Microplastics and Nanoplastics in Mice after Oral Exposure and Its Implications for Human Dietary Exposure Assessment. J. Hazard. Mater. 2024, 480, 135922. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, J.; Yang, L.; Huang, Y.; Zhang, N.; Ma, G. Internal and External Microplastic Exposure in Young Adults: A Pilot Study Involving 26 College Students in Changsha, China. Environ. Res. 2024, 263, 120250. [Google Scholar] [CrossRef]
- Lazaridis, K.N.; Koutsari, C.; Samsonraj, R.M. Microplastics and Nanoplastics and the Digestive System. Gastro Hep Adv. 2025, 4, 100694. [Google Scholar] [CrossRef]
- Tan, R.Y.; She, Q.Y.; Ma, Y.C.; Liu, M.H.; Li, L.J.; Huang, L.L.; Zhong, Y.W.; Bi, H.X. The Threat of Microplastics to Human Kidney Health: Mechanisms of Nephrotoxicity and Future Research Directions. Environ. Res. 2025, 283, 122124. [Google Scholar] [CrossRef]
- Gecegelen, E.; Ucdal, M.; Dogu, B.B. A Novel Risk Factor for Dementia: Chronic Microplastic Exposure. Front. Neurol. 2025, 16, 1581109. [Google Scholar] [CrossRef] [PubMed]
- Riaz, H.H.; Lodhi, A.H.; Munir, A.; Zhao, M.; Ali, M.H.; Sauret, E.; Gu, Y.T.; Islam, M.S. Breath of Pollutants: How Breathing Patterns Influence Microplastic Accumulation in the Human Lung. Int. J. Multiph. Flow. 2025, 185, 105156. [Google Scholar] [CrossRef]
- Löndahl, J.; Pagels, J.; Swietlicki, E.; Zhou, J.; Ketzel, M.; Massling, A.; Bohgard, M. A Set-up for Field Studies of Respiratory Tract Deposition of Fine and Ultrafine Particles in Humans. J. Aerosol Sci. 2006, 37, 1152–1163. [Google Scholar] [CrossRef]
- Kim, K.H.; Kabir, E.; Kabir, S. A Review on the Human Health Impact of Airborne Particulate Matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef]
- Geppner, L.; Hellner, J.; Henjakovic, M. Effects of Micro- and Nanoplastics on Blood Cells In Vitro and Cardiovascular Parameters In Vivo, Considering Their Presence in the Human Bloodstream and Potential Impact on Blood Pressure. Environ. Res. 2025, 273, 121254. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, Q.; Li, Y.; Feng, Y.; Wang, Y.; Cheng, W. Low-Dose of Polystyrene Microplastics Induce Cardiotoxicity in Mice and Human-Originated Cardiac Organoids. Environ. Int. 2023, 179, 108171. [Google Scholar] [CrossRef]
- Wolff, C.M.; Singer, D.; Schmidt, A.; Bekeschus, S. Immune and Inflammatory Responses of Human Macrophages, Dendritic Cells, and T-Cells in Presence of Micro- and Nanoplastic of Different Types and Sizes. J. Hazard. Mater. 2023, 459, 132194. [Google Scholar] [CrossRef]
- Wang, T.; Yi, Z.; Liu, X.; Cai, Y.; Huang, X.; Fang, J.; Shen, R.; Lu, W.; Xiao, Y.; Zhuang, W.; et al. Multimodal Detection and Analysis of Microplastics in Human Thrombi from Multiple Anatomically Distinct Sites. eBioMedicine 2024, 103, 105118. [Google Scholar] [CrossRef]
- Pironti, C.; Notarstefano, V.; Ricciardi, M.; Motta, O.; Giorgini, E.; Montano, L. First Evidence of Microplastics in Human Urine, a Preliminary Study of Intake in the Human Body. Toxics 2023, 11, 40. [Google Scholar] [CrossRef]
- Wibowo, A.T.; Nugrahapraja, H.; Wahyuono, R.A.; Islami, I.; Haekal, M.H.; Fardiansyah, Y.; Sugiyo, P.W.W.; Putro, Y.K.; Fauzia, F.N.; Santoso, H.; et al. Microplastic Contamination in the Human Gastrointestinal Tract and Daily Consumables Associated with an Indonesian Farming Community. Sustainability 2021, 13, 12840. [Google Scholar] [CrossRef]
- Zhang, N.; Li, Y.B.; He, H.R.; Zhang, J.F.; Ma, G.S. You Are What You Eat: Microplastics in the Feces of Young Men Living in Beijing. Sci. Total Environ. 2021, 767, 144345. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.W.; Lim, J.Y.; Yeoh, Y.K.; Chiou, J.C.; Zhu, Y.; Lai, K.P.; Li, L.; Chan, P.K.S.; Fang, J.K.H. Preliminary Findings of the High Quantity of Microplastics in Faeces of Hong Kong Residents. Toxics 2022, 10, 414. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, C.; Lomako, I.; Schachner, C.; El Said, E.; Abert, J.; Satrapa, V.; Kaiser, A.M.; Walch, H.; Köppel, S. Assessment of Microplastics in Human Stool: A Pilot Study Investigating the Potential Impact of Diet-Associated Scenarios on Oral Microplastics Exposure. Sci. Total Environ. 2024, 951, 175825. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Liu, Y.; Zhang, T.; Zhang, F.; Ren, H.; Zhang, Y. Analysis of Microplastics in Human Feces Reveals a Correlation between Fecal Microplastics and Inflammatory Bowel Disease Status. Environ. Sci. Technol. 2022, 56, 414–421. [Google Scholar] [CrossRef]
- Xu, J.; Qu, J.; Jin, H.; Mao, W. Associations between Microplastics in Human Feces and Colorectal Cancer Risk. J. Hazard. Mater. 2025, 495, 139099. [Google Scholar] [CrossRef]
- Jahedi, F.; Haghighi Fard, N.J.; Ahmadi, M.; Takdastan, A.; Shoushtari, M.H.; Dehbandi, R.; Turner, A. Microplastics in Urine, Sputum and Lung Lavage Fluid from Patients with Respiratory Illnesses. Environ. Res. 2025, 274, 121278. [Google Scholar] [CrossRef]
- Baeza-Martínez, C.; Olmos, S.; González-Pleiter, M.; López-Castellanos, J.; García-Pachón, E.; Masiá-Canuto, M.; Hernández-Blasco, L.; Bayo, J. First Evidence of Microplastics Isolated in European Citizens’ Lower Airway. J. Hazard. Mater. 2022, 438, 129439. [Google Scholar] [CrossRef]
- Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and Quantification of Plastic Particle Pollution in Human Blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef]
- Marfella, R.; Prattichizzo, F.; Sardu, C.; Fulgenzi, G.; Graciotti, L.; Spadoni, T.; D’Onofrio, N.; Scisciola, L.; La Grotta, R.; Frigé, C.; et al. Microplastics and Nanoplastics in Atheromas and Cardiovascular Events. N. Eng. J. Med. 2024, 390, 900–910. [Google Scholar] [CrossRef]
- Massardo, S.; Verzola, D.; Alberti, S.; Caboni, C.; Santostefano, M.; Eugenio Verrina, E.; Angeletti, A.; Lugani, F.; Ghiggeri, G.M.; Bruschi, M.; et al. MicroRaman Spectroscopy Detects the Presence of Microplastics in Human Urine and Kidney Tissue. Environ. Int. 2024, 184, 108444. [Google Scholar] [CrossRef]
- Exacoustos, O.; Artini, C.; Massardo, S.; Caboni, C.; Pastorino, A.; Chiarenza, S.; Zaza, G.; Stallone, G.; Ghiggeri, G.M.; Angeletti, A.; et al. #6111 First Identification And Characterization Of Microplastics In Human Kidney And Urine. Nephrol. Dial. Transplant. 2023, 38, gfad063a_6111. [Google Scholar] [CrossRef]
- Rotchell, J.M.; Austin, C.; Chapman, E.; Atherall, C.A.; Liddle, C.R.; Dunstan, T.S.; Blackburn, B.; Mead, A.; Filart, K.; Beeby, E.; et al. Microplastics in Human Urine: Characterisation Using ΜFTIR and Sampling Challenges Using Healthy Donors and Endometriosis Participants. Ecotoxicol. Environ. Saf. 2024, 274, 116208. [Google Scholar] [CrossRef]
- Song, X.; Chen, T.; Chen, Z.; Du, L.; Qiu, X.; Zhang, Y.; Li, Y.; Zhu, Y.; Tan, Z.; Mo, Y.; et al. Micro(Nano)Plastics in Human Urine: A Surprising Contrast between Chongqing’s Urban and Rural Regions. Sci. Total Environ. 2024, 917, 170455. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, G.; Sun, K.; Ren, J.; Zhou, J.; Liu, X.; Lin, F.; Yang, H.; Cao, J.; Nie, L.; et al. Association of Mixed Exposure to Microplastics with Sperm Dysfunction: A Multi-Site Study in China. eBioMedicine 2024, 108, 105369. [Google Scholar] [CrossRef]
- Garcia, M.A.; Liu, R.; Nihart, A.; El Hayek, E.; Castillo, E.; Barrozo, E.R.; Suter, M.A.; Bleske, B.; Scott, J.; Forsythe, K.; et al. Quantitation and Identification of Microplastics Accumulation in Human Placental Specimens Using Pyrolysis Gas Chromatography Mass Spectrometry. Toxicol. Sci. 2024, 199, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Liang, L.; Li, Q.; Li, N.; Zhu, X.; Zhang, L. Association between Microplastics in Human Amniotic Fluid and Pregnancy Outcomes: Detection and Characterization Using Raman Spectroscopy and Pyrolysis GC/MS. J. Hazard. Mater. 2025, 482, 136637. [Google Scholar] [CrossRef]
- Nihart, A.J.; Garcia, M.A.; El Hayek, E.; Liu, R.; Olewine, M.; Kingston, J.D.; Castillo, E.F.; Gullapalli, R.R.; Howard, T.; Bleske, B.; et al. Bioaccumulation of Microplastics in Decedent Human Brains. Nat. Med. 2025, 31, 1114–1119. [Google Scholar] [CrossRef]
- Amato-Lourenço, L.F.; Dantas, K.C.; Júnior, G.R.; Paes, V.R.; Ando, R.A.; De Oliveira Freitas, R.; Da Costa, O.M.M.M.; Rabelo, R.S.; Soares Bispo, K.C.; Carvalho-Oliveira, R.; et al. Microplastics in the Olfactory Bulb of the Human Brain. JAMA Netw. Open 2024, 7, e2440018. [Google Scholar] [CrossRef]
- Xie, J.; Ji, J.; Sun, Y.; Ma, Y.; Wu, D.; Zhang, Z. Blood-Brain Barrier Damage Accelerates the Accumulation of Micro- and Nanoplastics in the Human Central Nervous System. J. Hazard. Mater. 2024, 480, 136028. [Google Scholar] [CrossRef]
- Chen, Y.; Meng, Y.; Liu, G.; Huang, X.; Chai, G. Probabilistic Estimation of Airborne Micro- and Nanoplastic Intake in Humans. Environ. Sci. Technol. 2024, 58, 9071–9081. [Google Scholar] [CrossRef]
- Protyusha, G.B.; Kavitha, B.; Robin, R.S.; Nithin, A.; Ineyathendral, T.R.; Shivani, S.S.; Anandavelu, I.; Sivasamy, S.; Samuel, V.D.; Purvaja, R. Microplastics in Oral Healthcare Products (OHPs) and Their Environmental Health Risks and Mitigation Measures. Environ. Pollut. 2024, 343, 123118. [Google Scholar] [CrossRef] [PubMed]
- Sohail, M.; Urooj, Z.; Noreen, S.; Baig, M.M.F.A.; Zhang, X.; Li, B. Micro- and Nanoplastics: Contamination Routes of Food Products and Critical Interpretation of Detection Strategies. Sci. Total Environ. 2023, 891, 164596. [Google Scholar] [CrossRef] [PubMed]
- Oliveri Conti, G.; Ferrante, M.; Banni, M.; Favara, C.; Nicolosi, I.; Cristaldi, A.; Fiore, M.; Zuccarello, P. Micro- and Nano-Plastics in Edible Fruit and Vegetables. The First Diet Risks Assessment for the General Population. Environ. Res. 2020, 187, 109677. [Google Scholar] [CrossRef]
- Kedzierski, M.; Lechat, B.; Sire, O.; Le Maguer, G.; Le Tilly, V.; Bruzaud, S. Microplastic Contamination of Packaged Meat: Occurrence and Associated Risks. Food Packag. Shelf Life 2020, 24, 100489. [Google Scholar] [CrossRef]
- Edo, C.; Fernández-Alba, A.R.; Vejsnæs, F.; van der Steen, J.J.M.; Fernández-Piñas, F.; Rosal, R. Honeybees as Active Samplers for Microplastics. Sci. Total Environ. 2021, 767, 144481. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, Z.; Chen, Y.; Yang, F.; Yao, W.; Xie, Y. Microplastics Contamination in Eggs: Detection, Occurrence and Status. Food Chem. 2022, 397, 133771. [Google Scholar] [CrossRef]
- Vega-Herrera, A.; Garcia-Torné, M.; Borrell-Diaz, X.; Abad, E.; Llorca, M.; Villanueva, C.M.; Farré, M. Exposure to Micro(Nano)Plastics Polymers in Water Stored in Single-Use Plastic Bottles. Chemosphere 2023, 343, 140106. [Google Scholar] [CrossRef]
- Pham, D.T.; Kim, J.; Lee, S.H.; Kim, J.; Kim, D.; Hong, S.; Jung, J.; Kwon, J.H. Analysis of Microplastics in Various Foods and Assessment of Aggregate Human Exposure via Food Consumption in Korea. Environ. Pollut. 2023, 322, 121153. [Google Scholar] [CrossRef]
- Kadac-Czapska, K.; Jutrzenka Trzebiatowska, P.; Mazurkiewicz, M.; Kowalczyk, P.; Knez, E.; Behrendt, M.; Mahlik, S.; Zaleska-Medynska, A.; Grembecka, M. Isolation and Identification of Microplastics in Infant Formulas—A Potential Health Risk for Children. Food Chem. 2024, 440, 138246. [Google Scholar] [CrossRef]
- Zhu, J.; Dong, X.; Zhao, N.; Jiang, S.; Jin, H. Microplastics in Polystyrene-Made Food Containers from China: Abundance, Shape, Size, and Human Intake. Environ. Sci. Pollut. Res. 2023, 30, 40084–40093. [Google Scholar] [CrossRef]
- Vega-Herrera, A.; Llorca, M.; Borrell-Diaz, X.; Redondo-Hasselerharm, P.E.; Abad, E.; Villanueva, C.M.; Farré, M. Polymers of Micro(Nano) Plastic in Household Tap Water of the Barcelona Metropolitan Area. Water Res. 2022, 220, 118645. [Google Scholar] [CrossRef]
- Huerta Lwanga, E.; Mendoza Vega, J.; Ku Quej, V.; Chi, J.D.L.A.; Sanchez del Cid, L.; Chi, C.; Escalona Segura, G.; Gertsen, H.; Salánki, T.; van der Ploeg, M.; et al. Field Evidence for Transfer of Plastic Debris along a Terrestrial Food Chain. Sci. Rep. 2017, 7, 14071. [Google Scholar] [CrossRef]
- Cole, M.; Gomiero, A.; Jaén-Gil, A.; Haave, M.; Lusher, A. Microplastic and PTFE Contamination of Food from Cookware. Sci. Total Environ. 2024, 929, 172577. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, J.; Guo, J.; Yao, M.; Liu, Y.; Qian, J.; Ma, Q. Release of Microplastics during Dental Procedures and Denture Wear: Impact on Dental Personnel and Patients. J. Hazard. Mater. 2025, 494, 138463. [Google Scholar] [CrossRef] [PubMed]
- Panayi, N.; Papageorgiou, S.N.; Eliades, G.; Eliades, T. Microplastics and Orthodontic Aligners: The Concerns Arising from the Modernization of Practice Through Polymers and Plastics. J. World Fed. Orthod. 2024, 13, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.Z.; Zaman, S.U.; Sami, N.I.; Roy, S.; Jeba, F.; Islam, M.S.; Salam, A. Human Inhalation Exposure Assessment of the Airborne Microplastics from Indoor Deposited Dusts during Winter in Dhaka, Bangladesh. Heliyon 2024, 10, e36449. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Ji, X.; Ma, Y.; Lv, B.; Huang, W.; Zhu, X.; Fang, M.; Wang, Q.; Wang, X.; Dahlgren, R.; et al. Airborne Microplastics in Indoor and Outdoor Environments of a Coastal City in Eastern China. J. Hazard. Mater. 2021, 417, 126007. [Google Scholar] [CrossRef]
- Ageel, H.K.; Harrad, S.; Abdallah, M.A.E. Microplastics in Indoor Air from Birmingham, UK: Implications for Inhalation Exposure. Environ. Pollut. 2024, 362, 124960. [Google Scholar] [CrossRef]
- Jones, N.R.; de Jersey, A.M.; Lavers, J.L.; Rodemann, T.; Rivers-Auty, J. Identifying Laboratory Sources of Microplastic and Nanoplastic Contamination from the Air, Water, and Consumables. J. Hazard. Mater. 2024, 465, 133276. [Google Scholar] [CrossRef]
- Yuk, H.; Jo, H.H.; Nam, J.; Kim, Y.U.; Kim, S. Microplastic: A Particulate Matter(PM) Generated by Deterioration of Building Materials. J. Hazard. Mater. 2022, 437, 129290. [Google Scholar] [CrossRef]
- Lambert, S.; Vercauteren, M.; Catarino, A.I.; Li, Y.; Van Landuyt, J.; Boon, N.; Everaert, G.; De Rijcke, M.; Janssen, C.R.; Asselman, J. Aerosolization of Micro- and Nanoplastics via Sea Spray: Investigating the Role of Polymer Type, Size, and Concentration, and Potential Implications for Human Exposure. Environ. Pollut. 2024, 351, 124105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wei, F.; Fu, H.; Guo, H. Characterisation of Environmentally Persistent Free Radicals and Their Contributions to Oxidative Potential and Reactive Oxygen Species in Sea Spray and Size-Resolved Ambient Particles. NPJ Clim. Atmos. Sci. 2025, 8, 27. [Google Scholar] [CrossRef]
- Shahsavani, A.; Pasalari, H.; Kermani, M.; Tangestani, M.; Ahmadi, F. Health Outcomes Attributed to Inhalation of Microplastic Released from Mask During COVID-19 Pandemic: A Systematic Review. J. Hazard. Mater. Adv. 2025, 18, 100696. [Google Scholar] [CrossRef]
- Li, L.; Zhao, X.; Li, Z.; Song, K. COVID-19: Performance Study of Microplastic Inhalation Risk Posed by Wearing Masks. J. Hazard. Mater. 2021, 411, 124955. [Google Scholar] [CrossRef]
- Eom, S.; Shim, W.; Choi, I. Microplastic-Induced Inhibition of Cell Adhesion and Toxicity Evaluation Using Human Dermal Fibroblast-Derived Spheroids. J. Hazard. Mater. 2024, 465, 133359. [Google Scholar] [CrossRef]
- Song, G.B.; Nam, J.; Ji, S.; Woo, G.; Park, S.; Kim, B.; Hong, J.; Choi, M.G.; Kim, S.; Lee, C.; et al. Deciphering the Links: Fragmented Polystyrene as a Driver of Skin Inflammation. J. Hazard. Mater. 2024, 480, 135815. [Google Scholar] [CrossRef]
- Han, W.; Cui, J.; Sun, G.; Miao, X.; Pufang, Z.; Nannan, L. Nano-Sized Microplastics Exposure Induces Skin Cell Senescence via Triggering the Mitochondrial Localization of GSDMD. Environ. Pollut. 2024, 349, 123874. [Google Scholar] [CrossRef]
- Menichetti, A.; Mordini, D.; Montalti, M. Penetration of Microplastics and Nanoparticles Through Skin: Effects of Size, Shape, and Surface Chemistry. J. Xenobiot. 2025, 15, 6. [Google Scholar] [CrossRef]
- Radbakhsh, S.; Norouzzadeh, R. Microplastic Neurotoxicity: Pathways, Mechanisms, and Implications for Neurodegenerative Diseases. Pers. Med. J. 2025, 10, 31–38. [Google Scholar] [CrossRef]
- Bostan, N.; Ilyas, N.; Akhtar, N.; Mehmood, S.; Saman, R.U.; Sayyed, R.Z.; Shatid, A.A.; Alfaifi, M.Y.; Elbehairi, S.E.I.; Pandiaraj, S. Toxicity Assessment of Microplastic (MPs); a Threat to the Ecosystem. Environ. Res. 2023, 234, 116523. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.Q.; Cao, M.T.; Sun, C.X.; Wang, J.J.; Gao, M.X.; He, X.R.; Dang, L.N.; Geng, Y.Y.; Li, B.Y.; Li, J.; et al. Size-Dependent Internalization of Polystyrene Microplastics as a Key Factor in Macrophages and Systemic Toxicity. J. Hazard. Mater. 2025, 490, 137701. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Chen, Q.; Li, J.; Li, B.; Liang, W.; Su, L.; Shi, H. Distribution and Translocation of Micro- and Nanoplastics in Fish. Crit. Rev. Toxicol. 2021, 51, 740–753. [Google Scholar] [CrossRef] [PubMed]
- Yong, C.Q.Y.; Valiyaveettil, S.; Tang, B.L. Toxicity of Microplastics and Nanoplastics in Mammalian Systems. Int. J. Environ. Res. Public. Health 2020, 17, 1509. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Zhang, R.; Li, B.; Du, Y.; Li, J.; Tong, X.; Wu, Y.; Ji, X.; Zhang, Y. Tissue Distribution of Polystyrene Nanoplastics in Mice and Their Entry, Transport, and Cytotoxicity to GES-1 Cells. Environ. Pollut. 2021, 280, 116974. [Google Scholar] [CrossRef]
- Ivleva, N.P. Chemical Analysis of Microplastics and Nanoplastics: Challenges, Advanced Methods, and Perspectives. Chem. Rev. 2021, 121, 11886–11936. [Google Scholar] [CrossRef]
- Park, J.S.; Yoo, J.W.; Lee, Y.H.; Park, C.; Lee, Y.M. Size- and Shape-Dependent Ingestion and Acute Toxicity of Fragmented and Spherical Microplastics in the Absence and Presence of Prey on Two Marine Zooplankton. Mar. Pollut. Bull. 2024, 206, 116768. [Google Scholar] [CrossRef]
- Matavos-Aramyan, S. Addressing the Microplastic Crisis: A Multifaceted Approach to Removal and Regulation. Environ. Adv. 2024, 17, 100579. [Google Scholar] [CrossRef]
- Kim, L.; Kim, H.; Song, Y.; An, Y.J. Chronic Effects of Irregular and Fibril Microplastics on Artemia Franciscana in a Benthic Environment: Size and Shape-Dependent Toxicity. Mar. Pollut. Bull. 2024, 209, 117270. [Google Scholar] [CrossRef]
- An, D.; Na, J.; Song, J.; Jung, J. Size-Dependent Chronic Toxicity of Fragmented Polyethylene Microplastics to Daphnia Magna. Chemosphere 2021, 271, 129591. [Google Scholar] [CrossRef]
- Schwarzer, M.; Brehm, J.; Vollmer, M.; Jasinski, J.; Xu, C.; Zainuddin, S.; Fröhlich, T.; Schott, M.; Greiner, A.; Scheibel, T.; et al. Shape, Size, and Polymer Dependent Effects of Microplastics on Daphnia Magna. J. Hazard. Mater. 2022, 426, 128136. [Google Scholar] [CrossRef]
- Bobori, D.C.; Feidantsis, K.; Dimitriadi, A.; Datsi, N.; Ripis, P.; Kalogiannis, S.; Sampsonidis, I.; Kastrinaki, G.; Ainali, N.M.; Lambropoulou, D.A.; et al. Dose-Dependent Cytotoxicity of Polypropylene Microplastics (PP-MPs) in Two Freshwater Fishes. Int. J. Mol. Sci. 2022, 23, 13878. [Google Scholar] [CrossRef] [PubMed]
- Samaei, S.H.A.; Mojahednia, P.; Chen, J.; Li, Z.; Jaszczyszyn, K.; Kiedrzyńska, E.; Xue, J. What Does the “Trojan Horse” Carry? The Pollutants Associated with Microplastics/Nanoplastics in Water Environments. ACS ES&T Water 2025, 5, 1530–1545. [Google Scholar] [CrossRef]
- Ullah, S.; Ahmad, S.; Guo, X.; Ullah, S.; Ullah, S.; Nabi, G.; Wanghe, K. A Review of the Endocrine Disrupting Effects of Micro and Nano Plastic and Their Associated Chemicals in Mammals. Front. Endocrinol. 2023, 13, 1084236. [Google Scholar] [CrossRef] [PubMed]
- Belmaker, I.; Anca, E.D.; Rubin, L.P.; Magen-Molho, H.; Miodovnik, A.; van der Hal, N. Adverse Health Effects of Exposure to Plastic, Microplastics and Their Additives: Environmental, Legal and Policy Implications for Israel. Isr. J. Health Policy Res. 2024, 13, 44. [Google Scholar] [CrossRef]
- Martínez, A. Toxicity of Persistent Organic Pollutants: A Theoretical Study. J. Mol. Model. 2024, 30, 97. [Google Scholar] [CrossRef]
- Mitra, P.; Gupta, S.; Sharma, P. Double Trouble: Unravelling the Health Hazards of Microplastics and Heavy Metals. Ind. J. Clin. Biochem. 2024, 39, 447–449. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, H.; Liu, Y.; Jin, L.; Peng, R. Factors Affecting the Adsorption of Heavy Metals by Microplastics and Their Toxic Effects on Fish. Toxics 2023, 11, 490. [Google Scholar] [CrossRef]
- Cârdan, I.; Nesterovschi, I.; Barbu-Tudoran, L.; Pînzaru, S.C. Blue Micro-/Nanoplastics Abundance in the Environment: A Double Threat as a Trojan Horse for a Plastic-Cu-Phthalocyanine Pigment and an Opportunity for Nanoplastic Detection via Micro-Raman Spectroscopy. Environ. Sci. Nano 2025, 12, 2357–2370. [Google Scholar] [CrossRef]
- Järvelä, E.; Peräniemi, S.; Vepsäläinen, J.; Hrovat, B.; Raninen, K.; Tomppo, L.; Koistinen, A.; Rysä, J. A Study Protocol for Chemical Analysis and Toxicity Testing of Virgin and Recycled Microplastics and Associated Chemicals. Sci. Total Environ. 2025, 975, 179287. [Google Scholar] [CrossRef]
- Hua, X.; Wang, D. Cellular Uptake, Transport, and Organelle Response After Exposure to Microplastics and Nanoplastics: Current Knowledge and Perspectives for Environmental and Health Risks. Rev. Environ. Contam. Toxicol. 2022, 260, 12. [Google Scholar] [CrossRef]
- Bridgeman, L.; Cimbalo, A.; López-Rodríguez, D.; Pamies, D.; Frangiamone, M. Exploring Toxicological Pathways of Microplastics and Nanoplastics: Insights from Animal and Cellular Models. J. Hazard. Mater. 2025, 490, 137795. [Google Scholar] [CrossRef]
- Mahmud, F.; Sarker, D.B.; Jocelyn, J.A.; Sang, Q.X.A. Molecular and Cellular Effects of Microplastics and Nanoplastics: Focus on Inflammation and Senescence. Cells 2024, 13, 1788. [Google Scholar] [CrossRef] [PubMed]
- Pulvirenti, E.; Ferrante, M.; Barbera, N.; Favara, C.; Aquilia, E.; Palella, M.; Cristaldi, A.; Conti, G.O.; Fiore, M. Effects of Nano and Microplastics on the Inflammatory Process: In Vitro and In Vivo Studies Systematic Review. Front. Biosci. Landmark 2022, 27, 287. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xuan, Y.; Chen, Y.; Yang, F.; Zhu, M.; Xu, J.; Chen, J. Polystyrene Nanoplastics Induce Intestinal and Hepatic Inflammation through Activation of NF-ΚB/NLRP3 Pathways and Related Gut-Liver Axis in Mice. Sci. Total Environ. 2024, 935, 173458. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Chen, J.; Wang, Y.; Chen, M.; Bao, X.; Chen, X.; Xie, S.; Lin, Z.; Yu, Y. Investigating Polystyrene Nano-Plastic Effects on Largemouth Bass (Micropterus salmoides) Focusing on MRNA Expression: Endoplasmic Reticulum Stress and Lipid Metabolism Dynamics. Fishes 2024, 9, 432. [Google Scholar] [CrossRef]
- Fanghella, F.; Pesce, M.; Franceschelli, S.; Panella, V.; Elsallabi, O.; Lupi, T.; Rizza, B.; Di Battista, M.G.; Bruno, A.; Ballerini, P.; et al. Biological Modulation of Autophagy by Nanoplastics: A Current Overview. Int. J. Mol. Sci. 2025, 26, 7035. [Google Scholar] [CrossRef]
- Liang, X.; Zeng, Y.; Zhang, P.; Zhu, B.; Feng, J.; Deng, T.; Fu, Z.; Liu, C.; Chen, C.; Zhang, Y. Polystyrene Nanoplastics Trigger Pyroptosis in Dopaminergic Neurons through TSC2/TFEB-Mediated Disruption of Autophagosome-Lysosome Fusion in Parkinson’s Disease. J. Transl. Med. 2025, 23, 631. [Google Scholar] [CrossRef]
- Ornelas-Cruces, M.; Escalona-Montaño, A.R.; Salaiza-Suazo, N.; Sifontes-Rodríguez, S.; Aguirre-García, M.M. The Potential Role of Sanguinarine as an Inhibitor of Leishmania PP2C in the Induction of Apoptosis. Acta Parasitol. 2025, 70, 35. [Google Scholar] [CrossRef]
- Płuciennik, K.; Sicińska, P.; Misztal, W.; Bukowska, B. Important Factors Affecting Induction of Cell Death, Oxidative Stress and DNA Damage by Nano- and Microplastic Particles In Vitro. Cells 2024, 13, 768. [Google Scholar] [CrossRef]
- Wu, H.; Guo, J.; Yao, Y.; Xu, S. Polystyrene Nanoplastics Induced Cardiomyocyte Apoptosis and Myocardial Inflammation in Carp by Promoting ROS Production. Fish Shellfish Immunol. 2022, 125, 1–8. [Google Scholar] [CrossRef]
- Luo, H.; Du, Q.; Zhong, Z.; Xu, Y.; Peng, J. Protein-Coated Microplastics Corona Complex: An Underestimated Risk of Microplastics. Sci. Total Environ. 2022, 851, 157948. [Google Scholar] [CrossRef]
- Liu, L.; Xu, Y.; Ma, Y.; Duan, F.; Wang, C.; Feng, J.; Yin, H.; Sun, L.; Li, P.; Li, Z.H. Fate of Polystyrene Micro- and Nanoplastics in Zebrafish Liver Cells: Influence of Protein Corona on Transport, Oxidative Stress, and Glycolipid Metabolism. J. Hazard. Mater. 2025, 489, 137596. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Chen, Z.; Wei, W.; Chen, J.; Ni, B.J. Toxicity of Micro/Nanoplastics in the Environment: Roles of Plastisphere and Eco-Corona. Soil. Environ. Health 2023, 1, 100002. [Google Scholar] [CrossRef]
- Fu, J.; Chen, Y.; Wang, S. Protein Corona as a Mediator in Antibiotic Adsorption onto Microplastics: Mechanisms and Implications. Int. J. Biol. Macromol. 2025, 311, 143982. [Google Scholar] [CrossRef] [PubMed]
- Kadac-Czapska, K.; Ośko, J.; Knez, E.; Grembecka, M. Microplastics and Oxidative Stress—Current Problems and Prospects. Antioxidants 2024, 13, 579. [Google Scholar] [CrossRef]
- Zou, H.; Qu, H.; Bian, Y.; Sun, J.; Wang, T.; Ma, Y.; Yuan, Y.; Gu, J.; Bian, J.; Liu, Z. Polystyrene Microplastics Induce Oxidative Stress in Mouse Hepatocytes in Relation to Their Size. Int. J. Mol. Sci. 2023, 24, 7382. [Google Scholar] [CrossRef]
- Ma, J.; Ladd, D.M.; Kaval, N.; Wang, H.S. Toxicity of Long Term Exposure to Low Dose Polystyrene Microplastics and Nanoplastics in Human IPSC-Derived Cardiomyocytes. Food Chem. Toxicol. 2025, 202, 115489. [Google Scholar] [CrossRef]
- Mannering, A.M.; Burritt, D.J.; Komyakova, V.; Ferrari, M.C.O.; Vamvounis, G.; Gulizia, A.M.; Staples, A.; McCormick, M.I.; Allan, B.J.M. Microplastic Consumption Elevates Fish Oxidative Stress but Does Not Affect Predator-Driven Mortality. Sci. Total Environ. 2025, 983, 179644. [Google Scholar] [CrossRef]
- Chen, C.; Wang, X.; Jin, Y.; Yao, Y.; Li, S.; Liao, Z.; Zhang, X.; Yan, X. Simultaneous Exposure to Microplastics and Heavy Metal Lead Induces Oxidative Stress, Histopathological Damage, and Immune Dysfunction in Marine Mussel Mytilus Coruscus. Ecotoxicol. Environ. Saf. 2025, 289, 117493. [Google Scholar] [CrossRef]
- Babaei, A.A.; Rafiee, M.; Khodagholi, F.; Ahmadpour, E.; Amereh, F. Nanoplastics-Induced Oxidative Stress, Antioxidant Defense, and Physiological Response in Exposed Wistar Albino Rats. Environ. Sci. Pollut. Res. Int. 2022, 29, 11332–11344. [Google Scholar] [CrossRef]
- Feng, M.; Luo, J.; Wan, Y.; Zhang, J.; Lu, C.; Wang, M.; Dai, L.; Cao, X.; Yang, X.; Wang, Y. Polystyrene Nanoplastic Exposure Induces Developmental Toxicity by Activating the Oxidative Stress Response and Base Excision Repair Pathway in Zebrafish (Danio rerio). ACS Omega 2022, 7, 32153–32163. [Google Scholar] [CrossRef]
- Wang, C.; Luo, Q.; Zhang, J.; Zhang, X.; Yang, N.; Feng, L. Toxic Effects of Microplastics and Nanoplastics on Plants: A Global Meta-Analysis. Environ. Pollut. 2023, 337, 122593. [Google Scholar] [CrossRef]
- Jeong, J.; Thi Quynh Mai, N.; Moon, B.S.; Choi, J.K. Impact of Polystyrene Microplastics (PS-MPs) on the Entire Female Mouse Reproductive Cycle: Assessing Reproductive Toxicity of Microplastics through in Vitro Follicle Culture. Ecotoxicol. Environ. Saf. 2025, 297, 118228. [Google Scholar] [CrossRef]
- Ghosh, T. Microplastics Bioaccumulation in Fish: Its Potential Toxic Effects on Hematology, Immune Response, Neurotoxicity, Oxidative Stress, Growth, and Reproductive Dysfunction. Toxicol. Rep. 2025, 14, 101854. [Google Scholar] [CrossRef] [PubMed]
- Irnidayanti, Y.; Soegianto, A.; Ramdhany, F.A.; Afifudin, A.F.M.; Payus, C.M.; Hartl, M.G.J. Microplastic Contamination in Green Mussels (Perna viridis Linnaeus, 1858) from Traditional Seafood Markets in Jakarta, Indonesia, and an Evaluation of Potential Hazards. Mar. Pollut. Bull. 2025, 214, 117818. [Google Scholar] [CrossRef] [PubMed]
- Suljević, D.; Karlsson, P.; Fočak, M.; Brulić, M.M.; Sulejmanović, J.; Šehović, E.; Särndahl, E.; Engwall, M.; Alijagic, A. Microplastics and Nanoplastics Co-Exposure Modulates Chromium Bioaccumulation and Physiological Responses in Rats. Environ. Int. 2025, 198, 109421. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, H.; Busch, M.; Yang, S.; Venus, T.; Aalderink, G.; Crespo, J.F.F.; Villacorta, A.; Hernández, A.; Estrela-Lopis, I.; Boeren, S.; et al. Toxicity of True-to-Life Microplastics to Human IPSC-Derived Intestinal Epithelia Correlates to Their Protein Corona Composition. J. Hazard. Mater. 2025, 495, 138908. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, C.; Chen, Z.; Guo, Y.; Jing, Y.; Chen, X.; Liang, H. Polystyrene Microplastics Exacerbate Acetochlor-Induced Reproductive Toxicity and Transgenerational Effects in Zebrafish. Aquat. Toxicol. 2025, 279, 107208. [Google Scholar] [CrossRef]
- Liang, J.; Niu, T.; Zhang, L.; Yang, Y.; Li, Z.; Liang, Z.; Yu, K.; Gong, S. Polystyrene Microplastics Exhibit Toxic Effects on the Widespread Coral Symbiotic Cladocopium Goreaui. Environ. Res. 2025, 268, 120750. [Google Scholar] [CrossRef]
- Zangene, S.; Morovvati, H.; Anbara, H.; Hye Khan, M.A.; Goorani, S. Polystyrene Microplastics Cause Reproductive Toxicity in Male Mice. Food Chem. Toxicol. 2024, 194, 115083. [Google Scholar] [CrossRef]
- Zhu, C.; Zhou, H.; Bao, M.; Tang, S.; Gu, X.; Han, M.; Li, P.; Jiang, Q. Polystyrene Microplastics Induce Molecular Toxicity in Simocephalus Vetulus: A Transcriptome and Intestinal Microorganism Analysis. Aquat. Toxicol. 2024, 275, 107046. [Google Scholar] [CrossRef]
- Xu, J.L.; Lin, X.; Wang, J.J.; Gowen, A.A. A Review of Potential Human Health Impacts of Micro- and Nanoplastics Exposure. Sci. Total Environ. 2022, 851, 158111. [Google Scholar] [CrossRef]
- Kadac-Czapska, K.; Trzebiatowska, P.J.; Knez, E.; Zaleska-Medynska, A.; Grembecka, M. Microplastics in Food—A Critical Approach to Definition, Sample Preparation, and Characterisation. Food Chem. 2023, 418, 135985. [Google Scholar] [CrossRef]
- Carías Domínguez, A.M.; de Jesús Rosa Salazar, D.; Stefanolo, J.P.; Cruz Serrano, M.C.; Casas, I.C.; Zuluaga Peña, J.R. Intestinal Dysbiosis: Exploring Definition, Associated Symptoms, and Perspectives for a Comprehensive Understanding—A Scoping Review. Probiot. Antimicrob. Proteins 2025, 17, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Bidell, M.R.; Hobbs, A.L.V.; Lodise, T.P. Gut Microbiome Health and Dysbiosis: A Clinical Primer. Pharmacotherapy 2022, 42, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Qu, Y.; Qu, L.; Shen, D.; Liu, H.; Nie, Z. Oral Exposure to PLA Microplastics Induces Time-Dependent Nanotoxicity via the Gut-Liver Axis. J. Hazard. Mater. 2025, 495, 138931. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A.K.; Kaundle, B.; Singh, I. Mucoadhesive Drug Delivery Systems in Respiratory Diseases. In Targeting Chronic Inflammatory Lung Diseases Using Advanced Drug Delivery Systems; Academic Press: Cambridge, MA, USA, 2020; pp. 475–491. ISBN 9780128206584. [Google Scholar]
- Valavanidis, A.; Fiotakis, K.; Vlachogianni, T. Airborne Particulate Matter and Human Health: Toxicological Assessment and Importance of Size and Composition of Particles for Oxidative Damage and Carcinogenic Mechanisms. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2008, 26, 339–362. [Google Scholar] [CrossRef]
- Alzaben, M.; Burve, R.; Loeschner, K.; Møller, P.; Roursgaard, M. Nanoplastics from Ground Polyethylene Terephthalate Food Containers: Genotoxicity in Human Lung Epithelial A549 Cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2023, 892, 503705. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, Z.; Zhao, L.; Lu, L.; Lu, X.; Li, Y.; Gu, T.; Huang, X.; Huang, G.; Liang, Y.; et al. Exposure to Polyethylene Terephthalate Micro(Nano)Plastics Exacerbates Inflammation and Fibrosis after Myocardial Infarction by Reprogramming the Gut and Lung Microbiota and Metabolome. J. Hazard. Mater. 2025, 488, 137410. [Google Scholar] [CrossRef]
- Zhu, L.; Kang, Y.; Ma, M.; Wu, Z.; Zhang, L.; Hu, R.; Xu, Q.; Zhu, J.; Gu, X.; An, L. Tissue Accumulation of Microplastics and Potential Health Risks in Human. Sci. Total Environ. 2024, 915, 170004. [Google Scholar] [CrossRef]
- Li, B.; Li, M.; Du, D.; Tang, B.; Yi, W.; He, M.; Liu, R.; Yu, H.; Yu, Y.; Zheng, J. Characteristics and Influencing Factors of Microplastics Entering Human Blood through Intravenous Injection. Environ. Int. 2025, 198, 109377. [Google Scholar] [CrossRef] [PubMed]
- Çağlayan, U.; Gündoğdu, S.; Ramos, T.M.; Syberg, K. Intravenous Hypertonic Fluids as a Source of Human Microplastic Exposure. Environ. Toxicol. Pharmacol. 2024, 107, 104411. [Google Scholar] [CrossRef] [PubMed]
- Lusher, A.; Hollman, P.; Mendoza-Hill, J. Microplastics in Fisheries and Aquaculture: Status of Knowledge on Their Occurrence and Implications for Aquatic Organisms and Food Safety; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; ISBN 9789251098820. [Google Scholar]
- Lomonaco, T.; Persiani, E.; Biagini, D.; Gisone, I.; Ceccherini, E.; Cecchettini, A.; Corti, A.; Ghimenti, S.; Di Francesco, F.; Castelvetro, V.; et al. Type-Specific Inflammatory Responses of Vascular Cells Activated by Interaction with Virgin and Aged Microplastics. Ecotoxicol. Environ. Saf. 2024, 282, 116695. [Google Scholar] [CrossRef] [PubMed]
- Park, K.M.; Kim, B.; Woo, W.; Kim, L.K.; Hyun, Y.M. Polystyrene Microplastics Induce Activation and Cell Death of Neutrophils through Strong Adherence and Engulfment. J. Hazard. Mater. 2024, 480, 136100. [Google Scholar] [CrossRef]
- Koner, S.; Florance, I.; Mukherjee, A.; Chandrasekaran, N. Cellular Response of THP-1 Macrophages to Polystyrene Microplastics Exposure. Toxicology 2023, 483, 153385. [Google Scholar] [CrossRef]
- Goodman, K.E.; Hua, T.; Sang, Q.X.A. Effects of Polystyrene Microplastics on Human Kidney and Liver Cell Morphology, Cellular Proliferation, and Metabolism. ACS Omega 2022, 7, 34136–34153. [Google Scholar] [CrossRef]
- Wang, Y.L.; Lee, Y.H.; Hsu, Y.H.; Chiu, I.J.; Huang, C.C.Y.; Huang, C.C.; Chia, Z.C.; Lee, C.P.; Lin, Y.F.; Chiu, H.W. The Kidney-Related Effects of Polystyrene Microplastics on Human Kidney Proximal Tubular Epithelial Cells Hk-2 and Male C57bl/6 Mice. Environ. Health Perspect. 2021, 129, 57003. [Google Scholar] [CrossRef]
- Aditya, M.R.; Muhammad, A.R.; Adriansyah, V.; Samsu, N.; Sulistomo, H.W. Microplastic Exposure and Its Consequences for Renal and Urinary Health: Systematic Review of In Vivo Studies. All. Life 2025, 18, 2457760. [Google Scholar] [CrossRef]
- de Oliveira, R.B.; Pelepenko, L.E.; Masaro, D.A.; Lustosa, G.M.M.M.; de Oliveira, M.C.; Roza, N.A.V.; Marciano, M.A.; dos Reis, L.M.; Kamel, S.; Louvet, L.; et al. Effects of Microplastics on the Kidneys: A Narrative Review. Kidney Int. 2024, 106, 400–407. [Google Scholar] [CrossRef]
- Marcelino, R.C.; Cardoso, R.M.; Domingues, E.L.B.C.; Gonçalves, R.V.; Lima, G.D.A.; Novaes, R.D. The Emerging Risk of Microplastics and Nanoplastics on the Microstructure and Function of Reproductive Organs in Mammals: A Systematic Review of Preclinical Evidence. Life Sci. 2022, 295, 120404. [Google Scholar] [CrossRef]
- Dusza, H.M.; Katrukha, E.A.; Nijmeijer, S.M.; Akhmanova, A.; Vethaak, A.D.; Walker, D.I.; Legler, J. Uptake, Transport, and Toxicity of Pristine and Weathered Micro-and Nanoplastics in Human Placenta Cells. Environ. Health Perspect. 2022, 130, 097006. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Zhao, Y.; Liu, S.; Yuan, H.; You, T.; Xu, H. Microplastics-Perturbed Gut Microbiota Triggered the Testicular Disorder in Male Mice: Via Fecal Microbiota Transplantation. Environ. Pollut. 2022, 309, 119789. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Zhang, W.; Lin, T.; Liu, S.; Sun, Z.; Liu, F.; Yuan, Y.; Xiang, X.; Kuang, H.; Yang, B.; et al. Maternal Exposure to Polystyrene Nanoplastics during Gestation and Lactation Induces Hepatic and Testicular Toxicity in Male Mouse Offspring. Food Chem. Toxicol. 2022, 160, 112803. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Shi, R.; Wang, R.; Ma, Z.; Jiang, S.; Zhang, F.; Wu, W. Gestational Exposure to Polystyrene Microplastics Incurred Placental Damage in Mice: Insights into Metabolic and Gene Expression Disorders. Ecotoxicol. Environ. Saf. 2025, 294, 118056. [Google Scholar] [CrossRef]
- Saraluck, A.; Techarang, T.; Bunyapipat, P.; Boonchuwong, K.; Pullaput, Y.; Mordmuang, A. Detection of Microplastics in Human Breast Milk and Its Association with Changes in Human Milk Bacterial Microbiota. J. Clin. Med. 2024, 13, 4029. [Google Scholar] [CrossRef]
- Moiniafshari, K.; Zanut, A.; Tapparo, A.; Pastore, P.; Bogialli, S.; Abdolahpur Monikh, F. A Perspective on the Potential Impact of Microplastics and Nanoplastics on the Human Central Nervous System. Environ. Sci. Nano 2025, 12, 1809–1820. [Google Scholar] [CrossRef]
- Ban, M.; Shimoda, R.; Chen, J. Investigation of Nanoplastic Cytotoxicity Using SH-SY5Y Human Neuroblastoma Cells and Polystyrene Nanoparticles. Toxicol. Vitr. 2021, 76, 105225. [Google Scholar] [CrossRef]
- Kwon, W.; Kim, D.; Kim, H.Y.; Jeong, S.W.; Lee, S.G.; Kim, H.C.; Lee, Y.J.; Kwon, M.K.; Hwang, J.S.; Han, J.E.; et al. Microglial Phagocytosis of Polystyrene Microplastics Results in Immune Alteration and Apoptosis In Vitro and In Vivo. Sci. Total Environ. 2022, 807, 150817. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Z.; Wang, Z.; Liu, K.; Huang, S.; Liang, J.; Dai, Z.; Guo, W.; Mao, C.; Chen, S.; et al. Polyethylene Microplastics Promote Nucleus Pulposus Cell Senescence by Inducing Oxidative Stress via TLR4/NOX2 Axis. Ecotoxicol. Environ. Saf. 2025, 292, 117950. [Google Scholar] [CrossRef]
- So, Y.H.; Shin, H.S.; Lee, S.H.; Moon, H.J.; Jang, H.J.; Lee, E.H.; Jung, E.M. Maternal Exposure to Polystyrene Microplastics Impairs Social Behavior in Mouse Offspring with a Potential Neurotoxicity. Neurotoxicology 2023, 99, 206–216. [Google Scholar] [CrossRef]
- Chen, X.; Xu, L.; Chen, Q.; Su, S.; Zhuang, J.; Qiao, D. Polystyrene Micro- and Nanoparticles Exposure Induced Anxiety-like Behaviors, Gut Microbiota Dysbiosis and Metabolism Disorder in Adult Mice. Ecotoxicol. Environ. Saf. 2023, 259, 115000. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, X.; Lu, Y.; Guo, L. Behavioral Toxicity and Neurotoxic Mechanisms of PLA-PBAT Biodegradable Microplastics in Zebrafish. Sci. Total Environ. 2024, 928, 172354. [Google Scholar] [CrossRef]
- Luo, Q.; Tan, H.; Ye, M.; Jho, E.H.; Wang, P.; Iqbal, B.; Zhao, X.; Shi, H.; Lu, H.; Li, G. Microplastics as an Emerging Threat to Human Health: An Overview of Potential Health Impacts. J. Environ. Manag. 2025, 387, 125915. [Google Scholar] [CrossRef]
- Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption (Recast) (Text with EEA Relevance), 435(1). Available online: https://eur-lex.europa.eu/eli/dir/2020/2184/oj/eng (accessed on 21 August 2025).
- Microplastics Drinking Water|California State Water Resources Control Board. Available online: https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/microplastics.html (accessed on 21 August 2025).
- Liu, J.; Yang, Y.; An, L.; Liu, Q.; Ding, J. The Value of China’s Legislation on Plastic Pollution Prevention in 2020. Bull. Environ. Contam. Toxicol. 2022, 108, 601–608. [Google Scholar] [CrossRef]
- New South Wales. Plastic Reduction and Circular Economy Act 2021 No 31. 2021. Available online: https://legislation.nsw.gov.au/view/html/inforce/current/act-2021-031 (accessed on 21 August 2025).
- Directive (EU) 2015/720 of the European Parliament and of the Council of 29 April 2015 Amending Directive 94/62/EC as Regards Reducing the Consumption of Lightweight Plastic Carrier Bags (Text with EEA Relevance), 115(11). Available online: https://eur-lex.europa.eu/eli/dir/2015/720/oj/eng (accessed on 21 August 2025).
- Directive (EU) 2019/904 of the European Parliament and of the Council of 5 June 2019 on the Reduction of the Impact of Certain Plastic Products on the Environment (Text with EEA Relevance), 155(1). Available online: https://eur-lex.europa.eu/eli/dir/2019/904/oj/eng (accessed on 21 August 2025).
- Secretary Haaland Issues Order to Phase Out Single-Use Plastics, Protect Public Lands and Waters|U.S. Department of the Interior. Available online: https://www.doi.gov/pressreleases/secretary-haaland-issues-order-phase-out-single-use-plastics-protect-public-lands-0 (accessed on 21 August 2025).
- The Environmental Protection (Microbeads) (England) Regulations 2017. Available online: https://www.legislation.gov.uk/uksi/2017/1312/contents/made (accessed on 22 August 2025).
- Usman, S.; Abdull Razis, A.F.; Shaari, K.; Azmai, M.N.A.; Saad, M.Z.; Mat Isa, N.; Nazarudin, M.F. The Burden of Microplastics Pollution and Contending Policies and Regulations. Int. J. Environ. Res. Public Health 2022, 19, 6773. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 2023/2055 of 25 September 2023 Amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards Synthetic Polymer Microparticles (Text with EEA Relevance), 238(67). Available online: https://eur-lex.europa.eu/eli/reg/2023/2055/oj/eng (accessed on 21 August 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadac-Czapska, K.; Ośko, J.; Nowak, N.; Jażdżewska, K.; Kowalczyk, P.; Grembecka, M. Unseen Hazards—Toxicological Effects and Human Health Impacts of Nanoplastics and Microplastics. Appl. Sci. 2025, 15, 10146. https://doi.org/10.3390/app151810146
Kadac-Czapska K, Ośko J, Nowak N, Jażdżewska K, Kowalczyk P, Grembecka M. Unseen Hazards—Toxicological Effects and Human Health Impacts of Nanoplastics and Microplastics. Applied Sciences. 2025; 15(18):10146. https://doi.org/10.3390/app151810146
Chicago/Turabian StyleKadac-Czapska, Kornelia, Justyna Ośko, Natalia Nowak, Katarzyna Jażdżewska, Piotr Kowalczyk, and Małgorzata Grembecka. 2025. "Unseen Hazards—Toxicological Effects and Human Health Impacts of Nanoplastics and Microplastics" Applied Sciences 15, no. 18: 10146. https://doi.org/10.3390/app151810146
APA StyleKadac-Czapska, K., Ośko, J., Nowak, N., Jażdżewska, K., Kowalczyk, P., & Grembecka, M. (2025). Unseen Hazards—Toxicological Effects and Human Health Impacts of Nanoplastics and Microplastics. Applied Sciences, 15(18), 10146. https://doi.org/10.3390/app151810146