Monitoring Lemon Juice-Induced Coagulation of Cow’s Milk: The Impact of Heat Treatment and Calcium Addition on the Quality of Gels
Abstract
1. Introduction
2. Materials and Methods
2.1. Milk Sample and Plant Material
2.2. Physicochemical Characterization of Milk and Lemon Juice
2.3. Preparation of Milk Samples
2.4. Monitoring Lemon Juice Induced-Gelation
2.4.1. pH Determination
2.4.2. Rheology Analyses
2.4.3. Colorimetry Analyses
2.4.4. Turbiscan Analyses
2.4.5. Particle Size Analyses
2.4.6. Polyacrylamide Gel Electrophoresis Analyses
2.4.7. Scanning Electron Microscopy Analyses
2.4.8. Fluorescence Analyses
2.4.9. Mid-Infrared Analyses
2.5. Multidimensional Data Analysis
3. Results and Discussion
3.1. Physicochemical Characterization of Raw Materials: Milk and Lemon Juice
3.2. Monitoring Lemon Juice-Induced Coagulation by Different Analytical Techniques
3.2.1. pH Measurements
3.2.2. Rheology Measurements
3.2.3. Colorimetry Characterization
3.2.4. Turbiscan Analysis Measurements
3.2.5. Particle Size Measurements
3.2.6. Polyacrylamide Gel Electrophoresis Analysis
3.2.7. Scanning Electron Microscopy Measurements
3.2.8. Mid-Infrared Measurements
3.2.9. Fluorescence Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blecker, C.; Habib-Jiwan, J.M.; Karoui, R. Effect of Heat Treatment of Rennet Skim Milk Induced Coagulation on the Rheological Properties and Molecular Structure Determined by Synchronous Fluorescence Spectroscopy and Turbiscan. Food Chem. 2012, 135, 1809–1817. [Google Scholar] [CrossRef]
- Wang, F.; Yu, C.; Liu, H.; Lucey, J.A. Effect of Jujube Pulp on Acid- and Rennet-Induced Coagulation Properties of Milk. J. Dairy Sci. 2024, 107, 4298–4307. [Google Scholar] [CrossRef]
- Zhao, L.; Wu, J.; Liu, H.; Lucey, J.A. Effects of Heat Treatment and Stabilizing Salts Supplementation on the Physicochemical Properties, Protein Structure and Salts Balance of Goat Milk. LWT 2020, 132, 109878. [Google Scholar] [CrossRef]
- Rathod, G.; Boyle, D.L. Acid Gelation Properties of Fibrillated Model Milk Protein Concentrate Dispersions. J. Dairy Sci. 2022, 105, 4925–4937. [Google Scholar] [CrossRef]
- Mejares, C.T.; Chandrapala, J.; Huppertz, T. Influence of Calcium-Sequestering Salts on Heat-Induced Changes in Blends of Skimmed Buffalo and Bovine Milk. Foods 2023, 12, 2260. [Google Scholar] [CrossRef] [PubMed]
- Kamal, M.; Foukani, M.; Karoui, R. Rheological and Physical Properties of Camel and Cow Milk Gels Enriched with Phosphate and Calcium during Acid-Induced Gelation. J. Food Sci. Technol. 2017, 54, 439–446. [Google Scholar] [CrossRef]
- Koutina, G.; Andersen, U.; Risbo, J.; Skibsted, L.H.; Ipsen, R. Calcium-Induced Skim Milk Gelation during Heating as Affected by pH. Dairy Sci. Technol. 2016, 96, 79–93. [Google Scholar] [CrossRef]
- Ahmadi, E.; Vasiljevic, T.; Huppertz, T. Influence of Heating Temperature and pH on Acid Gelation of Micellar Calcium Phosphate-Adjusted Skim Milk. Foods 2024, 13, 11724. [Google Scholar] [CrossRef] [PubMed]
- Cherian, J.; Jacob, J. Green Marketing: A Study of Consumers’ Attitude towards Environment Friendly Products. Asian Soc. Sci. 2012, 8, 117–126. [Google Scholar] [CrossRef]
- Bhagiel, B.T.; Hamid, E.E.; Eltahir, H.A. Effect of Using Lemon Citrus Compared to Rennet Coagulation on Physicochemical Yield and Sensory Properties of Cheese from Cow’s Milk and Goat’s Milk. J. Food Dairy Technol. 2018, 8, 46–51. [Google Scholar]
- Wibowo, M.D.; Riyadi, P.H.; Restitrisnani, V. The Effect of Lemon (Citrus limon) as a Coagulant on Fresh Cheese Chemical Composition and Storage. Int. J. Food Eng. Technol. 2020, 8, 70–80. [Google Scholar] [CrossRef]
- Singh, H.; Waungana, A. Influence of Heat Treatment of Milk on Cheesemaking Properties. Int. Dairy J. 2001, 11, 543–551. [Google Scholar] [CrossRef]
- Liu, X.T.; Li, J.H.; Liang, L.; Lu, Y.; Lucey, J.A. Rheological and Structural Properties of Differently Acidified and Renneted Milk Gels. J. Dairy Sci. 2014, 97, 3292–3299. [Google Scholar] [CrossRef] [PubMed]
- Herbert, S.; Dufour, E.; Devaux, M.F.; Riaublanc, A. Fluorescence Spectroscopy Investigation of Acid- or Rennet-Induced Coagulation of Milk. J. Dairy Sci. 1999, 82, 2056–2062. [Google Scholar] [CrossRef]
- Kamal, M.; Karoui, R. Monitoring of Mild Heat Treatment of Camel Milk by Front-Face Fluorescence Spectroscopy. LWT 2017, 79, 586–593. [Google Scholar] [CrossRef]
- IDF Standard 105; Milk—Determination of Fat Content—Gerber Butyrometric Method. International Dairy Federation (IDF): Brussels, Belgium, 1981.
- IDF Standard 20-1; Milk—Determination of Nitrogen Content—Part 1: Kjeldahl Method. International Dairy Federation (IDF): Brussels, Belgium, 2001.
- AOAC. Official Methods of Analysis of AOAC International, 21st ed.; AOAC International: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Felfoul, I.; Attia, H.; Khorchani, T.; Blecker, C. Monitoring of Acid-Induced Coagulation of Dromedary and Cows’ Milk by Untargeted and Targeted Techniques. Int. Dairy J. 2022, 127, 105300. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Karoui, R.; De Baerdemaeker, J. A review of the analytical methods coupled with chemometric tools for the determination of the quality and identity of dairy products. Food Chem. 2007, 102, 621–640. [Google Scholar] [CrossRef]
- Karoui, R.; Mouazen, A.M.; Dufour, E.; Pillonel, L.; Picque, D.; De Baerdemaeker, J.; Bosset, J.-O. Application of the MIR for the determination of some chemical parameters in European Emmental cheeses produced during summer. Eur. Food Res. Technol. 2006, 222, 165–170. [Google Scholar] [CrossRef]
- Karoui, R.; Kemps, B.; Bamelis, F.; De Ketelaere, B.; Merten, K.; Schoonheydt, R.; Decuypere, E.; De Baerdemaeker, J. Development of a rapid method based on front face fluorescence spectroscopy for the monitoring of egg freshness: 1-evolution of thick and thin egg albumens. Eur. Food Res. Technol. 2006, 223, 303–312. [Google Scholar] [CrossRef]
- Karoui, R.; Dufour, E.; De Baerdemaeker, J. Common components and specific weights analysis: A tool for monitoring the molecular structure of semi-hard cheese throughout ripening. Anal. Chim. Acta 2006, 572, 125–133. [Google Scholar] [CrossRef]
- Seme, K.; Pitala, W.; Osseyi, G.E. Qualité Nutritionnelle et Hygiénique de Laits Crus de Vaches Allaitantes dans la Région Maritime au Sud-Togo. Eur. Sci. J. 2015, 11, 359–376. [Google Scholar]
- Rayanatou, I.A.; Kabirou, A.; Kpotor, P. Physico-Chemical Characterization of Dairy Gel Obtained by a Proteolytic Extract from Calotropis procera—A Comparison with Chymosin. Food Chem. 2017, 232, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Hamad, M.; Baiomy, A. Physical Properties and Chemical Composition of Cow’s and Buffalo’s Milk in Qena Governorate. J. Food Dairy Sci. 2010, 1, 397–403. [Google Scholar] [CrossRef]
- Kalandi, M.; Sow, A.; Guigma, W.V.H.; Zabre, M.Z.; Bathily, A.; Sawadogo, G.J. Évaluation de la qualité nutritionnelle du lait cru dans les élevages traditionnels de Kaolack au Sénégal. Int. J. Biol. Chem. Sci. 2015, 9, 901–909. [Google Scholar] [CrossRef]
- Gondimo, É.G.; Abakar, M.; Djamous, N.A. Evaluation of the Physico-Chemical Quality of Raw Milk Produced and Marketed in Moundou (Chad). Int. J. Biol. Chem. Sci. 2024, 18, 430–438. [Google Scholar] [CrossRef]
- Bouazizi, A.; Zouari, A.; Khorchani, T.; Hamed, M.B.; Attia, H. Physicochemical, Sensory and Coagulation Properties of Dromedary and Cows’ Skim Milk White Brined Cheeses. Int. Dairy J. 2021, 117, 105006. [Google Scholar] [CrossRef]
- Hla Soe, D.H. Study on Chemical Composition and Nutritional Values in the Juice of Citrus Limonia Osbeck. Int. J. Sci. Eng. Appl. 2020, 9, 57–63. [Google Scholar] [CrossRef]
- Deshmukh, U.; Singh, M.; Devarajan, A.; Verma, D.K.; Kumar, P. Influence of Variation in Calcium Content on Casein Micelle Stability and Techno-Functional Properties of Buffalo Milk. Int. J. Dairy Technol. 2023, 76, 533–543. [Google Scholar] [CrossRef]
- Britten, M.; Giroux, H.J. Rennet Coagulation of Heated Milk: A Review. Int. Dairy J. 2022, 124, 105179. [Google Scholar] [CrossRef]
- Mejares, C.T.; Huppertz, T.; Chandrapala, J. Effect of Calcium-Sequestering Salts and Heat Treatment on the Rheological and Textural Properties of Acid Gels from Blends of Skimmed Buffalo and Bovine Milk. Int. Dairy J. 2024, 149, 105840. [Google Scholar] [CrossRef]
- Lucey, J.A.; Wilbanks, D.J.; Horne, D.S. Impact of Heat Treatment of Milk on Acid Gelation. Int. Dairy J. 2022, 125, 105222. [Google Scholar] [CrossRef]
- Le Graet, Y.; Brulé, G. Les Équilibres Minéraux du Lait: Influence du pH et de la Force Ionique. Lait 1993, 73, 51–60. [Google Scholar] [CrossRef]
- Guillaume, C.; Lemoine, J.; Ducret, P.; Gervais, P. Effect of Salt Addition on the Micellar Composition of Milk Subjected to pH Reversible CO2 Acidification. J. Dairy Sci. 2002, 85, 2098–2105. [Google Scholar] [CrossRef]
- Hinrichs, J. Incorporation of Whey Proteins in Cheese. Int. Dairy J. 2001, 11, 495–503. [Google Scholar] [CrossRef]
- Schreiber, R.; Hinrichs, J. Rennet Coagulation of Heated Milk Concentrates. Lait 2000, 80, 33–42. [Google Scholar] [CrossRef]
- Kethireddipalli, P.; Hill, A.R. Rennet Coagulation and Cheesemaking Properties of Thermally Processed Milk: Overview and Recent Developments. J. Agric. Food Chem. 2015, 63, 9389–9403. [Google Scholar] [CrossRef]
- Lucey, J.A.; Singh, H. Formation and Physical Properties of Acid Milk Gels: A Review. Food Res. Int. 1997, 30, 529–542. [Google Scholar] [CrossRef]
- Fox, P.F.; McSweeney, P.L.H. Milk Proteins: Inter-Species Comparison of Milk Proteins: Quantitative Variability and Molecular Diversity. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: London, UK, 2011. [Google Scholar] [CrossRef]
- Zouari, A.; Khorchani, T.; Attia, H. Acid Gelation of Raw and Reconstituted Spray-Dried Dromedary Milk: A Dynamic Approach of Gel Structuring. Int. Dairy J. 2018, 81, 95–103. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, H.; Wang, H.; Lucey, J.A. Effect of Ultrasound Pretreatment on Rennet-Induced Coagulation Properties of Goat’s Milk. Food Chem. 2014, 165, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Horne, D.S. Casein Interactions: Casting Light on the Black Boxes, the Structure in Dairy Products. Int. Dairy J. 1998, 8, 171–177. [Google Scholar] [CrossRef]
- Walstra, P. On the Stability of Casein Micelles. J. Dairy Sci. 1990, 73, 1965–1979. [Google Scholar] [CrossRef]
- Lucey, J.A.; Fox, P.F. Importance of Calcium and Phosphate in Cheese Manufacture: A Review. J. Dairy Sci. 1993, 76, 1714–1724. [Google Scholar] [CrossRef]
- Dalgleish, D.G.; Law, A.J.R. pH-Induced Dissociation of Bovine Casein Micelles. I. Analysis of Liberated Caseins. J. Dairy Res. 1988, 55, 529–538. [Google Scholar] [CrossRef]
- Anema, S.G.; Klostermeyer, H. Heat-Induced, pH-Dependent Dissociation of Casein Micelles on Heating Reconstituted Skim Milk at Temperatures below 100 °C. J. Agric. Food Chem. 1997, 45, 1108–1115. [Google Scholar] [CrossRef]
- Antuma, L.J.; Delavaud, C.; Gaucheron, F.; Lopez, C.; Henry, G. Engineering Artificial Casein Micelles for Future Food: Preparation Rate and Coagulation Properties. J. Food Eng. 2024, 366, 111868. [Google Scholar] [CrossRef]
- Adhikari, A.K.; Mathur, O.N.; Patil, G.R. Texture and Microstructure of Chhana and Rasogolla Made from Cows’ Milk. J. Dairy Res. 1992, 59, 413–424. [Google Scholar] [CrossRef]
- Tamime, A.Y.; Kalab, M.; Davies, G. Microstructure of Set-Style Yoghurt Manufactured from Cow’s Milk Fortified by Various Methods. Food Microstruct. 1984, 3, 83–92. Available online: https://digitalcommons.usu.edu/foodmicrostructure/vol3/iss1/11 (accessed on 12 March 2025).
- Dufour, E.; Riaublanc, A.; Herbert, S.; Devaux, M.F. Phase Transition of Triglycerides during Semi-Hard Cheese Ripening. Int. Dairy J. 2000, 10, 81–93. [Google Scholar] [CrossRef]
- Karoui, R.; Mazerolles, G.; Bosset, J.O.; De Baerdemaeker, J.; Dufour, E. Utilisation of mid-infrared spectroscopy for determination of the geographic origin of Gruyère PDO and L’Etivaz PDO Swiss cheeses. Food Chem. 2007, 105, 847–854. [Google Scholar] [CrossRef]
- Karoui, R.; Dufour, E.; Bosset, J.O.; De Baerdemaeker, J. Monitoring the Geographic Origin of French Jura and Swiss PDO Cheeses Using Mid-Infrared and Fluorescence Spectroscopies: A Preliminary Study. Int. Dairy J. 2005, 15, 275–286. [Google Scholar] [CrossRef]
- Ayvaz, H.; Gokoglu, N.; Ceylan, Z.; Eren, M.; Senturk, M. Near- and Mid-Infrared Determination of Some Quality Parameters of Cheese Manufactured from the Mixture of Different Milk Species. J. Food Sci. Technol. 2021, 58, 3981–3992. [Google Scholar] [CrossRef]
- Dufour, E.; Riaublanc, A.; Devaux, M.F.; Herbert, S. Phase Transition of Triglycerides in Fat Globules during Semi-Hard Cheese Ripening as Studied by Mid-Infrared and Front-Face Fluorescence Spectroscopy. In Spectroscopy of Biological Molecules: New Directions; Springer: Dordrecht, The Netherlands, 1999; pp. 351–352. [Google Scholar] [CrossRef]
- Khalil, M. Interactions et Stabilité des Protéines Étudiées par Spectroscopies Infrarouge et Raman. Ph.D. Thesis, Université de Strasbourg: Strasbourg, France, 2016. [Google Scholar]
- Dufour, R.I.C.; Boubellouta, T.; Galtier, V. Structural Changes of Milk Components during Acid-Induced Coagulation Kinetics as Studied by Synchronous Fluorescence and Mid-Infrared Spectroscopy. Appl. Spectrosc. 2011, 65, 284–292. [Google Scholar] [CrossRef]
- Sanchez, M.-P.; Wolf, V.; Laithier, C.; El Jabri, M.; Beuvier, É.; Rolet-Répécaud, O.; Gaudillière, N.; Minéry, S.; Ramayo-Caldas, Y.; Tribout, T.; et al. Analyse génétique de la « fromageabilité » du lait de vache prédite par spectrométrie dans le moyen infrarouge en race Montbéliarde. Genet. Sel. Evol. 2019, 51, 1–20. [Google Scholar] [CrossRef]
- Panikuttira, B.; Howard, A.; Deeth, H.; Chen, X.D. Evaluation of a Fluorescence and Infrared Backscatter Sensor to Monitor Acid Induced Coagulation of Skim Milk. Innov. Food Sci. Emerg. Technol. 2019, 54, 219–224. [Google Scholar] [CrossRef]
- Karoui, R.; Dufour, É. Prediction of the rheology parameters of ripened semi-hard cheeses using fluorescence spectra in the UV and visible ranges recorded at a young stage. Int. Dairy J. 2006, 16, 1490–1497. [Google Scholar] [CrossRef]
- Kulmyrzaev, A.; Dufour, É.; Noël, Y.; Hanafi, M.; Karoui, R.; Qannari, E.; Mazerolles, G. Investigation at the Molecular Level of Soft Cheese Quality and Ripening by Infrared and Fluorescence Spectroscopies and Chemometrics—Relationships with Rheology Properties. Int. Dairy J. 2005, 15, 669–678. [Google Scholar] [CrossRef]
- Dufour, E.; Riaublanc, A. Potentiality of Spectroscopic Methods for the Characterisation of Dairy Products. 1. Front-Face Fluorescence Study of Raw, Heated and Homogenised Milks. Lait 1997, 77, 657–670. [Google Scholar] [CrossRef]
Parameter | Milk | Lemon Juice |
---|---|---|
pH | 6.70 ± 0.02 | 2.30 ± 0.02 |
Moisture (%) | 86.46 ± 0.10 | 94.82 ± 0.03 |
Proteins (%) | 3.76 ± 0.06 | 0.34 ± 0.04 |
Fat (%) | 4.23 ± 0.06 | – |
Ash (%) | 0.89 ± 0.00 | 0.35 ± 0.05 |
Gels Obtained From | Parameters | 15 (min) | 60 (min) | 120 (min) | 180 (min) |
---|---|---|---|---|---|
Raw milk | L* | 88.75 ± 0.04 d | 87.50 ± 0.08 a | 87.56 ± 0.00 c | 86.84 ± 0.03 d |
a* | −3.84 ± 0.01 a | −4.05 ± 0.08 c | −4.05 ± 0.03 c | −3.99 ± 0.01 b | |
b* | 9.66 ± 0.02 c | 10.31 ± 0.15 d | 10.47 ± 0.05 c | 10.21 ± 0.01 d | |
c* | 10.39 ± 0.02 c | 11.08 ± 0.23 d | 11.23 ± 0.06 c | 10.96 ± 0.04 d | |
Calcium-fortified raw milk | L* | 88.82 ± 0.01 c | 88.84 ± 0.00 c | 88.61 ± 0.01 b | 88.83 ± 0.00 c |
a* | −4.02 ± 0.05 b | −3.93 ± 0.01 b | −3.92 ± 0.28 b | −3.95 ± 0.26 b | |
b* | 12.52 ± 0.17 b | 12.03 ± 0.06 b | 11.62 ± 0.96 b | 11.94 ± 0.86 b | |
c* | 13.15 ± 0.18 b | 12.66 ± 0.02 b | 12.26 ± 0.10 b | 12.57 ± 0.09 b | |
Heated milk | L* | 90.14 ± 0.02 a | 90.03 ± 0.00 a | 89.89 ± 0.01 a | 90.13 ± 0.02 a |
a* | −3.89 ± 0.05 a | −3.70 ± 0.01 a | −3.79 ± 0.04 a | −3.85 ± 0.03 a | |
b* | 12.67 ± 0.21 b | 11.55 ± 0.06 c | 11.73 ± 0.27 b | 11.76 ± 0.87 c | |
c* | 13.26 ± 0.22 b | 12.13 ± 0.03 c | 12.33 ± 0.02 b | 12.38 ± 0.09 c | |
Calcium-fortified heated milk | L* | 89.95 ± 0.01 b | 89.85 ± 0.01 b | 89.91 ± 0.02 a | 89.81 ± 0.00 b |
a* | −4.19 ± 0.02 c | −4.33 ± 0.02 d | −4.44 ± 0.03 d | −4.52 ± 0.02 c | |
b* | 13.65 ± 0.07 a | 13.84 ± 0.05 a | 14.22 ± 0.10 a | 14.41 ± 0.07 a | |
c* | 14.27 ± 0.08 a | 14.50 ± 0.06 a | 14.89 ± 0.09 a | 15.10 ± 0.09 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sow, T.A.R.; Diallo, A.O.S.; Karoui, R. Monitoring Lemon Juice-Induced Coagulation of Cow’s Milk: The Impact of Heat Treatment and Calcium Addition on the Quality of Gels. Appl. Sci. 2025, 15, 10092. https://doi.org/10.3390/app151810092
Sow TAR, Diallo AOS, Karoui R. Monitoring Lemon Juice-Induced Coagulation of Cow’s Milk: The Impact of Heat Treatment and Calcium Addition on the Quality of Gels. Applied Sciences. 2025; 15(18):10092. https://doi.org/10.3390/app151810092
Chicago/Turabian StyleSow, Thierno Abdoul Rahim, Alpha Oumar Syli Diallo, and Romdhane Karoui. 2025. "Monitoring Lemon Juice-Induced Coagulation of Cow’s Milk: The Impact of Heat Treatment and Calcium Addition on the Quality of Gels" Applied Sciences 15, no. 18: 10092. https://doi.org/10.3390/app151810092
APA StyleSow, T. A. R., Diallo, A. O. S., & Karoui, R. (2025). Monitoring Lemon Juice-Induced Coagulation of Cow’s Milk: The Impact of Heat Treatment and Calcium Addition on the Quality of Gels. Applied Sciences, 15(18), 10092. https://doi.org/10.3390/app151810092