Biochemical and Volatile Compound Variation in Apple (Malus domestica) Cultivars According to Fruit Size: Implications for Quality and Breeding
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Color
2.3. Fruit Diameter
2.4. Flesh Firmness and Soluble Solid Content
2.5. Extraction of Sugars, Organic Acids, and Phenolic Compounds
2.6. Extraction and Determination of Volatile Organic Compounds
2.7. Chemicals
2.8. Statistical Analysis
3. Results
3.1. Physical Parameters and Starch
3.2. Organic Acids and Sugars
Sun-Exposed | Shaded Side | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivar | L* | a* | b* | C* | h° | L* | a* | b* | C* | h° |
‘BM’ I | 27.34 ± 0.42 | 22.43 ± 1.02 | 11.40 ± 0.58 | 25.15 ± 1.17 | 26.90 ± 0.19 | 48.30 ± 0.61 | 21.43 ± 1.03 | 28.91 ± 0.52 | 36.03 ± 0.42 | 54.36 ± 1.74 |
‘BM’ II | 27.60 ± 0.35 | 23.47 ± 0.79 | 12.19 ± 0.48 | 26.46 ± 0.91 | 27.36 ± 0.25 | 47.99 ± 0.77 | 20.19 ± 1.48 | 27.63 ± 0.90 | 34.61 ± 0.31 | 54.69 ± 2.83 |
‘CAR’ I | 34.12 ± 0.70 | 31.76 ± 1.07 | 19.05 ± 0.69 | 37.10 ± 1.08 | 31.02 ± 1.06 | 63.34 ± 0.80 | 0.87 ± 0.24 | 39.98 ± 0.52 | 39.99 ± 0.52 | 88.99 ± 0.44 |
‘CAR’ II | 35.39 ± 1.35 | 31.89 ± 0.69 | 20.45 ± 1.67 | 38.11 ± 1.33 | 32.27 ± 2.03 | 61.06 ± 2.36 | 0.84 ± 0.14 | 41.08 ± 0.52 | 41.10 ± 0.52 | 89.04 ± 0.31 |
‘OP’ I | 64.56 ± 0.43 | 5.68 ± 0.72 | 47.58 ± 0.55 | 47.95 ± 0.63 | 83.26 ± 0.76 | n.d. | n.d. | n.d. | n.d. | n.d. |
‘OP’ II | 62.23 ± 0.51 | 3.91 ± 0.65 | 46.44 ± 0.65 | 46.64 ± 0.69 | 85.26 ± 0.74 | n.d. | n.d. | n.d. | n.d. | n.d. |
‘RB’ I | 35.08 ± 1.01 | 27.98 ± 0.65 | 20.94 ± 1.42 | 35.15 ± 0.85 | 36.50 ± 2.10 | 55.51 ± 2.02 | 6.91 ± 0.78 | 42.14 ± 0.67 | 42.76 ± 0.62 | 80.64 ± 0.74 |
‘RB’ II | 36.01 ± 0.80 | 30.36 ± 0.60 | 21.28 ± 0.67 | 37.10 ± 0.71 | 34.96 ± 0.87 | 56.07 ± 1.27 | 6.06 ± 0.67 | 42.37 ± 0.74 | 42.86 ± 0.72 | 81.84 ± 0.93 |
‘TO’ I | 32.59 ± 0.60 | 31.81 ± 0.61 | 18.24 ± 0.54 | 36.69 ± 0.75 | 29.75 ± 0.50 | 58.40 ± 0.83 | 6.93 ± 0.64 | 45.88 ± 0.85 | 46.45 ± 0.90 | 81.86 ± 0.60 |
‘TO’ II | 33.52 ± 0.56 | 32.29 ± 0.65 | 18.70 ± 0.63 | 37.08 ± 0.85 | 29.95 ± 0.47 | 58.19 ± 0.99 | 7.56 ± 0.56 | 45.05 ± 0.94 | 45.75 ± 0.97 | 80.49 ± 0.68 |
Sugars | Organic Acids | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cultivar | Sucrose | Glucose | Fructose | Sorbitol | Total Sugars | Citric Acid | Malic Acid | Shikimic Acid | Total Organic Acids | Sugar/Acid Ratio | Sweetness |
‘BM’ I skin | 65.97 ± 5.24 * | 16.89 ± 0.60 | 45.91 ± 1.44 * | 9.08 ± 0.81 * | 137.86 ± 7.36 * | 6.46 ± 0.59 | 10.66 ± 0.97 | 0.07 ± 0.01 | 17.19 ± 1.52 | 8.08 ± 0.40 * | 152.05 ± 7.46 * |
‘BM’ II skin | 39.48 ± 2.47 | 14.81 ± 1.38 | 36.28 ± 1.39 | 6.03 ± 0.53 | 96.59 ± 8.12 | 7.45 ± 0.40 | 9.06 ± 0.29 | 0.06 ± 0.01 | 16.57 ± 0.37 | 5.84 ± 0.55 | 108.01 ± 9.14 |
‘BM’ I flesh | 41.58 ± 4.30 * | 13.57 ± 1.78 | 43.25 ± 4.16 | 6.08 ± 1.03 | 104.48 ± 15.06 | 1.60 ± 0.06 | 9.25 ± 0.23 | 0.02 ± 0.00 | 10.87 ± 0.20 | 9.62 ± 1.41 | 119.67 ± 10.50 |
‘BM’ II flesh | 35.53 ± 3.01 | 23.34 ± 1.33 * | 61.32 ± 2.42 * | 5.70 ± 0.84 | 125.88 ± 9.96 * | 1.83 ± 0.24 | 8.66 ± 1.03 | 0.02 ± 0.00 | 10.51 ± 1.28 | 12.13 ± 0.74 * | 147.86 ± 10.58 * |
‘RB’ I skin | 69.20 ± 4.22 | 19.47 ± 1.72 | 27.66 ± 1.21 | 6.67 ± 0.35 | 123.01 ± 4.79 | 7.32 ± 0.21 | 16.93 ± 1.06 | 0.06 ± 0.00 | 24.30 ± 1.91 | 5.09 ± 0.20 | 128.63 ± 4.17 |
‘RB’ II skin | 63.05 ± 3.49 | 22.83 ± 1.65 | 34.75 ± 3.79 * | 5.99 ± 0.58 | 126.63 ± 6.15 | 7.55 ± 1.58 | 14.90 ± 0.41 | 0.06 ± 0.00 | 22.51 ± 1.98 | 5.70 ± 0.53 | 135.30 ± 7.18 |
‘RB’ I flesh | 54.78 ± 3.19 * | 11.80 ± 0.43 | 39.19 ± 2.89 | 4.51 ± 0.68 | 110.28 ± 7.00 | 1.40 ± 0.09 | 9.95 ± 0.22 * | 0.03 ± 0.00 | 11.38 ± 0.31 | 9.68 ± 0.39 | 124.67 ± 8.02 |
‘RB’ II flesh | 45.60 ± 4.28 | 16.15 ± 1.53 * | 47.88 ± 3.89 * | 4.03 ± 0.32 | 113.66 ± 7.59 | 2.11 ± 0.45 | 7.88 ± 0.26 | 0.03 ± 0.00 | 10.02 ± 0.70 | 11.39 ± 0.78 | 131.55 ± 9.14 |
‘CAR’ I skin | 60.22 ± 2.59 * | 7.05 ± 1.06 | 42.98 ± 2.76 | 10.42 ± 1.12 | 120.68 ± 7.81 | 6.34 ± 0.15 | 9.44 ± 0.89 | 0.06 ± 0.00 | 15.84 ± 1.03 | 7.64 ± 0.39 | 135.20 ± 8.18 |
‘CAR’ II skin | 51.64 ± 1.55 | 6.13 ± 0.51 | 46.49 ± 2.57 | 10.46 ± 1.45 | 114.72 ± 3.44 | 8.10 ± 1.24 * | 8.15 ± 0.52 | 0.06 ± 0.01 | 16.31 ± 1.48 | 7.11 ± 0.42 | 131.20 ± 3.82 |
‘CAR’ I flesh | 41.00 ± 1.86 * | 5.18 ± 0.08 | 51.31 ± 0.66 | 6.67 ± 0.43 | 104.16 ± 2.27 * | 1.51 ± 0.07 | 7.22 ± 0.62 | 0.03 ± 0.00 | 8.77 ± 0.38 | 12.01 ± 0.82 | 125.18 ± 2.70 * |
‘CAR’ II flesh | 33.72 ± 0.71 | 5.06 ± 0.30 | 49.72 ± 2.51 | 6.86 ± 0.96 | 95.36 ± 4.19 | 1.84 ± 0.26 | 6.13 ± 1.09 | 0.03 ± 0.00 | 8.01 ± 1.22 | 12.41 ± 1.62 | 115.53 ± 4.96 |
‘OP’ I skin | 39.71 ± 3.28 | 6.43 ± 0.31 | 22.18 ± 2.78 | 2.67 ± 0.37 | 70.99 ± 7.73 | 5.09 ± 0.68 | 6.96 ± 0.79 | 0.04 ± 0.00 | 12.09 ± 1.27 | 5.83 ± 0.72 | 79.13 ± 4.86 |
‘OP’ II skin | 58.20 ± 5.45 * | 13.35 ± 1.47 * | 30.94 ± 3.37 * | 4.17 ± 0.17 * | 106.65 ± 11.58 * | 5.28 ± 0.60 | 9.42 ± 0.94 * | 0.05 ± 0.01 | 14.75 ± 3.45 | 7.50 ± 0.69 | 116.70 ± 13.26 * |
‘OP’ I flesh | 32.44 ± 2.02 | 5.22 ± 0.39 | 28.47 ± 0.52 | 1.76 ± 0.12 | 67.88 ± 2.38 | 1.55 ± 0.23 | 5.87 ± 0.22 | 0.02 ± 0.00 | 7.44 ± 0.32 | 9.13 ± 0.20 | 79.93 ± 2.28 |
‘OP’ II flesh | 57.52 ± 4.83 * | 14.60 ± 1.48 * | 50.96 ± 2.65 * | 3.73 ± 0.60 * | 126.82 ± 5.90 * | 2.42 ± 0.35 * | 10.26 ± 1.02 * | 0.04 ± 0.00 * | 12.71 ± 1.21 * | 10.09 ± 0.68 | 146.78 ± 6.06 * |
‘TO’ I skin | 75.66 ± 6.97 | 8.63 ± 0.58 | 26.50 ± 2.88 | 4.16 ± 0.53 | 114.94 ± 9.82 | 4.10 ± 0.50 | 8.62 ± 0.39 | 0.04 ± 0.00 | 12.74 ± 0.76 | 8.99 ± 0.24 | 123.95 ± 11.07 |
‘TO’ II skin | 70.48 ± 1.00 | 8.21 ± 0.46 | 25.73 ± 0.94 | 3.97 ± 0.43 | 108.39 ± 0.95 | 3.50 ± 0.18 | 7.50 ± 0.10 | 0.04 ± 0.00 | 11.04 ± 0.07 | 9.82 ± 0.14 | 117.22 ± 1.06 |
‘TO’ I flesh | 50.02 ± 0.14 | 7.83 ± 1.61 | 28.87 ± 0.93 | 2.81 ± 0.13 | 89.52 ± 1.84 | 1.41 ± 0.18 | 6.68 ± 0.75 | 0.02 ± 0.00 | 8.12 ± 0.62 | 11.17 ± 0.91 | 100.59 ± 1.81 |
‘TO’ II flesh | 67.05 ± 3.75 * | 8.77 ± 0.94 | 37.21 ± 3.58 * | 3.76 ± 0.65 | 116.80 ± 8.20 * | 2.37 ± 0.24 * | 7.65 ± 0.74 | 0.03 ± 0.01 | 10.05 ± 0.98 | 11.68 ± 0.33 | 131.32 ± 9.55 * |
3.3. Identification of Phenolic Compounds
3.4. Phenolic Content
Phenolic Compounds | Rt (min) | [M − H]− (m/z) | [M + H]+ (m/z) | MS2 (m/z) | ‘BM’ | ‘RB’ | ‘TO’ | ‘CAR’ | ‘OP’ | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Peel | Flesh | Peel | Flesh | Peel | Flesh | Peel | Flesh | Peel | Flesh | |||||
Cyanidin-3-O-galactoside | 9.41 | 449 | 287 | X | X | X | ||||||||
Caffeic acid hexoside 1 | 10.04 | 341 | 179,161,135 | X | ||||||||||
p-Coumaric acid hexoside derivative 1 | 10.1 | 371 | 325,163,119 | X | X | X | X | X | ||||||
Cyanidin-3-O-arabinoside | 10.61 | 419 | 287 | X | ||||||||||
Dicaffeic acid derivative 1 | 11.0 | 457 | 277,189,179 | X | X | X | X | |||||||
Procyanidin dimer 1 | 11.38 | 577 | 451,425,407,289,287 | X | X | X | X | X | X | X | X | |||
Caffeic acid derivative 1 | 11.6 | 311 | 267,249,205,153 | X | X | X | ||||||||
Ferulic acid hexoside derivative | 11.62 | 401 | 355 | X | X | X | X | |||||||
p-Coumaric acid hexoside derivative 2 | 12.07 | 371 | 325,163,119 | X | X | X | ||||||||
Cyanidin-3-O-xyloside | 12.37 | 419 | 287 | X | X | X | X | |||||||
Caffeic acid hexoside 2 | 12.4 | 341 | 313,295,281,251,221 | X | ||||||||||
Neochlorogenic acid (3-caffeoylquinic acid) | 12.7 | 353 | 191,179,173,135 | X | X | |||||||||
(+)Catehin | 13.10 | 289 | 245,205,203,179 | X | X | X | ||||||||
p-Coumaric acid hexoside 1 | 13.25 | 325 | 265,235,163 | X | X | |||||||||
Procyanidin trimer 1 | 13.35 | 865 | 739,713,695,587,577,575,407 | X | X | X | X | |||||||
Chlorogenic acid (5-caffeoylquinic acid) | 13.6 | 353 | 191,179,135 | X | X | X | X | X | X | X | X | X | X | |
Caffeoylferuoylquinic acid | 13.77 | 563 | 517,289 | X | X | X | X | X | X | X | ||||
Protocatechuic acid derivative | 14.03 | 481 | 345,327 | X | X | X | X | X | ||||||
Cryptochlorogenic acid (4-caffeoylquinic acid) | 14.25 | 353 | 191,179 | X | X | |||||||||
Ferulic acid hexoside | 14.4 | 355 | 295,265,235,193 | X | X | X | X | |||||||
Procyanidin dimer 2 | 14.76 | 577 | 425,407,451 | X | X | X | X | X | X | X | X | X | X | |
Procyanidin tetramer 1 | 14.95 | 1153 | 864,1000,863,575 | X | X | X | ||||||||
p-Coumaric acid hexoside 2 | 15.1 | 325 | 265,235,163 | X | ||||||||||
Procyanidin tetramer 2 | 15.35 | 1153 | 864,1000,863,575 | X | ||||||||||
(-)Epicatehin | 15.96 | 289 | 245,231,205,179 | X | X | X | X | X | X | X | X | X | X | |
4-O-p-coumaroylquinic acid | 16.2 | 337 | 191,173,163 | X | X | |||||||||
5-O-p-coumaroylquinic acid | 16.95 | 337 | 191,179,173,163 | X | X | X | X | X | X | |||||
Caffeic acid derivative | 17.0 | 335 | 179,135 | X | X | |||||||||
Procyanidin trimer 2 | 17.14 | 865 | 739,695,577 | X | X | X | X | X | X | X | X | X | X | |
Procyanidin dimer 3 | 17.7 | 577 | 451,425,407,289,287 | X | X | X | X | |||||||
Procyanidin tetramer 3 | 17.8 | 1153 | 864,1000,863,575 | X | X | X | X | X | X | X | ||||
Procyanidin trimer 3 | 18.55 | 865 | 739,713,695,587,577,575,407 | X | X | |||||||||
Quercetin-3-O-rutinoside | 20.35 | 609 | 343,301,300,179 | X | X | X | X | |||||||
(Epi)catechin derivative 1 | 20.36 | 583 | 289,271,167 | X | X | X | ||||||||
Procyanidin dimer 4 | 20.57 | 577 | 451,425,407,289,287,245 | X | X | X | X | X | X | X | X | |||
Dihydrodicaffeic acid derivative | 20.63 | 405 | 225,181 | X | X | |||||||||
Quercetin-3-O-galactoside | 21.14 | 463 | 301,300,179 | X | X | X | X | X | X | X | X | |||
Quercetin-3-O-glucoside | 21.2 | 463 | 301,300,179 | X | X | X | X | X | X | X | X | |||
Dihydroprocyanidin dimer | 21.6 | 579 | 289,245,203 | X | X | X | X | X | X | X | X | X | ||
Quercetin-3-O-arabinofuranoside | 22.06 | 433 | 301,300,179 | X | X | X | X | X | X | X | ||||
Phloretin-2-O-xyloside | 22.11 | 567 | 273,167 | X | X | X | X | X | X | X | X | X | X | |
Dicaffeic acid derivative 3 | 22.3 | 429 | 249,205,179,135 | X | X | X | X | X | X | X | X | X | X | |
Quercetin-3-O-arabinopyranoside | 22.77 | 433 | 301,300,179 | X | X | X | X | X | X | X | ||||
Quercetin-3-O-rhamnoside | 23.0 | 447 | 301,300,179 | X | X | X | X | X | X | X | X | X | ||
(Epi)catechin derivative 3 | 23.55 | 477 | 331,330,316,289 | X | ||||||||||
Phloridzin | 23.77 | 481 | 435 | X | X | X | X | X | X | X | X | X | X |
Individual Phenolic Compounds in the Skin (mg/kg FW) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Compounds | ‘BM’ I | ‘BM’ II | ‘RB’ I | ‘RB’ II | ‘CAR’ I | ‘CAR’ II | ‘OP’ I | ‘OP’ II | ‘TO’ I | ‘TO’ II |
Hydroxycinnamic acids | ||||||||||
p-coumaric acid hexoside derivative 1 | 3.67 ± 0.33 * | 2.22 ± 0.28 | 1.73 ± 0.23 | 2.50 ± 0.36 | 2.56 ± 0.16 | 2.86 ± 0.45 | nd | nd | 5.91 ± 0.62 | 5.99 ± 0.42 |
p-coumaric acid hexoside derivative 2 | 5.30 ± 0.58 | 3.96 ± 0.29 | nd | nd | nd | nd | 1.56 ±0.20 | 1.57 ± 0.17 | 4.86 ± 0.21 | 4.37 ± 0.20 |
p-coumaroyl hexoside derivative | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
p-coumaric acid hexoside | 4.40 ± 0.32 * | 2.46 ± 0.24 | nd | nd | nd | nd | 1.52 ± 0.18 | 1.46 ± 0.35 | nd | nd |
p-coumaric acid hexoside 1 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
p-coumaric acid hexoside 2 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Caffeic acid derivative | 2.34 ± 0.34 * | 1.22 ± 0.21 | nd | nd | nd | nd | nd | nd | 2.59 ± 0.23 | 2.42 ± 0.33 |
Caffeic acid derivative 2 | nd | nd | nd | nd | nd | nd | 1.46 ± 0.23 * | 2.00 ± 0.35 | nd | nd |
Dicaffeic acid derivative | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Dicaffeic acid derivative 1 | 2.72 ± 0.42 * | 1.47 ± 0.20 | 2.27 ± 0.34 | 1.54 ± 0.25 | 2.35 ± 0.27 | 4.31 ± 0.37 * | nd | nd | nd | nd |
Dicaffeic acid derivative 2 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Dicaffeic acid derivative 3 | 1.36 ± 0.08 | 1.69 ± 0.25 | 1.91 ± 0.24 | 2.45 ± 0.33 | 2.42 ± 0.27 | 2.91 ± 0.35 | 3.45 ± 0.50 | 5.20 ± 0.90 | 3.84 ± 0.16 | 3.27 ± 0.21 |
Caffeic acid hexoside 1 | nd | nd | nd | nd | nd | nd | 2.27 ± 0.32 | 2.82 ± 0.63 | nd | nd |
Caffeic acid hexoside 2 | 8.01 ± 0.76 * | 4.69 ± 0.81 | nd | nd | nd | nd | nd | nd | nd | nd |
Dihydrocaffeic acid derivative | nd | nd | 1.24 ± 0.29 | 1.38 ± 0.26 | nd | nd | nd | nd | nd | nd |
Dihydrodicaffeic acid derivative | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
4-O-p-coumaroylquinic acid | nd | nd | nd | nd | nd | nd | 5.98 ± 0.70 | 6.11 ± 0.64 | nd | nd |
5-O-p-coumaroylquinic acid | nd | nd | 4.42 ± 0.75 | 4.80 ± 0.23 | nd | nd | 5.81 ± 0.87 | 6.65 ± 0.66 | nd | nd |
Chlorogenic acid (5-caffeoylquinic acid) | 15.62 ± 1.29 * | 10.39 ± 0.70 | 43.09 ± 1.72 | 59.02 ± 1.67 * | 11.21 ± 1.06 | 13.47 ± 0.64 | 7.89 ± 1.44 | 9.02 ± 2.47 | 46.76 ± 2.48 | 58.90 ± 5.41 |
Neochlorogenic acid | nd | nd | 12.08 ± 1.17 | 12.77 ± 1.37 | nd | nd | 5.10 ± 1.34 | 6.97 ± 1.88 | nd | nd |
Caffeoylferuoylquinic acid | 5.97 ± 0.42 | 5.54 ± 0.45 | 7.55 ± 0.64 | 9.27 ± 1.73 | nd | nd | 6.77 ± 1.42 | 6.54 ± 1.23 | nd | nd |
Feruloylquinnic acid gallate | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Ferulic acid hexoside | nd | nd | nd | nd | 2.88 ± 0.35 | 3.78 ± 0.49 | 3.52 ± 0.46 | 3.58 ± 0.54 | nd | nd |
Ferulic acid hexoside derivative | 1.38 ± 0.14 | 1.18 ± 0.13 | nd | nd | nd | nd | nd | nd | nd | nd |
Cryptochlorogenic acid (4-caffeoylquinic acid) | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Hydroxybenzoic acids | ||||||||||
Protocatechuic acid derivative | 89.58 ± 8.49 * | 51.58 ± 4.95 | 20.83 ± 1.49 | 27.05 ± 2.42 | 46.77 ± 4.26 | 61.63 ± 4.46 * | nd | nd | 38.75 ± 2.50 * | 29.67 ± 1.73 |
Dihydrochalcones | ||||||||||
Phloridzin | 172.32 ± 9.95 | 156.45 ± 9.04 | 268.70 ± 16.61 * | 211.56 ± 13.88 | 98.32 ± 8.56 | 165.72 ± 13.32 * | 95.93 ± 4.86 | 156.83 ± 11.42 * | 61.03 ± 3.87 | 74.35 ± 4.25 |
Phloretin-2-O-xyloside | 116.63 ± 12.61 * | 99.41 ± 4.68 | 136.45 ± 8.59 | 146.02 ± 8.67 | 221.04 ± 18.66 | 345.91 ± 29.42 * | 24.91 ± 2.62 | 29.80 ± 3.28 | 41.07 ± 2.45 * | 33.22 ± 2.28 |
Flavonols | ||||||||||
Quercetin-3-O-arabinofuranoside | 13.03 ± 1.24 | 12.07 ± 1.42 | 26.82 ± 1.88 | 28.40 ± 2.47 | 21.11 ± 1.95 | 35.14 ± 2.84 * | 30.88 ± 2.59 | 37.42 ± 3.12 | 20.01 ± 1.33 | 18.64 ± 0.83 |
Quercetin-3-O-arabinopyranoside | 37.73 ± 3.79 * | 26.02 ± 2.07 | 25.21 ± 2.59 | 35.13 ± 2.84 * | 50.52 ± 4.14 | 109.42 ± 9.72 * | 28.06 ± 2.46 | 23.39 ± 2.68 | 59.11 ± 5.84 | 57.74 ± 4.20 |
Quercetin-3-O-galactoside | 104.38 ± 9.37 * | 62.83 ± 5.71 | 66.66 ± 4.53 | 131.38 ± 11.53 * | 146.39 ± 11.93 | 360.30 ± 23.19 * | 30.24 ± 3.10 | 30.00 ± 3.02 | 189.35 ± 11.23 * | 136.65 ± 13.02 |
Quercetin-3-O-glucoside | 12.88 ± 2.20 | 9.46 ± 1.23 | 10.94 ± 0.69 | 17.23 ± 1.11 * | 54.07 ± 4.66 | 122.28 ± 11.67 * | 9.92 ± 1.03 | 10.80 ± 1.22 | 30.36 ± 2.37 | 25.39 ± 2.35 |
Quercetin-3-O-rhamnoside | 24.63 ± 2.75 * | 15.80 ± 1.98 | 25.45 ± 2.95 | 34.04 ± 2.56 * | nd | nd | 32.60 ± 3.18 | 26.68 ± 3.51 | 312.03 ± 15.74 * | 280.39 ± 8.66 |
Quercetin-3-O-rutinoside | 19.22 ± 2.16 | 14.92 ± 1.82 | 11.56 ± 1.19 | 24.68 ± 2.27 * | 15.15 ± 2.14 | 24.37 ± 2.25 * | nd | nd | 35.67 ± 2.29 * | 21.79 ± 1.37 |
Quercetin-3-O-xyloside | nd | nd | nd | nd | 27.41 ± 2.47 | 48.76 ± 4.67 * | nd | nd | nd | nd |
Flavanols | ||||||||||
(-)epicatehin | 51.87 ± 4.20 * | 40.52 ± 2.25 | 153.17 ± 10.47 | 166.48 ± 10.53 | 207.78 ± 9.25 | 251.49 ± 12.13 * | 121.74 ± 11.08 | 134.17 ± 11.96 | nd | nd |
Epicatechin derivative 1 | nd | nd | 42.20 ± 2.35 | 59.08 ± 5.04 * | 111.78 ± 9.75 | 188.43 ± 15.73 * | nd | nd | nd | nd |
Epicatechin derivative 2 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Epicatechin derivative 3 | nd | nd | 7.12 ± 1.70 | 8.09 ± 1.04 | nd | nd | nd | nd | nd | nd |
(+)catechin | nd | nd | nd | nd | 80.84 ± 5.24 | 121.51 ± 11.26 * | 41.79 ± 2.72 | 59.15 ± 3.74 * | 284.21 ± 18.99 | 253.17 ± 10.04 |
Flavanol monomer | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Procyanidin dimer 1 | nd | nd | 46.95 ± 3.21 | 58.79 ± 5.99 | 41.01 ± 4.57 | 68.52 ± 5.91 * | 58.75 ± 5.62 | 52.23 ± 5.23 | 33.82 ± 3.61 | 34.38 ± 3.31 |
Procyanidin dimer 2 | 65.46 ± 6.22 | 62.38 ± 3.93 | 238.32 ± 27.06 | 248.56 ± 18.59 | 271.15 ± 15.59 | 345.55 ± 19.82 * | 113.66 ± 7.87 | 120.09 ± 8.35 | 296.44 ± 23.98 | 271.20 ± 22.03 |
Procyanidin dimer 3 | nd | nd | 15.64 ± 2.23 | 28.10 ± 2.26 * | nd | nd | 6.30 ± 0.93 | 10.35 ± 1.09 * | nd | nd |
Procyanidin dimer 4 | nd | nd | 53.91 ± 5.14 * | 39.42 ± 4.13 | 48.51 ± 4.13 | 63.61 ± 5.47 * | 29.34 ± 2.92 | 35.91 ± 3.13 | 30.82 ± 3.09 | 29.92 ± 2.99 |
Procyanidin trimer 1 | nd | nd | 90.31 ± 4.78 | 133.30 ± 11.19 * | nd | nd | 36.96 ± 3.51 | 35.93 ± 3.03 | nd | nd |
Procyanidin trimer 2 | 32.74 ± 2.99 | 33.17 ± 2.52 | 163.80 ± 13.99 | 186.56 ± 14.64 | 198.92 ± 14.48 | 250.94 ± 24.64 * | 183.44 ± 16.79 | 191.31 ± 18.56 | 130.13 ± 13.07 | 128.31 ± 12.01 |
Procyanidin trimer 3 | nd | nd | 25.05 ± 2.63 | 36.23 ± 2.20 * | nd | nd | 16.02 ± 1.94 | 17.06 ± 2.10 | nd | nd |
Procyanidin tetramer 1 | nd | nd | 32.42 ± 3.39 | 38.46 ± 3.85 | nd | nd | nd | nd | nd | nd |
Procyanidin tetramer 2 | nd | nd | 38.00 ± 2.09 | 42.27 ± 3.92 | nd | nd | nd | nd | nd | nd |
Procyanidin tetramer 3 | 13.56 ± 1.47 | 18.42 ± 1.54 | 58.10 ± 4.44 | 67.68 ± 6.32 | 59.13 ± 5.20 | 93.13 ± 6.89 * | 36.68 ± 4.69 | 33.40 ± 3.41 | nd | nd |
Dihydroprocyanidin dimer | 44.75 ± 4.54 | 44.07 ± 3.84 | nd | nd | 86.93 ± 6.14 | 98.18 ± 8.13 | 37.11 ± 3.74 | 43.46 ± 4.61 | 179.44 ± 11.39 | 167.04 ± 14.28 |
Anthocyanins | ||||||||||
Cyanidin-3-galactoside | 379.57 ± 28.15 * | 139.69 ± 12.47 | 59.22 ± 4.70 | 80.21 ± 5.59 * | 73.62 ± 6.65 | 125.39 ± 11.36 * | nd | nd | 182.54 ± 13.56 * | 128.53 ± 10.91 |
Cyanidin-3-arabinoside | 26.83 ± 2.29 * | 12.16 ± 0.64 | 4.51 ± 0.89 | 6.01 ± 0.72 | 4.98 ± 0.61 | 10.46 ± 1.97 * | nd | nd | 11.08 ± 0.42 * | 7.45 ± 0.76 |
Cyanidin-3-xyloside | 51.61 ± 3.80 * | 24.42 ± 2.76 | 4.58 ± 0.46 | 4.64 ± 0.44 | 3.76 ± 0.39 | 7.86 ± 1.04 * | nd | nd | 11.08 ± 0.70 * | 7.88 ± 0.89 |
Total hydroxycinnamic acids | 50.76 ± 4.45 * | 34.81 ± 2.04 | 74.29 ± 4.67 | 93.73 ± 13.81 | 21.42 ± 2.52 | 27.34 ± 1.26 | 45.34 ± 6.61 | 51.93 ± 9.98 | 21.42 ± 2.52 | 27.34 ± 1.26 |
Total hydroxybenzoic acids | 89.58 ± 11.49 * | 51.58 ± 4.96 | 20.83 ± 1.49 | 27.05 ± 3.42 | 46.77 ± 4.26 | 61.63 ± 4.46 * | nd | nd | 46.77 ± 4.26 | 61.63 ± 4.46 * |
Total dihydrochalcones | 288.95 ± 20.31 | 255.86 ± 13.42 | 405.15 ± 24.68 | 357.57 ± 22.07 | 319.35 ± 27.04 | 511.63 ± 42.38 * | 120.84 ± 7.06 | 186.64 ± 15.43 * | 102.10 ± 6.07 | 107.57 ± 6.23 |
Total flavonols | 211.87 ± 32.21 * | 141.10 ± 20.39 | 166.64 ± 16.04 | 270.87 ± 38.76 * | 314.65 ± 25.57 | 700.27 ± 94.68 * | 131.70 ± 14.00 | 128.29 ± 14.57 | 314.65 ± 25.57 | 700.27 ± 94.68 * |
Total flavanols | 208.37 ± 22.43 | 198.56 ± 13.45 | 950.50 ± 76.06 | 1127.53 ± 146.22 | 1106.03 ± 118.66 | 1481.37 ± 124.97 | 742.22 ± 60.94 | 733.08 ± 76.70 | 1106.03 ± 118.66 | 1481.37 ± 124.97 |
Total anthocyanins | 458.01 ± 44.09 * | 176.27 ± 19.38 | 68.32 ± 3.26 | 90.86 ± 11.60 * | 82.37 ± 8.61 | 143.71 ± 17.19 * | nd | nd | 204.71 ± 24.34 * | 143.87 ± 14.49 |
TAPC | 1307.54 ± 132.11 * | 858.17 ± 46.39 | 1685.72 ± 102.15 | 1967.62 ± 221.52 | 1890.59 ± 178.80 | 2925.95 ± 210.32 * | 979.67 ± 103.61 | 1099.93 ± 137.59 | 2010.93 ± 140.63 * | 1780.69 ± 78.97 |
Individual Phenolic Compounds in the Flesh (mg/kg FW) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Compounds | ‘BM’ I | ‘BM’ II | ‘RB’ I | ‘RB’ II | ‘CAR’ I | ‘CAR’ II | ‘OP’ I | ‘OP’ II | ‘TO’ I | ‘TO’ II |
Hydroxycinnamic acids | ||||||||||
p-coumaric acid hexoside 1 | nd | nd | nd | nd | nd | nd | 0.31 ± 0.02 | 0.41 ± 0.05 | nd | nd |
Caffeic acid derivative 2 | nd | nd | nd | nd | nd | nd | 0.23 ± 0.02 | 0.32 ± 0.03 | 0.25 ± 0.03 | 0.40 ± 0.04 * |
Dicaffeic acid derivative 1 | nd | nd | nd | nd | 0.87 ± 0.07 | 1.26 ± 0.05 * | nd | nd | nd | nd |
Dicaffeic acid derivative 2 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Dicaffeic acid derivative 3 | 0.37 ± 0.08 | 0.40 ± 0.02 | nd | nd | 0.46 ± 0.02 | 0.72 ± 0.02 * | 0.41 ± 0.04 | 0.58 ± 0.05 | 1.15 ± 0.12 | 1.63 ± 0.16 * |
Dicaffeic acid derivative 4 | nd | nd | 0.57 ± 0.08 | 1.05 ± 0.17 * | nd | nd | nd | nd | nd | nd |
Dihydrocaffeic acid derivative | nd | nd | 0.20 ± 0.02 | 0.30 ± 0.05 | nd | nd | nd | nd | nd | nd |
4-O-p-coumaroylquinic acid | nd | nd | nd | nd | nd | nd | 0.44 ± 0.03 | 0.60 ± 0.05 | nd | nd |
5-O-p-coumaroylquinic acid | 2.03 ± 0.30 | 1.59 ± 0.14 | 4.39 ± 0.52 | 7.28 ± 1.59 * | 7.17 ± 0.75 | 5.23 ± 0.67 | 5.14 ± 0.56 | 7.01 ± 1.11 | nd | nd |
Chlorogenic acid (5-caffeoylquinic acid) | 11.13 ± 1.51 | 10.38 ± 0.95 | 75.02 ± 6.13 | 111.39 ± 8.16 * | 38.36 ± 3.45 | 41.51 ± 2.44 | 10.62 ± 0.64 | 13.81 ± 0.71 | 36.33 ± 1.32 | 43.12 ± 3.62 |
Caffeoylferuoylquinic acid | 0.56 ± 0.09 | 0.53 ± 0.09 | nd | nd | 4.53 ± 0.26 | 4.20 ± 0.29 | 0.87 ± 0.15 | 1.75 ± 0.30 * | 1.54 ± 0.18 | 1.68 ± 0.22 |
Feruloylquinnic acid gallate | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Ferulic acid hexoside | nd | nd | 1.32 ± 0.33 | 1.20 ± 0.19 | 0.97 ± 0.04 | 1.00 ± 0.04 | nd | nd | nd | nd |
Ferulic acid hexoside derivative | 0.22 ± 0.04 | 0.21 ± 0.02 | 0.27 ± 0.04 | 0.45 ± 0.06 | 0.46 ± 0.03 | 0.61 ± 0.03 * | nd | nd | nd | nd |
Cryptochlorogenic acid (4-caffeoylquinic acid) | nd | nd | 3.71 ± 0.47 | 4.95 ± 0.68 | nd | nd | nd | nd | 0.34 ± 0.04 | 0.57 ± 0.15 |
Hydroxybenzoic acids | ||||||||||
Protocatechuic acid derivative | 3.80 ± 0.02 | 3.36 ± 0.44 | nd | nd | nd | nd | nd | nd | nd | nd |
Dihydrochalcones | ||||||||||
Phloridzin | 3.95 ± 0.54 | 4.40 ± 0.55 | 13.15 ± 1.45 | 23.58 ± 2.52 * | 4.72 ± 0.44 | 5.37 ± 0.29 | 7.63 ± 1.10 | 9.52 ± 0.84 | 3.92 ± 0.57 | 4.06 ± 0.36 |
Phloretin-2-O-xyloside | 6.37 ± 1.10 | 7.36 ± 0.65 | 17.80 ± 1.98 | 29.40 ± 1.83 * | 31.69 ± 3.30 | 41.66 ± 3.20 * | 2.96 ± 0.37 | 3.23 ± 0.33 | 4.27 ± 0.35 | 4.73 ± 0.52 |
Flavonols | ||||||||||
Quercetin-3-O-arabinofuranoside | nd | nd | nd | nd | nd | nd | 0.55 ± 0.04 a | 0.69 ± 0.06 a | nd | nd |
Quercetin-3-O-arabinopyranoside | 0.63 ± 0.08 | 0.37 ± 0.02 | 0.55 ± 0.03 | 0.76 ± 0.10 | nd | nd | nd | nd | nd | nd |
Quercetin-3-O-galactoside | 0.99 ± 0.14 * | 0.50 ± 0.04 | nd | nd | nd | nd | 0.16 ± 0.01 | 0.23 ± 0.03 | 0.34 ± 0.02 | 0.31 ± 0.05 |
Quercetin-3-O-glucoside | 0.59 ± 0.07 | 0.36 ± 0.02 | nd | nd | nd | nd | 0.25 ± 0.07 | 0.23 ± 0.01 | 0.16 ± 0.01 | 0.13 ± 0.01 |
Quercetin-3-O-rhamnoside | 1.31 ± 0.19 | 1.02 ± 0.07 | 0.66 ± 0.07 | 0.69 ± 0.10 | 0.97 ± 0.03 | 0.95 ± 0.06 | 0.82 ± 0.08 | 0.89 ± 0.06 | 0.92 ± 0.02 | 1.00 ± 0.11 |
Flavanols | ||||||||||
(-)epicatehin | 1.60 ± 0.51 | 2.14 ± 0.28 | 39.99 ± 3.54 | 50.12 ± 2.32 * | 46.72 ± 2.88 | 45.57 ± 1.74 | 29.68 ± 1.45 | 47.68 ± 3.79 * | 32.48 ± 1.17 | 44.42 ± 3.93 * |
Epicatechin derivative 1 | nd | nd | 3.88 ± 0.51 | 5.21 ± 0.40 | nd | nd | nd | nd | nd | nd |
(+)catechin | nd | nd | nd | nd | nd | nd | 7.87 ± 0.59 | 8.11 ± 0.21 | nd | nd |
Procyanidin dimer 1 | nd | nd | 16.75 ± 1.33 | 32.90 ± 3.34 * | 13.28 ± 1.59 | 16.43 ± 0.69 | 11.07 ± 0.83 | 23.34 ± 2.95 * | 8.72 ± 0.83 | 14.26 ± 1.51 * |
Procyanidin dimer 2 | 5.96 ± 1.28 | 5.79 ± 0.83 | 84.44 ± 6.12 | 126.17 ± 12.30 * | 114.77 ± 9.62 | 126.63 ± 3.05 | 66.43 ± 6.84 | 98.89 ± 8.78 * | 89.89 ± 3.02 | 132.43 ± 11.39 * |
Procyanidin dimer 3 | nd | nd | nd | nd | nd | nd | 2.20 ± 0.23 | 3.90 ± 0.28 | 2.54 ± 0.21 | 3.00 ± 0.40 |
Procyanidin dimer 4 | nd | nd | 6.24 ± 0.69 | 6.79 ± 0.55 | 7.18 ± 1.01 | 8.03 ± 0.65 | 4.16 ± 0.33 | 3.79 ± 0.28 | 6.03 ± 0.79 | 5.60 ± 0.79 |
Procyanidin trimer 1 | nd | nd | nd | nd | nd | nd | 11.34 ± 0.74 | 11.52 ± 0.80 | 6.84 ± 0.42 | 6.51 ± 0.38 |
Procyanidin trimer 2 | 8.92 ± 1.62 | 8.55 ± 1.56 | 54.19 ± 3.82 | 70.05 ± 4.17 * | 10.28 ± 1.84 | 19.97 ± 2.53 * | 21.66 ± 1.83 | 18.25 ± 2.50 | 30.64 ± 1.39 | 36.20 ± 3.51 |
Procyanidin trimer 3 | nd | nd | nd | nd | nd | nd | nd | nd | 1.43 ± 0.16 | 2.86 ± 0.66 * |
Procyanidin tetramer 1 | nd | nd | nd | nd | nd | nd | 2.84 ± 0.32 | 2.54 ± 0.19 | 3.91 ± 0.34 | 5.88 ± 0.61 |
Procyanidin tetramer 3 | 0.92 ± 0.08 | 0.83 ± 0.17 | nd | nd | nd | nd | 4.55 ± 0.71 | 3.15 ± 0.47 | 4.89 ± 0.54 | 7.42 ± 0.86 |
Dihydroprocyanidin dimer | 7.60 ± 1.05 | 6.95 ± 0.35 | 12.08 ± 1.07 | 25.16 ± 2.31 * | 22.87 ± 1.52 | 21.40 ± 1.66 | 7.85 ± 0.72 | 10.30 ± 1.22 | 8.32 ± 0.62 | 7.62 ± 0.62 |
Anthocyanins | ||||||||||
Cyanidin-3-galactoside | 37.92 ± 2.32 | 35.93 ± 2.31 | nd | nd | nd | nd | nd | nd | nd | nd |
Cyanidin-3-arabinoside | 2.07 ± 0.38 | 2.42 ± 0.39 | nd | nd | nd | nd | nd | nd | nd | nd |
Cyanidin-3-xyloside | 7.90 ± 1.08 | 6.63 ± 1.47 | nd | nd | nd | nd | nd | nd | nd | nd |
Total hydroxycinnamic acids | 14.32 ± 1.30 | 13.11 ± 1.17 | 85.49 ± 8.17 | 126.63 ± 14.11 * | 52.83 ± 3.10 | 54.54 ± 1.84 | 18.03 ± 1.34 | 24.47 ± 2.11 * | 39.61 ± 1.54 | 47.40 ± 3.73 * |
Total hydroxybenzoic acids | 3.80 ± 0.30 | 3.36 ± 0.44 | nd | nd | nd | nd | nd | nd | nd | nd |
Total dihydrochalcones | 10.32 ± 1.58 | 11.76 ± 1.18 | 30.95 ± 3.37 | 52.98 ± 4.20 * | 36.41 ± 3.60 | 47.03 ± 3.18 * | 10.60 ± 1.43 | 12.74 ± 1.15 | 8.19 ± 0.92 | 8.79 ± 0.88 |
Total flavonols | 3.52 ± 0.49 * | 2.24 ± 0.14 | 1.21 ± 0.09 | 1.46 ± 0.21 | 0.97 ± 0.03 | 0.95 ± 0.07 | 1.78 ± 0.19 | 2.04 ± 0.16 | 1.41 ± 0.03 | 1.45 ± 0.17 |
Total flavanols | 24.99 ± 4.89 | 24.26 ± 2.84 | 217.56 ± 26.99 | 316.39 ± 33.39 * | 215.10 ± 18.15 | 238.04 ± 5.14 | 169.65 ± 8.11 | 231.50 ± 14.07 * | 195.69 ± 5.67 | 266.20 ± 28.45 * |
Total anthocyanins | 46.89 ± 6.68 | 44.12 ± 2.80 | nd | nd | nd | nd | nd | nd | nd | nd |
TAPC | 103.83 ± 10.96 | 98.85 ± 7.51 | 335.21 ± 44.11 | 497.46 ± 55.88 * | 305.30 ± 20.27 | 340.56 ± 8.63 * | 200.05 ± 10.06 | 270.75 ± 17.37 * | 244.90 ± 7.34 | 323.84 ± 32.21 * |
3.5. Aroma Profile
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Busatto, N.; Matsumoto, D.; Tadiello, A.; Vrhovsek, U.; Costa, F. Multifaceted analyses disclose the role of fruit size and skin-russeting in the accumulation pattern of phenolic compounds in apple. PLoS ONE 2019, 14, e0219354. [Google Scholar] [CrossRef]
- Kschonsek, J.; Wolfram, T.; Stöckl, A.; Böhm, V. Polyphenolic compounds analysis of old and new apple cultivars and contribution of polyphenolic profile to the in vitro antioxidant capacity. Antioxidants 2018, 7, 20. [Google Scholar] [CrossRef] [PubMed]
- Department for Environment, Food & Rural Affairs. Marketing Standard for Apples; UK Government: London, UK, 2020. Available online: https://assets.publishing.service.gov.uk/media/5e57f4f5e90e071110454350/marketing-standard-apples.pdf (accessed on 5 April 2025).
- Starowicz, M.; Achrem-Archremowicz, B.; Piskuła, M.K.; Zieliński, H. Phenolic Compounds from Apples: Reviewing Their Occurrence, Absorption, Bioavailability, Processing, and Antioxidant Activity—A Review. Pol. J. Food Nutr. Sci. 2020, 70, 321–336. [Google Scholar] [CrossRef]
- Feng, S.; Yi, J.; Li, X.; Wu, X.; Zhao, Y.; Ma, Y.; Bi, J. Systematic review of phenolic compounds in apple fruits: Compositions, distribution, absorption, metabolism, and processing stability. J. Agric. Food Chem. 2021, 69, 7–27. [Google Scholar] [CrossRef]
- Jakobek, L.; Pöc, K.; Valenteković, M.; Matić, P. The Behavior of Phenolic Compounds from Apples during Simulated Gastrointestinal Digestion with Focus on Chlorogenic Acid. Foods 2024, 13, 693. [Google Scholar] [CrossRef]
- Shimizu, T.; Hattori, Y.; Ogami, S.; Imayoshi, Y.; Moriya, S.; Okada, K.; Sawamura, Y.; Abe, K. Identification of aroma compounds responsible for apple flavor via palatability score prediction in tree-based regression models. Food Sci. Technol. 2024, 192, 115737. [Google Scholar] [CrossRef]
- Espino-Díaz, M.; Sepúlveda, R.D.; González-Aguilar, G.; Olivas, G.I. Biochemistry of apple aroma: A review. Food Technol. Biotechnol. 2016, 54, 375–397. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Yan, C.; Zhang, T.; Ji, M.; Tao, R.; Gao, H. Comperative study of volatile compounds and expression of related genes in fruit from two apple cultivars during different developmental stages. Molecules 2021, 26, 1553. [Google Scholar] [CrossRef]
- Wu, X.; Bi, J.; Fauconnier, M.-L. Characteristic volatiles and cultivar classification in 35 apple varieties: A case study of two harvest years. Foods 2022, 11, 690. [Google Scholar] [CrossRef]
- Tang, Y.; Yao, Y.; Wu, Y.; Yang, S. The volatile composition, biosynthesis pathways, breeding strategies, and regulation measures of apple aroma: A review. Horticulturae 2025, 11, 310. [Google Scholar] [CrossRef]
- Kong, C.L.; Ma, N.; Yin, J.; Zhao, H.Y.; Tao, Y.S. Fine tuning of medium chain fatty acids levels increases fruity ester production during alcoholic fermentation. Food Chem. 2021, 346, 128897. [Google Scholar] [CrossRef]
- Altisent, R.; Graell, J.; Lara, I.; López, L.; Echeverría, G. Increased straight-chain esters content after ultra-low oxygen storage and its relation to lipoxygenase system in ‘Golden Reinders’ apples. Eur. Food Res. Technol. 2011, 232, 51–61. [Google Scholar] [CrossRef]
- Paillard, N.M.M. The Flavour of Apples, Pears and Quinces; Elsevier Science Publishing Company Inc.: Amsterdam, The Netherlands, 1990; pp. 1–41. [Google Scholar]
- Mikulic-Petkovsek, M.; Štampar, F.; Veberič, R. Changes in the inner quality parameters of apple fruit from technological to edible maturity. Acta Agric. Slov. 2009, 93, 17–29. [Google Scholar] [CrossRef]
- Medic, A.; Hudina, M.; Veberič, R. The effect of cane vigour on the kiwifruit (Actinidia chinensis) and kiwiberry (Actinidia arguta) quality. Sci. Rep. 2021, 11, 12749. [Google Scholar] [CrossRef] [PubMed]
- Medic, A.; Zamljen, T.; Hudina, M.; Veberič, R. Time-dependent degradation of naphthoquinones and phenolic compounds in walnut husks. Biology 2022, 11, 342. [Google Scholar] [CrossRef]
- Šimkova, K.; Veberič, R.; Hudina, M.; Grohar, M.C.; Ivančič, T.; Smrke, T.; Pelacci, M.; Jakopic, J. Berry size and weight as factors influencing the chemical composition of strawberry fruit. J. Food Compos. Anal. 2023, 123, 105509. [Google Scholar] [CrossRef]
- Šimkova, K.; Veberič, R.; Grohar, M.C.; Pelacci, M.; Smrke, T.; Ivančič, T.; Medic, A.; Cvelbar Weber, N.; Jakopic, J. Changes in the aroma profile and phenolic compound contents of different strawberry cultivars during ripening. Plants 2024, 13, 1419. [Google Scholar] [CrossRef]
- Juhart, J.; Medic, A.; Veberič, R.; Hudina, M.; Jakopic, J.; Štampar, F. Phytochemical composition of red-fleshed apple cultivar ‘Baya Marisa’ compared to traditional, white-fleshed apple cultivar ‘Golden Delicious’. Horticulturae 2022, 8, 811. [Google Scholar] [CrossRef]
- Yang, S.; Hao, N.; Meng, Z.; Li, Y.; Zhao, Z. Identification, comparison and classification of volatile compounds in peels of 40 apple cultivars by HS–SPME with GC–MS. Foods 2021, 10, 1051. [Google Scholar] [CrossRef]
- Yoon, H.K.; Kleiber, T.; Zydlik, Z.; Rutkowski, K.; Morkunas, I. A comparison of selected biochemical and physical characteristics and yielding of fruits in apple cultivars (Malus domestica Borkh.). Agronomy 2020, 10, 458. [Google Scholar] [CrossRef]
- Begic-Akagic, A.; Spaho, N.; Gaši, F.; Drkenda, P.; Vranac, A.; Meland, M.; Salkic, B. Sugar and organic acid profiles of the traditional and international apple cultivars for processing. J. Hyg. Eng. Des. 2014, 7, 190–196. Available online: https://api.semanticscholar.org/CorpusID:11165782 (accessed on 5 April 2025).
- Wu, J.; Gao, H.; Liao, X.; Chen, F.; Wang, Z.; Hu, X. Chemical compositional characterization of some apple cultivars. Food Chem. 2007, 103, 88–93. [Google Scholar] [CrossRef]
- Wang, R.; Mccormic, R.; Xuan, H.; Streif, J. Distribution of sugar and organic acid components within the KOB heritage apple cultivar collection. Acta Hortic. 2010, 858, 10. [Google Scholar] [CrossRef]
- Aprea, E.; Charles, M.; Endrizzi, I.; Corollaro, M.L.; Betta, E.; Biasioli, F.; Gasperi, F. Sweet taste in apple: The role of sorbitol, individual sugars, organic acids and volatile compounds. Sci. Rep. 2017, 7, 44950. [Google Scholar] [CrossRef]
- De la Iglesia, R.; Milagro, F.M.; Campión, J.; Boqué, N.; Martínez, J.A. Healthy properties of proanthocyanidins. IUBMB Life 2010, 62, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Zhu, T.; Yang, S.; Li, X.; Song, B.; Wang, Y.; Lin, Q.; Cao, J. Analysis of phenolic components and related biological activities of 35 apple (Malus pumila Mill.) cultivars. Molecules 2020, 25, 4153. [Google Scholar] [CrossRef] [PubMed]
- Espley, R.V.; Hellens, R.P.; Putterill, J.; Stevenson, D.E.; Kutty-Amma, S.; Allan, A.C. Red coloration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J. 2007, 49, 414–427. [Google Scholar] [CrossRef]
- Espley, R.V.; Brendolise, C.; Chagné, D.; Kutty-Amma, S.; Green, S.; Volz, R.; Putterill, J.; Schouten, H.J.; Gardiner, S.E.; Hellens, R.P.; et al. Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell 2009, 21, 168–183. [Google Scholar] [CrossRef]
- Espley, R.V.; Bovy, A.; Bava, C.; Jaeger, S.R.; Tomes, S.; Norling, C.; Crawford, J.; Rowan, D.; McGhie, T.K.; Brendolise, C.; et al. Analysis of genetically modified red-fleshed apples reveals effects on growth and consumer attributes. Plant Biotechnol. J. 2012, 11, 408–419. [Google Scholar] [CrossRef]
- Fan, Z.; Hasing, T.; Johnson, T.S.; Garner, D.M.; Schwieterman, M.L.; Barbey, C.R.; Colquhoun, T.A.; Sims, C.A.; Resende, M.F.R.; Whitaker, V.M. Strawberry sweetness and consumer preference are enhanced by specific volatile compounds. Hortic. Res. 2021, 8, 66. [Google Scholar] [CrossRef]
- Liu, L.; Yang, L.; Yuan, J.; Zhang, J.; Liu, C.; Zhou, H.; Liu, W.; Wang, G. D-limonene is the active olfactory attractant in orange juice for Bactrocera dorsalis (Insecta: Diptera: Tephritidae). Life 2024, 14, 713. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Liu, K.; Wu, J.; Li, B.; Chen, Y.; Chen, T.; Tian, S. Changes in volatile organic compounds of three apple cultivars in storage and related regulation mechanism. Postharvest Biol. Technol. 2025, 226, 113562. [Google Scholar] [CrossRef]
- Zhu, D.; Ren, X.; Wei, L.; Cao, X. Collaborative analysis on difference of apple fruits flavour using electronic nose and electronic tongue. Sci. Hortic. 2020, 260, 108879. [Google Scholar] [CrossRef]
- Gan, H.H.; Soukoulis, C.; Fisk, I. Atmospheric pressure chemical ionisation mass spectrometry analysis linked with chemometrics for food classification—A case study: Geographical provenance and cultivar classification of monovarietal clarified apple juices. Food Chem. 2014, 146, 149–156. [Google Scholar] [CrossRef]
- Odeyemi, O.A.; Burke, C.M.; Bolch, C.J.; Stanley, R. Evaluation of spoilage potential and volatile metabolites production by Shewanella baltica isolated from modified atmosphere packaged live mussels. Food Res. Int. 2018, 103, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hao, N.; Feng, R.; Meng, R.; Li, Y.; Zhao, Z. Transcriptome and metabolite profiling analyses provide insight into volatile compounds of the apple cultivar ‘Ruixue’ and its parents during fruit development. BMC Plant Biol. 2021, 21, 231. [Google Scholar] [CrossRef]
- Nieuwenhuizen, N.J.; Green, S.A.; Chen, X.; Bailleul, E.J.D.; Matich, A.J.; Wang, M.Y.; Atkinson, R.G. Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple. Plant Physiol. 2013, 161, 787–804. [Google Scholar] [CrossRef]
- Lavilla, T.; Puy, J.; López, M.L.; Recasens, I.; Vendrell, M. Relationships between volatile production, fruit quality, and sensory evaluation in Granny Smith apples stored in different controlled-atmosphere treatments by means of multivariate analysis. J. Agric. Food Chem. 1999, 47, 3791–3803. [Google Scholar] [CrossRef]
- Lopez, M.L.; Lavilla, M.T.; Riba, M.; Vendrell, M. Comparison of volatile compounds in two seasons in apples: Golden delicious and Granny smith. J. Food Qual. 1998, 21, 155–166. [Google Scholar] [CrossRef]
- Plotto, A.; McDaniel, M.R.; Mattheis, J.P. Characterization of changes in ‘Gala’ apple aroma during storage using Osme analysis, a gas chromatography–olfactometry technique. J. Am. Soc. Hortic. Sci. 2000, 125, 714–722. [Google Scholar] [CrossRef]
- Yang, S.; Meng, Z.; Li, Y.; Chen, R.; Yang, Y.; Zhao, Z. Evaluation of physiological characteristics, soluble sugars, organic acids and volatile compounds in ‘orin’ apples (Malus domestica) at different ripening stages. Molecules 2021, 26, 807. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.; Alquézar, B.; Peña, L. Fruit aromas in mature fleshy fruits as signals of readiness for predation and seed dispersal. New Phytol. 2012, 197, 36–48. [Google Scholar] [CrossRef] [PubMed]
Diameter (mm) | ||||||
---|---|---|---|---|---|---|
Cultivar | Horizontal | Vertical | Weight (g) | Flesh Firmness (kg/cm2) | SS Content (°Brix) | Starch |
‘BM’ I | 78.52 ± 1.19 * | 85.44 ± 1.53 * | 257.58 ± 9.38 * | 5.65 ± 0.18 | 15.47 ± 0.19 | n.d. |
‘BM’ II | 60.55 ± 0.91 | 69.13 ± 0.64 | 136.89 ± 3.25 | 6.79 ± 0.24 | 14.13 ± 0.29 | n.d. |
‘CAR’ I | 62.96 ± 1.17 * | 78.78 ± 1.02 * | 177.19 ± 5.88 * | 7.04 ± 0.15 | 14.46 ± 0.40 | 3.8 ± 0.22 |
‘CAR’ II | 48.85 ± 0.76 | 60.46 ± 0.44 | 82.18 ± 1.7 | 7.98 ± 0.23 | 14.41 ± 0.62 | 4.3 ± 0.17 |
‘OP’ I | 70.38 ± 1.36 * | 78.29 ± 0.82 * | 206.30 ± 5.54 * | 7.04 ± 0.13 | 14.33 ± 0.19 | 4.00 ± 0.75 |
‘OP’ II | 57.72 ± 0.82 | 65.94 ± 0.55 | 121.18 ± 2.58 | 7.33 ± 0.14 | 15.16 ± 0.34 | 4.00 ± 0.00 |
‘RB’ I | 67.49 ± 1.18 * | 84.11 ± 1.35 * | 221.2 ± 7.63 * | 7.69 ± 0.27 | 14.82 ± 0.28 | 4.2 ± 0.15 |
‘RB’ II | 52.11 ± 0.78 | 64.11 ± 0.65 | 103.91 ± 2.83 | 8.08 ± 0.22 | 15.40 ± 0.19 | 3.87 ± 0.17 |
‘TO’ I | 60.59 ± 0.63 * | 79.92 ± 0.65 * | 191.39 ± 4.05 * | 7.46 ± 0.19 | 15.51 ± 0.14 | 3.6 ± 0.18 |
‘TO’ II | 54.29 ± 0.65 | 71.15 ± 0.79 | 157.56 ± 4.38 | 7.75 ± 0.19 | 15.30 ± 0.30 | 3.1 ± 0.28 |
Volatile Compounds | CAS | RT | ‘BM’ I | ‘BM’ II | ‘RB’ I | ‘RB’ II | ‘CAR’ I | ‘CAR’ II | ‘OP’ I | ‘OP’ II | ‘TO’ I | ‘TO’ II |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Esters | ||||||||||||
Ethyl-butyrate | 105-54-4 | 7.259 | nd | nd | 150.17 ± 5.11 | 136.28 ± 12.94 | 670.40 ± 28.99 | 775.97 ± 23.60 * | nd | nd | nd | nd |
Ethyl 2-methylbutanoate | 7452-79-1 | 7.722 | nd | nd | nd | nd | 180.01 ± 17.99 | 335.33 ± 30.62 * | nd | nd | nd | nd |
Butyl-acetate | 123-86-4 | 8.335 | 87.52 ± 7.62 | nd | nd | nd | nd | nd | 858.43 ± 26.40 * | 300.88 ± 22.86 | nd | nd |
2-methylbutyl-acetate | 624-41-9 | 9.948 | nd | nd | nd | nd | nd | nd | 397.19 ± 20.36 * | 234.41 ± 21.54 | nd | nd |
Pentyl-acetate | 628-63-7 | 11.769 | nd | nd | nd | nd | nd | nd | 131.26 ± 12.5 | nd | nd | nd |
Butyl 2-methylbutyrate | 15706-73-7 | 13.806 | 102.25 ± 3.48 | 108.35 ± 9.48 | nd | nd | 118.11 ± 10.42 * | 65.99 ± 4.49 | 175.24 ± 10.67 | 282.41 ± 17.55 * | 142.54 ± 11.44 * | 50.56 ± 2.77 |
Ethyl-hexanoate | 123-66-0 | 13.893 | nd | nd | nd | nd | 158.51 ± 3.32 | 238.65 ± 5.37 * | nd | nd | nd | nd |
Hexyl-acetate | 142-92-7 | 15.256 | nd | nd | 128.15 ± 12.05 * | 73.39 ± 6.77 | 140.02 ± 17.56 | nd | 3509.73 ± 278.30 * | 612.83 ± 24.74 | nd | nd |
Pentyl-butyrate | 540-18-1 | 16.81 | nd | nd | nd | nd | nd | nd | 114.75 ± 19.83 | nd | 49.43 ± 5.99 | 63.42 ± 4.37 * |
Hexyl-propanoate | 2445-76-3 | 17.598 | nd | nd | nd | nd | nd | nd | 340.75 ± 23.71 * | 139.24 ± 14.56 | nd | nd |
Butyl hexanoate | 626-82-4 | 20.1 | 618.17 ± 14.76 * | 488.22 ± 10.65 | 68.24 ± 3.77 | 73.68 ± 7.71 | 182.91 ± 15.52 * | 103.42 ± 3.93 | 596.63 ± 20.31 * | 409.39 ± 39.25 | 505.50 ± 29.99 * | 436.24 ± 16.00 |
Hexyl-butyrate | 2639-63-6 | 20.15 | 961.61 ± 57.63 | 908.83 ± 41.07 | 215.88 ± 13.43 | 371.81 ± 21.10 * | 336.23 ± 26.21 * | 247.71 ± 15.52 | 1504.98 ± 120.21 * | 757.50 ± 50.11 | 1050.03 ± 41.96 | 1060.72 ± 55.04 |
Hexyl 2-methylbutanoate | 10032-15-2 | 20.513 | 162.78 ± 15.38 * | 127.83 ± 12.68 | 252.97 ± 19.45 | 489.99 ± 29.14 * | 345.67 ± 16.29 * | 290.33 ± 16.66 | 1057.83 ± 38.93 | 1238.38 ± 151.28 * | 72.92 ± 9.75 | 90.31 ± 5.35 * |
Hexyl-hexanoate | 6378-65-0 | 26.346 | 612.52 ± 18.98 * | 407.65 ± 16.58 | 89.60 ± 4.70 | 126.01 ± 11.45 * | 229.14 ± 13.32 * | 177.28 ± 14.44 | 840.42 ± 11.26 * | 447.09 ± 27.45 | 311.12 ± 16.38 * | 258.82 ± 19.34 |
Butyl-octanoate | 589-75-3 | 26.474 | 117.33 ± 9.11 * | 78.23 ± 2.27 | nd | nd | nd | nd | 76.50 ± 5.92 * | 60.16 ± 6.29 | nd | nd |
Alcohols | ||||||||||||
Butyl alcohol | 71-36-3 | 10.915 | 1449.90 ± 133.36 | 1386.53 ± 119 | 419.73 ± 26.96 | 533.48 ± 33.91 * | 415.64 ± 38.12 | 502.33 ± 13.45 * | 426.67 ± 15.78 | 519.54 ± 12.97 * | 785.36 ± 25.48 | 737.19 ± 29.90 |
2-methyl-1-butanol | 137-32-6 | 13.046 | 142.88 ± 11.19 | 130.48 ± 12.23 | 81.04 ± 4.41 | 131.50 ± 13.54 * | 177.98 ± 17.09 | 310.77 ± 18.82 * | 110.50 ± 6.37 | 209.64 ± 19.11 * | 121.78 ± 6.96 * | 60.93 ± 4.66 |
1-Penten-3-ol | 616-25-1 | 11.431 | 67.15 ± 2.88 | 100.61 ± 9.88 * | 53.70 ± 3.37 * | 44.44 ± 2.00 | 71.78 ± 3.71 | 98.73 ± 8.52 * | 84.17 ± 7.49 | 92.00 ± 7.20 | 128.50 ± 8.17 * | 96.01 ± 8.58 |
2-E-hexen-1-ol | 928-95-0 | 20.016 | nd | nd | 62.15 ± 6.41 | 7.55 ± 4.55 | 100.98 ± 4.65 | 90.38 ± 9.43 | nd | nd | 171.79 ± 16.37 | nd |
Aldehydes | ||||||||||||
n-hexanal | 66-25-1 | 8.622 | 7049.62 ± 169.23 b | 10,488.15 ± 163.01 * | 1480.19 ± 128.46 | 2512.21 ± 109.21 * | 6082.80 ± 277.21 | 7718.34 ± 144.06 * | 4589.16 ± 188.55 | 5735.70 ± 147.84 | 5537.40 ± 171.11 | 5373.92 ± 113.90 |
cis-3-hexenal | 6789-80-6 | 10.542 | 64.41 ± 5.88 | 109.27 ± 4.39 * | 73.25 ± 7.59 | 94.37 ± 15.81 | 112.97 ± 9.19 | 154.74 ± 9.82 * | nd | nd | 136.38 ± 14.87 * | 114.59 ± 6.43 |
cis-3-hexenal isomer 2 | 4440-65-7 | 10.733 | nd | nd | nd | nd | 95.66 ± 9.45 * | 79.49 ± 7.97 | 211.18 ± 24.09 * | 124.47 ± 25.67 | 92.21 ± 8.03 * | 58.94 ± 5.62 |
2-Z-hexenal | 16635-54-4 | 12.805 | 151.08 ± 15.96 | 137.96 ± 15.00 | 127.84 ± 11.57 | 148.25 ± 12.65 | 147.01 ± 8.43 | 208.59 ± 13.68 * | 135.83 ± 11.06 | 137.85 ± 13.63 | 181.13 ± 16.04 | 171.57 ± 14.05 |
2-E-hexenal | 6728-26-3 | 13.362 | 10,182.55 ± 387.95 | 10,886.41 ± 464.84 | 7552.79 ± 170.44 | 9020.79 ± 468.61 * | 13,115.09 ± 310.78 | 11,867.12 ± 410.79 | 10,897.12 ± 515.26 * | 9459.04 ± 311.19 | 12,870.77 ± 382.59 | 14,880.89 ± 486.61 * |
Ketones | ||||||||||||
2-propanone | 67-64-1 | 2.801 | 598.01 ± 35.75 | 1546.94 ± 110.79 * | 1437.23 ± 114.88 | 1701.68 ± 128.64 * | nd | 1708.80 ± 166.44 | 2384.38 ± 186.48 | nd | 1740.13 ± 167.60 * | 765.34 ± 150.09 |
Penten-3-one | 1629-58-9 | 6.88 | 203.32 ± 21.20 * | 138.17 ± 14.95 | 126.24 ± 17.10 | nd | 205.69 ± 26.92 | 226.37 ± 18.53 | 191.02 ± 18.71 * | 99.85 ± 9.37 | 194.55 ± 23.71 | 265.82 ± 26.20 * |
Methyl heptenone | 110-93-0 | 17.658 | 71.52 ± 6.98 | 136.46 ± 8.34 * | nd | nd | nd | nd | nd | nd | nd | nd |
Acids | ||||||||||||
Acetic Acid | 64-19-7 | 2.315 | nd | nd | nd | 321.21 ± 36.30 | 118.22 ± 4.71 | 604.25 ± 16.51 * | 462.51 ± 23.99 * | 85.45 ±5.19 | 105.29 ± 4.63 | nd |
Terpenes and alkanes | ||||||||||||
n-hexane | 110-54-3 | 1.688 | 157.77 ± 6.28 * | 112.7 ± 6.62 | 89.74 ± 6.72 | 85.77 ± 6.62 | 139.69 ± 10.55 | 183.60 ± 11.83 * | 121.17 ± 12.72 | 185.31 ± 18.86 * | 179.21 ± 17.08 * | 141.89 ± 4.09 |
α-Farnesene | 502-61-4 | 30.267 | 3130.13 ± 139.80 * | 2895.42 ± 19.45 | 1302.79 ± 28.37 | 1998.85 ± 99.65 * | 3885.88 ± 194.24 * | 3193.28 ± 40.03 | 2095.14 ± 183.97 * | 1447.18 ± 100.86 | 2630.47 ± 106.87 | 3079.33 ± 186.69 * |
Total esters | 2512.79 ± 216.34 * | 2119.16 ± 78.12 | 876.79 ± 83.27 | 1246.63 ± 152.87 * | 2315.99 ± 218.89 | 2234.68 ± 244.92 | 9481.55 ± 762.43 * | 4572.29 ± 598.68 | 2075.45 ± 271.63 | 2004.35 ± 107.88 | ||
Total alcohols | 1615.16 ± 251.16 | 1550.54 ± 143.31 | 615.10 ± 47.90 | 713.78 ± 75.43 | 742.46 ± 58.15 | 1002.20 ± 40.23 * | 621.35 ± 74.71 | 882.61 ± 92.28 * | 1150.16 ± 62.78 * | 873.82 ± 92.47 | ||
Total aldehydes | 17,375.825 ± 1612.37 | 21,635.921 ± 1142.81 * | 9207.08 ± 984.99 | 11,739.19 ± 601.84 * | 19,521.64 ± 2085.99 | 20,002.08 ± 2414.61 | 15,833.81 ± 1186.78 | 15,484.17 ± 1075.73 | 18,772.43 ± 1896.08 | 20,599.92 ± 876.46 | ||
Total ketones | 872.85 ± 55.37 | 1821.57 ± 187.49 * | 1563.47 ± 159.67 | 1701.68 ± 128.64 | 205.69 ± 26.92 | 1935.69 ± 178.13 | 2575.40 ± 117.09 * | 99.85 ± 9.37 | 1934.69 ± 190.73 * | 1031.16 ± 109.24 | ||
Total acids | nd | nd | nd | 321.21 ± 36.30 | 118.22 ± 4.71 | 604.25 ± 16.51 * | 462.51 ± 23.99 * | 85.45 ±5.19 | 105.29 ± 4.63 | nd | ||
Total terpenes | 3287.92 ± 246.07 | 3008.12 ± 15.96 | 1392.53 ± 98.37 | 2084.62 ± 99.65 * | 4025.57 ± 408.84 * | 3376.87 ± 39.77 | 2216.31 ± 272.31 * | 1632.50 ± 102.01 | 2809.68 ± 175.63 | 3221.23 ± 210.32 * |
Aromatics | CAS | Rt | ‘BM’ I | ‘BM’ II | ‘RB’ I | ‘RB’ II | ‘CAR’ I | ‘CAR’ II | ‘OP’ I | ‘OP’ II | ‘TO’ I | ‘TO’ II |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Esters | ||||||||||||
Ethyl-butyrate | 105-54-4 | 7.259 | nd | nd | 0.27 ± 0.16 | 0.39 ± 0.16 | 0.37 ± 0.03 | 0.42 ± 0.16 | nd | nd | nd | nd |
Ethyl 2-methylbutanoate | 7452-79-1 | 7.722 | nd | nd | nd | nd | 8.37 ± 2.35 | 16.81 ± 2.99 * | nd | nd | nd | nd |
Butyl-acetate | 123-86-4 | 8.335 | nd | nd | nd | nd | nd | nd | 131.66 ± 12.83 | 141.45 ± 14.52 | nd | nd |
2-methylbutyl-acetate | 624-41-9 | 9.948 | nd | nd | nd | nd | nd | nd | 29.39 ± 2.82 | 58.50 ± 3.14 * | nd | nd |
Pentyl-acetate | 628-63-7 | 11.76 | nd | nd | nd | nd | nd | nd | 16.14 ± 2.92 * | 12.17 ± 1.68 | nd | nd |
Ethyl-hexanoate | 123-66-0 | 13.893 | nd | nd | 16.53 ± 1.58 * | 10.59 ± 1.48 | 9.79 ± 1.51 | 16.34 ± 0.67 * | nd | nd | nd | nd |
hexyl-butyrate | 2639-63-6 | 20.15 | 11.87 ± 1.13 * | 8.49 ± 1.63 | 22.73 ± 2.23 | 28.93 ± 2.07 * | 6.36 ± 0.89 | nd | 72.75 ± 3.62 * | 41.14 ± 4.59 | 39.35 ± 1.28 | 41.63 ± 4.09 |
Hexyl-acetate | 142-92-7 | 15.256 | nd | nd | 9.90 ± 1.24 * | 5.59 ± 0.96 | 8.31 ± 1.15 | 9.84 ± 1.01 | 493.91 ± 29.94 * | 360.22 ± 28.53 | 5.96 ± 0.74 | nd |
Hexyl 2-methylbutyrate | 10032-15-2 | 20.513 | 4.50 ± 1.29 | 8.27 ± 1.71 * | nd | nd | nd | nd | 8.93 ± 2.28 | 12.98 ± 2.67 | nd | nd |
Alcohols | ||||||||||||
Butyl alcohol | 71-36-3 | 10.915 | 75.17 ± 2.98 | 108.51 ± 11.77 * | 47.26 ± 4.77 | 82.07 ± 6.81 * | 43.44 ± 4.39 | 52.36 ± 2.67 * | 39.17 ± 3.10 | 52.12 ± 5.03 * | 70.99 ± 7.49 * | 56.12 ± 1.13 |
2-methyl-1-butanol | 137-32-6 | 13.046 | 5.77 ± 0.85 | 9.22 ± 0.75 * | nd | 12.46 ± 1.90 | 18.08 ± 2.81 | 28.60 ± 2.07 * | nd | 13.33 ± 1.61 | 4.74 ± 0.47 | nd |
Aldehydes | ||||||||||||
Butanal | 123-72-8 | 3.566 | 14.30 ± 1.39 | 16.40 ± 1.94 | nd | 9.13 ± 1.81 | 9.40 ± 0.94 | nd | nd | nd | 10.99 ± 1.17 | 8.73 ± 1.41 |
n-hexanal | 66-25-1 | 8.622 | 145.94 ± 11.89 | 313.77 ± 12.27 * | 76.56 ± 5.77 | 137.43 ± 11.77 * | 185.95 ± 10.10 | 279.89 ± 11.44 * | 174.80 ± 8.65 | 388.17 ± 14.63 * | 109.46 ± 6.81 | 150.18 ± 0.28 * |
2-E-hexenal | 6728-26-3 | 13.362 | 136.52 ± 14.05 | 207.99 ± 11.25 * | 109.21 ± 10.68 | 195.23 ± 11.80 * | 200.89 ± 13.84 | 202.31 ± 17.68 | 255.67 ± 10.08 | 373.76 ± 20.83 * | 213.61 ± 14.64 | 272.01 ± 16.42 * |
Ketones | ||||||||||||
2-propanone | 67-64-1 | 2.801 | nd | nd | 37.01 ± 3.76 * | 22.96 ± 1.22 | 23.52 ± 2.24 | 49.60 ± 4.23 * | 43.29 ± 2.19 | 37.29 ± 4.81 | 103.91 ± 11.86 * | 84.08 ± 7.53 |
Acids | ||||||||||||
Acetic acid | 64-19-7 | 2.315 | nd | nd | 28.92 ± 0.91 * | 18.99 ± 1.18 | 25.19 ± 2.21 | 35.53 ± 1.93 * | 19.32 ± 1.87 | 27.74 ± 1.85 * | nd | nd |
Terpenes and alkanes | ||||||||||||
n-hexane | 110-54-3 | 1.688 | 14.14 ± 1.70 | 15.91 ± 0.72 | 28.47 ± 1.45 | 27.75 ± 2.43 | 640.87 ± 14.89 * | 390.43 ± 19.36 | 42.34 ± 4.50 | 41.92 ± 4.50 | 24.40 ± 2.64 | 31.41 ± 6.39 * |
D-Limonene | 5989-27-5 | 12.572 | nd | nd | nd | nd | nd | nd | 4.52 ± 1.46 | 4.12 ± 1.51 | nd | nd |
α-Farnesene | 502-61-4 | 30.267 | 28.45 ± 2.74 | 46.86 ± 1.12 * | 8.06 ± 1.95 | 10.59 ± 2.17 | 18.12 ± 2.45 | 17.98 ± 1.35 | 13.13 ± 2.09 | 10.70 ± 2.13 | 19.11 ± 0.29 * | 14.46 ± 1.19 |
Total esters | 16.87 ± 1.67 | 16.00 ± 0.97 | 47.02 ± 1.17 | 45.46 ± 3.20 | 33.20 ± 3.52 | 43.25 ± 4.39 * | 752.79 ± 67.57 * | 626.46 ± 30.88 | 45.23 ± 6.14 | 41.63 ± 4.09 | ||
Total alcohols | 80.93 ± 2.48 | 117.72 ± 20.68 * | 51.48 ± 5.04 | 94.53 ± 6.83 * | 61.52 ± 8.20 | 80.96 ± 4.11 * | 39.17 ± 3.10 | 65.45 ± 8.28 * | 74.14 ± 7.70 * | 56.12 ± 1.14 | ||
Total aldehydes | 291.99 ± 31.98 | 532.69 ± 42.63 * | 185.78 ± 20.45 | 338.74 ± 37.84 * | 393.10 ± 25.87 | 482.20 ± 50.08 * | 430.47 ± 43.46 | 761.93 ± 82.56 * | 326.73 ± 37.44 | 430.92 ± 48.42 * | ||
Total ketones | nd | nd | 37.01 ± 3.76 * | 22.96 ± 1.22 | 23.52 ± 2.24 | 49.60 ± 4.23 * | 43.29 ± 2.19 | 37.29 ± 4.81 | 103.91 ± 11.86 * | 84.08 ± 7.53 | ||
Total acids | nd | nd | 28.92 ± 0.91 * | 18.99 ± 1.18 | 25.19 ± 2.21 | 35.53 ± 1.93 * | 19.32 ± 1.87 | 27.74 ± 1.85 * | nd | nd | ||
Total terpenes | 42.59 ± 4.75 | 62.77 ± 5.92 * | 36.53 ± 1.69 | 38.34 ± 0.82 | 658.99 ± 62.89 * | 408.41 ± 46.20 | 59.06 ± 1.75 | 54.79 ± 6.88 | 39.84 ± 0.71 | 45.87 ± 2.49 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juhart, J.; Štampar, F.; Grohar, M.C.; Medic, A. Biochemical and Volatile Compound Variation in Apple (Malus domestica) Cultivars According to Fruit Size: Implications for Quality and Breeding. Appl. Sci. 2025, 15, 10003. https://doi.org/10.3390/app151810003
Juhart J, Štampar F, Grohar MC, Medic A. Biochemical and Volatile Compound Variation in Apple (Malus domestica) Cultivars According to Fruit Size: Implications for Quality and Breeding. Applied Sciences. 2025; 15(18):10003. https://doi.org/10.3390/app151810003
Chicago/Turabian StyleJuhart, Jan, Franci Štampar, Mariana Cecilia Grohar, and Aljaz Medic. 2025. "Biochemical and Volatile Compound Variation in Apple (Malus domestica) Cultivars According to Fruit Size: Implications for Quality and Breeding" Applied Sciences 15, no. 18: 10003. https://doi.org/10.3390/app151810003
APA StyleJuhart, J., Štampar, F., Grohar, M. C., & Medic, A. (2025). Biochemical and Volatile Compound Variation in Apple (Malus domestica) Cultivars According to Fruit Size: Implications for Quality and Breeding. Applied Sciences, 15(18), 10003. https://doi.org/10.3390/app151810003