Assessing Soil Water Content of Regenerative Cotton Crop with Extreme Gradient Boosting from Agrometeorological and Satellite Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Crop Management and Agrometeorological Information
2.3. Satellite Data and Vegetation Indices
2.4. Machine Learning
3. Results
3.1. Agrometeorological Conditions and Irrigation
3.2. Soil Water Content
3.3. Machine Learning Models’ Performance
Extreme Gradient Boosting
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biswas, A.; Sarkar, S.; Das, S.; Dutta, S.; Roy Choudhury, M.; Giri, A.; Bera, B.; Bag, K.; Mukherjee, B.; Banerjee, K.; et al. Water Scarcity: A Global Hindrance to Sustainable Development and Agricultural Production—A Critical Review of the Impacts and Adaptation Strategies. Camb. Prism. Water 2025, 3, e4. [Google Scholar] [CrossRef]
- Yang, P.; Wu, L.; Cheng, M.; Fan, J.; Li, S.; Wang, H.; Qian, L. Review on Drip Irrigation: Impact on Crop Yield, Quality, and Water Productivity in China. Water 2023, 15, 1733. [Google Scholar] [CrossRef]
- Negash, M.; Tegegne, Y.T.; Palahi, M.; Valter, Z.; Garofalo, S.P.; De Carolis, G.; Campi, P.; Modugno, A.F.; Scarascia-Mugnozza, G. Overview of Regenerative and Agroforestry-Based Cotton Systems in the Mediterranean and beyond: A Review. Agrofor. Syst. 2025, 99, 117. [Google Scholar] [CrossRef]
- Khangura, R.; Ferris, D.; Wagg, C.; Bowyer, J. Regenerative Agriculture—A Literature Review on the Practices and Mechanisms Used to Improve Soil Health. Sustainability 2023, 15, 2338. [Google Scholar] [CrossRef]
- Maldera, F.; Garofalo, S.P.; Camposeo, S. Ecophysiological Recovery of Micropropagated Olive Cultivars: Field Research in an Irrigated Super-High-Density Orchard. Agronomy 2024, 14, 1560. [Google Scholar] [CrossRef]
- Istanbulluoglu, A. Effects of Irrigation Regimes on Yield and Water Productivity of Safflower (Carthamus tinctorius L.) under Mediterranean Climatic Conditions. Agric. Water Manag. 2009, 96, 1792–1798. [Google Scholar] [CrossRef]
- Iglesias, A.; Garrote, L.; Flores, F.; Moneo, M. Challenges to Manage the Risk of Water Scarcity and Climate Change in the Mediterranean. Water Resour. Manag. 2007, 21, 775–788. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; López-Moreno, I.I.; Vicente-Serrano, S.M.; Lasanta-Martínez, T.; Beguería, S. Mediterranean Water Resources in a Global Change Scenario. Earth Sci. Rev. 2011, 105, 121–139. [Google Scholar] [CrossRef]
- Garofalo, S.P.; Modugno, A.F.; De Carolis, G.; Sanitate, N.; Negash Tesemma, M.; Scarascia-Mugnozza, G.; Tekle Tegegne, Y.; Campi, P. Explainable Artificial Intelligence to Predict the Water Status of Cotton (Gossypium hirsutum L., 1763) from Sentinel-2 Images in the Mediterranean Area. Plants 2024, 13, 3325. [Google Scholar] [CrossRef]
- Zhan, D.; Mu, Y.; Duan, W.; Ye, M.; Song, Y.; Song, Z.; Yao, K.; Sun, D.; Ding, Z. Spatial Prediction and Mapping of Soil Water Content by TPE-GBDT Model in Chinese Coastal Delta Farmland with Sentinel-2 Remote Sensing Data. Agriculture 2023, 13, 1088. [Google Scholar] [CrossRef]
- Lee, H.; Wang, J.; Leblon, B. Using Linear Regression, Random Forests, and Support Vector Machine with Unmanned Aerial Vehicle Multispectral Images to Predict Canopy Nitrogen Weight in Corn. Remote Sens. 2020, 12, 2071. [Google Scholar] [CrossRef]
- Lin, Y.; Zhu, Z.; Guo, W.; Sun, Y.; Yang, X.; Kovalskyy, V. Continuous Monitoring of Cotton Stem Water Potential Using Sentinel-2 Imagery. Remote Sens. 2020, 12, 1176. [Google Scholar] [CrossRef]
- Campi, P.; Modugno, A.F.; De Carolis, G.; Pedrero Salcedo, F.; Lorente, B.; Garofalo, S. Pietro A Machine Learning Approach to Monitor the Physiological and Water Status of an Irrigated Peach Orchard under Semi-Arid Conditions by Using Multispectral Satellite Data. Water 2024, 16, 2224. [Google Scholar] [CrossRef]
- López-Andreu, F.J.; López-Morales, J.A.; Erena, M.; Skarmeta, A.F.; Martínez, J.A. Monitoring System for the Management of the Common Agricultural Policy Using Machine Learning and Remote Sensing. Electronics 2022, 11, 325. [Google Scholar] [CrossRef]
- Hassan-Esfahani, L.; Torres-Rua, A.; McKee, M. Assessment of Optimal Irrigation Water Allocation for Pressurized Irrigation System Using Water Balance Approach, Learning Machines, and Remotely Sensed Data. Agric. Water Manag. 2015, 153, 42–50. [Google Scholar] [CrossRef]
- Wei, S.; Xu, T.; Niu, G.Y.; Zeng, R. Estimating Irrigation Water Consumption Using Machine Learning and Remote Sensing Data in Kansas High Plains. Remote Sens. 2022, 14, 3004. [Google Scholar] [CrossRef]
- Garofalo, S.P.; Giannico, V.; Lorente, B.; García, A.J.G.; Vivaldi, G.A.; Thameur, A.; Salcedo, F.P. Predicting Carob Tree Physiological Parameters under Different Irrigation Systems Using Random Forest and Planet Satellite Images. Front. Plant Sci. 2024, 15, 1302435. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, M.; Block, D.E. A Review of Methods for Data-Driven Irrigation in Modern Agricultural Systems. Agronomy 2024, 14, 1355. [Google Scholar] [CrossRef]
- Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications. Agronomy 2020, 10, 641. [Google Scholar] [CrossRef]
- Carminati, A.; Moradi, A.B.; Vetterlein, D.; Vontobel, P.; Lehmann, E.; Weller, U.; Vogel, H.J.; Oswald, S.E. Dynamics of Soil Water Content in the Rhizosphere. Plant Soil. 2010, 332, 163–176. [Google Scholar] [CrossRef]
- Campi, P.; Gaeta, L.; Mastrorilli, M.; Losciale, P. Innovative Soil Management and Micro-Climate Modulation for Saving Water in Peach Orchards. Front. Plant Sci. 2020, 11, 544947. [Google Scholar] [CrossRef]
- Specifications|Observatory—SMAP. Available online: https://smap.jpl.nasa.gov/observatory/specifications/ (accessed on 8 July 2025).
- SMOS—Earth Online. Available online: https://earth.esa.int/eogateway/missions/smos#instruments-section (accessed on 8 July 2025).
- Sharma, A.; Jain, A.; Gupta, P.; Chowdary, V. Machine Learning Applications for Precision Agriculture: A Comprehensive Review. IEEE Access 2021, 9, 4843–4873. [Google Scholar] [CrossRef]
- Ahmad, S.; Kalra, A.; Stephen, H. Estimating Soil Moisture Using Remote Sensing Data: A Machine Learning Approach. Adv. Water Resour. 2010, 33, 69–80. [Google Scholar] [CrossRef]
- Rani, A.; Kumar, N.; Kumar, J.; Sinha, N.K. Machine Learning for Soil Moisture Assessment. In Deep Learning for Sustainable Agriculture; Academic Press: Cambridge, MA, USA, 2022; pp. 143–168. [Google Scholar] [CrossRef]
- Mehmeti, A.; Abdelhafez, A.A.M.; Ellssel, P.; Todorovic, M.; Calabrese, G. Performance and Sustainability of Organic and Conventional Cotton Farming Systems in Egypt: An Environmental and Energy Assessment. Sustainability 2024, 16, 6637. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, J.; Yao, Y.; Peters, G.; Macdonald, B.; La Rosa, A.D.; Wang, Z.; Scherer, L. Environmental Impacts of Cotton and Opportunities for Improvement. Nat. Rev. Earth Environ. 2023, 4, 703–715. [Google Scholar] [CrossRef]
- Naderi Mahdei, K.; Esfahani, S.M.J.; Lebailly, P.; Dogot, T.; Van Passel, S.; Azadi, H. Environmental Impact Assessment and Efficiency of Cotton: The Case of Northeast Iran. Environ. Dev. Sustain. 2023, 25, 10301–10321. [Google Scholar] [CrossRef]
- Garofalo, S.P.; Modugno, A.F.; de Carolis, G.; Campi, P. Energy of Sorghum Biomass Under Deficit Irrigation Strategies in the Mediterranean Area. Water 2025, 17, 578. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; p. 300. [Google Scholar]
- Gitelson, A.; Merzlyak, M.N. Quantitative Estimation of Chlorophyll-a Using Reflectance Spectra: Experiments with Autumn Chestnut and Maple Leaves. J. Photochem. Photobiol. B 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, Washington, DC, USA, 10–14 December 1973; p. 309. [Google Scholar]
- Nunes, P.H.; Pierangeli, E.V.; Santos, M.O.; Silveira, H.R.O.; de Matos, C.S.M.; Pereira, A.B.; Alves, H.M.R.; Volpato, M.M.L.; Silva, V.A.; Ferreira, D.D. Predicting Coffee Water Potential from Spectral Reflectance Indices with Neural Networks. Smart Agric. Technol. 2023, 4, 100213. [Google Scholar] [CrossRef]
- Gitelson; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Pedregosa, F.; Michel, V.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Vanderplas, J.; Cournapeau, D.; Pedregosa, F.; Varoquaux, G.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Nested Versus Non-Nested Cross-Validation. Scikit-Learn 1.7.0 Documentation. Available online: https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html (accessed on 17 July 2025).
- Li, P.; Zha, Y.; Shi, L.; Tso, C.H.M.; Zhang, Y.; Zeng, W. Comparison of the Use of a Physical-Based Model with Data Assimilation and Machine Learning Methods for Simulating Soil Water Dynamics. J Hydrol. 2020, 584, 124692. [Google Scholar] [CrossRef]
- Ren, Y.; Ling, F.; Wang, Y. Research on Provincial-Level Soil Moisture Prediction Based on Extreme Gradient Boosting Model. Agriculture 2023, 13, 927. [Google Scholar] [CrossRef]
- Zhu, S.; Cui, N.; Guo, L.; Jin, H.; Jin, X.; Jiang, S.; Wu, Z.; Lv, M.; Chen, F.; Liu, Q.; et al. Enhancing Precision of Root-Zone Soil Moisture Content Prediction in a Kiwifruit Orchard Using UAV Multi-Spectral Image Features and Ensemble Learning. Comput. Electron. Agric. 2024, 221, 108943. [Google Scholar] [CrossRef]
- Zafar, S.; Afzal, H.; Ijaz, A.; Mahmood, A.; Ayub, A.; Nayab, A.; Hussain, S.; UL-Hussan, M.; Sabir, M.A.; Zulfiqar, U.; et al. Cotton and Drought Stress: An Updated Overview for Improving Stress Tolerance. South. Afr. J. Bot. 2023, 161, 258–268. [Google Scholar] [CrossRef]
- Ul-Allah, S.; Rehman, A.; Hussain, M.; Farooq, M. Fiber Yield and Quality in Cotton under Drought: Effects and Management. Agric. Water Manag. 2021, 255, 106994. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating Soil Moisture–Climate Interactions in a Changing Climate: A Review. Earth Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Babaeian, E.; Sadeghi, M.; Jones, S.B.; Montzka, C.; Vereecken, H.; Tuller, M. Ground, Proximal, and Satellite Remote Sensing of Soil Moisture. Rev. Geophys. 2019, 57, 530–616. [Google Scholar] [CrossRef]
- Stamford, J.D.; Vialet-Chabrand, S.; Cameron, I.; Lawson, T. Development of an Accurate Low Cost NDVI Imaging System for Assessing Plant Health. Plant Methods 2023, 19, 1–19. [Google Scholar] [CrossRef]
- Jones, H.G. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology; Cambridge University Press (CUP): Cambridge, UK, 2013; pp. 1–407. ISBN 9780521279598. [Google Scholar] [CrossRef]
- Loshelder, J.I.; Coffman, R.A. Soil Moisture Content from Spectral Reflectance Using Visible, Near-Infrared, and Short-Wave Infrared Light. J. Irrig. Drain. Eng. 2023, 149, 04023010. [Google Scholar] [CrossRef]
- Jiang, Q.; Chen, Y.; Guo, L.; Fei, T.; Qi, K. Estimating Soil Organic Carbon of Cropland Soil at Different Levels of Soil Moisture Using VIS-NIR Spectroscopy. Remote Sens. 2016, 8, 755. [Google Scholar] [CrossRef]
- Whiting, M.L.; Li, L.; Ustin, S.L. Predicting Water Content Using Gaussian Model on Soil Spectra. Remote Sens. Environ. 2004, 89, 535–552. [Google Scholar] [CrossRef]
- Yang, M.; Hassan, M.A.; Xu, K.; Zheng, C.; Rasheed, A.; Zhang, Y.; Jin, X.; Xia, X.; Xiao, Y.; He, Z. Assessment of Water and Nitrogen Use Efficiencies Through UAV-Based Multispectral Phenotyping in Winter Wheat. Front. Plant Sci. 2020, 11, 537910. [Google Scholar] [CrossRef]
- Tang, Z.; Jin, Y.; Alsina, M.M.; McElrone, A.J.; Bambach, N.; Kustas, W.P. Vine Water Status Mapping with Multispectral UAV Imagery and Machine Learning. Irrig. Sci. 2022, 40, 715–730. [Google Scholar] [CrossRef]
- Anderegg, J.; Yu, K.; Aasen, H.; Walter, A.; Liebisch, F.; Hund, A. Spectral Vegetation Indices to Track Senescence Dynamics in Diverse Wheat Germplasm. Front. Plant Sci. 2020, 10, 466315. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Merzlyak, M.N. Remote Sensing of Chlorophyll Concentration in Higher Plant Leaves. Adv. Space Res. 1998, 22, 689–692. [Google Scholar] [CrossRef]
- O’donoghue, T.; Minasny, B.; McBratney, A. Regenerative Agriculture and Its Potential to Improve Farmscape Function. Sustainability 2022, 14, 5815. [Google Scholar] [CrossRef]
- Soto, R.L.; Martínez-Mena, M.; Padilla, M.C.; de Vente, J. Restoring soil quality of woody agroecosystems in Mediterranean drylands through regenerative agriculture. Agric. Ecosyst. Environ. 2021, 306, 107191. [Google Scholar] [CrossRef]
- Alharbi, S.; Felemban, A.; Abdelrahim, A.; Al-Dakhil, M. Agricultural and Technology-Based Strategies to Improve Water-Use Efficiency in Arid and Semiarid Areas. Water 2024, 16, 1842. [Google Scholar] [CrossRef]
- Thapa, V.R.; Ghimire, R.; Adhikari, K.P.; Lamichhane, S. Soil Organic Carbon Sequestration Potential of Conservation Agriculture in Arid and Semi-Arid Regions: A Review. J. Arid. Environ. 2023, 217, 105028. [Google Scholar] [CrossRef]
- Yetbarek, E.; Kumar, S.; Ojha, R. Effects of Soil Heterogeneity on Subsurface Water Movement in Agricultural Fields: A Numerical Study. J. Hydrol. 2020, 590, 125420. [Google Scholar] [CrossRef]
- Tittonell, P.; Vanlauwe, B.; de Ridder, N.; Giller, K.E. Heterogeneity of Crop Productivity and Resource Use Efficiency within Smallholder Kenyan Farms: Soil Fertility Gradients or Management Intensity Gradients? Agric. Syst. 2007, 94, 376–390. [Google Scholar] [CrossRef]
- Oldoni, H.; Costa, B.R.S.; Bognola, I.A.; de Souza, C.R.; Bassoi, L.H. Homogeneous Zones of Vegetation Index for Characterizing Variability and Site-Specific Management in Vineyards. Sci. Agric. 2020, 78, e20190243. [Google Scholar] [CrossRef]
VI | Formula | Reference |
---|---|---|
Normalized Difference Red-Edge Index | [32] | |
Normalized Difference Vegetation Index | [33] | |
Plant Senescence Reflectance Index | [34] | |
Green NDVI | [35] |
Model | Fine-Tuned Hyperparameters |
---|---|
Random forest | max_features, min_samples_split, max_samples |
Extreme gradient boosting | max_depth, learning_rate, subsample, reg_alpha, reg_lambda |
Elastic net | alpha, l1_ratio |
Support vector machine | C, gamma |
k-nearest neighbours | n_neighbours |
Model | R2 | R2 sd | RMSE | RMSE sd | nRMSE | nRMSE sd | MBE | MBE sd |
---|---|---|---|---|---|---|---|---|
RF | 0.601 | 0.10 | 5.690 | 1.03 | 0.043 | 0.01 | 0.088 | 1.36 |
XGBoost | 0.734 | 0.08 | 4.602 | 0.81 | 0.035 | 0.01 | 0.130 | 0.91 |
EN | 0.487 | 0.12 | 6.435 | 0.85 | 0.049 | 0.01 | 0.066 | 1.48 |
SVR | 0.630 | 0.10 | 5.427 | 0.79 | 0.041 | 0.01 | 0.147 | 1.33 |
KNN | 0.568 | 0.11 | 5.883 | 0.78 | 0.044 | 0.01 | 0.106 | 1.27 |
LR | 0.450 | 0.14 | 6.664 | 0.97 | 0.050 | 0.01 | 0.048 | 1.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garofalo, S.P.; Scarascia Mugnozza, G.; Modugno, A.F.; Sanitate, N.; Negash Tesemma, M.; Campi, P. Assessing Soil Water Content of Regenerative Cotton Crop with Extreme Gradient Boosting from Agrometeorological and Satellite Data. Appl. Sci. 2025, 15, 9814. https://doi.org/10.3390/app15179814
Garofalo SP, Scarascia Mugnozza G, Modugno AF, Sanitate N, Negash Tesemma M, Campi P. Assessing Soil Water Content of Regenerative Cotton Crop with Extreme Gradient Boosting from Agrometeorological and Satellite Data. Applied Sciences. 2025; 15(17):9814. https://doi.org/10.3390/app15179814
Chicago/Turabian StyleGarofalo, Simone Pietro, Giuseppe Scarascia Mugnozza, Anna Francesca Modugno, Nicola Sanitate, Mesele Negash Tesemma, and Pasquale Campi. 2025. "Assessing Soil Water Content of Regenerative Cotton Crop with Extreme Gradient Boosting from Agrometeorological and Satellite Data" Applied Sciences 15, no. 17: 9814. https://doi.org/10.3390/app15179814
APA StyleGarofalo, S. P., Scarascia Mugnozza, G., Modugno, A. F., Sanitate, N., Negash Tesemma, M., & Campi, P. (2025). Assessing Soil Water Content of Regenerative Cotton Crop with Extreme Gradient Boosting from Agrometeorological and Satellite Data. Applied Sciences, 15(17), 9814. https://doi.org/10.3390/app15179814