Thermal Behavior of Magnetic Scaffolds for RF-Induced Hyperthermia
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. TPMS Design
2.2. Magnetic PLA
2.3. 3D Printing
2.4. Measurements Setup
2.5. Thermal Characterization and Estimation of Apparent Thermal Conductivity
2.6. Numerical Simulations and Validation
3. Results
4. Conclusions
Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Disclaimer Statement
Abbreviations
FDM | Fused Deposition Modeling |
HF | Heat Flux |
HFM | Heat Flux Meter |
HT | Hyperthermia Treatment |
MagSs | Magnetic Scaffolds |
PLA | Polylactic Acid |
RF | Radiofrequency |
STL | Stereolithography |
TPMS | Triply Periodic Minimal Surfaces |
References
- Zhu, S.; Lin, S.; Han, R. Treating Deep-Seated Tumors with Radiodynamic Therapy: Progress and Perspectives. Pharmaceutics 2024, 16, 1135. [Google Scholar] [CrossRef]
- Nakahara, S.; Ohguri, T.; Kakinouchi, S.; Itamura, H.; Morisaki, T.; Tani, S.; Yahara, K.; Fujimoto, N. Intensity-Modulated Radiotherapy with Regional Hyperthermia for High-Risk Localized Prostate Carcinoma. Cancers 2022, 14, 400. [Google Scholar] [CrossRef]
- Duke University. Innovative Antibody Approach Targets Deep-Seated Cancer Mutations. Available online: https://medicalxpress.com/news/2023-10-antibody-approach-deep-seated-cancer-mutations.html (accessed on 20 January 2025).
- Bonferoni, M.C.; Rassu, G.; Gavini, E.; Sorrenti, M.; Catenacci, L.; Torre, M.L.; Perteghella, S.; Ansaloni, L.; Maestri, M.; Giunchedi, P. Electrochemotherapy of Deep-Seated Tumors: State of Art and Perspectives as Possible “EPR Effect Enhancer” to Improve Cancer Nanomedicine Efficacy. Cancers 2021, 13, 4437. [Google Scholar] [CrossRef]
- Feldmann, H.J.; Seegenschmiedt, M.H.; Molls, M. Hyperthermia—Its Actual Role in Radiation Oncology. Part III: Clinical Rationale and Results in Deep-Seated Tumors. Strahlenther. Onkol. 1995, 171, 251–264. [Google Scholar]
- Oei, A.L.; Kok, H.P.; Oei, S.B.; Horsman, M.R.; Stalpers, L.J.A.; Franken, N.A.P.; Crezee, J. Molecular and Biological Rationale of Hyperthermia as Radio- and Chemosensitizer. Adv. Drug Deliv. Rev. 2020, 163, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Kok, H.P.; Cressman, E.N.K.; Ceelen, W.; Brace, C.L.; Ivkov, R.; Grüll, H.; ter Haar, G.; Wust, P.; Crezee, J. Heating Technology for Malignant Tumors: A Review. Int. J. Hyperth. 2020, 37, 711–741. [Google Scholar] [CrossRef] [PubMed]
- Paulides, M.M.; Dobsicek Trefna, H.; Curto, S.; Rodrigues, D.B. Recent Technological Advancements in Radiofrequency- and Microwave-Mediated Hyperthermia for Enhancing Drug Delivery. Adv. Drug Deliv. Rev. 2020, 163, 3–18. [Google Scholar] [CrossRef]
- Gassie, K.; Alvarado-Estrada, K.; Bechtle, P.; Chaichana, K.L. Surgical Management of Deep-Seated Metastatic Brain Tumors Using Minimally Invasive Approaches. J. Neurol. Surg. A Cent. Eur. Neurosurg. 2019, 80, 198–204. [Google Scholar] [CrossRef]
- Tuzzato, G.; Laranga, R.; Ostetto, F.; Bubbico, E.; Vara, G.; Bianchi, G. Primary High-Grade Myxoid Liposarcoma of the Extremities: Prognostic Factors and Metastatic Pattern. Cancers 2022, 14, 2657. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Fiorentini, G.; Szasz, A.M.; Szigeti, G.; Szasz, A.; Minnaar, C.A. Quo Vadis Oncological Hyperthermia (2020)? Front. Oncol. 2020, 10, 1690. [Google Scholar] [CrossRef]
- Kakehi, M.; Ueda, K.; Mukojima, T.; Hiraoka, M.; Seto, O.; Akanuma, A.; Nakatsugawa, S. Multi-Institutional Clinical Studies on Hyperthermia Combined with Radiotherapy or Chemotherapy in Advanced Cancer of Deep-Seated Organs. Int. J. Hyperth. 1990, 6, 719–740. [Google Scholar] [CrossRef]
- Dutz, S.; Hergt, R. Magnetic Particle Hyperthermia—A Promising Tumour Therapy? Nanotechnology 2014, 25, 452001. [Google Scholar] [CrossRef]
- Attaluri, A.; Kandala, S.K.; Zhou, H.; Wabler, M.; DeWeese, T.L.; Ivkov, R. Magnetic Nanoparticle Hyperthermia for Treating Locally Advanced Unresectable and Borderline Resectable Pancreatic Cancers: The Role of Tumor Size and Eddy-Current Heating. Int. J. Hyperth. 2020, 37, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Rubia-Rodríguez, I.; Santana-Otero, A.; Spassov, S.; Tombácz, E.; Johansson, C.; De La Presa, P.; Teran, F.J.; Morales, M.d.P.; Veintemillas-Verdaguer, S.; Thanh, N.T.K.; et al. Whither Magnetic Hyperthermia? A Tentative Roadmap. Materials 2021, 14, 706. [Google Scholar] [CrossRef] [PubMed]
- Dakhale, R.; Paul, P.; Achanta, A.; Ahuja, K.P.; Meshram, M. Nanotechnology Innovations Transforming Oral Health Care and Dentistry: A Review. Cureus 2023, 15, e46423. [Google Scholar] [CrossRef]
- Danewalia, S.S.; Singh, K. Bioactive Glasses and Glass-Ceramics for Hyperthermia Treatment of Cancer: State-of-Art, Challenges, and Future Perspectives. Mater. Today Bio 2021, 10, 100100. [Google Scholar] [CrossRef] [PubMed]
- Mues, B.; Bauer, B.; Roeth, A.A.; Ortega, J.; Buhl, E.M.; Radon, P.; Wiekhorst, F.; Gries, T.; Schmitz-Rode, T.; Slabu, I. Nanomagnetic Actuation of Hybrid Stents for Hyperthermia Treatment of Hollow Organ Tumors. Nanomaterials 2021, 11, 618. [Google Scholar] [CrossRef]
- Lodi, M.B.; Makridis, A.; Carboni, N.M.; Kazeli, K.; Curreli, N.; Samaras, T.; Angelakeris, M.; Mazzarella, G.; Fanti, A. Design and Characterization of Magnetic Scaffolds for Bone Tumor Hyperthermia. IEEE Access 2022, 10, 19768–19779. [Google Scholar] [CrossRef]
- Lodi, M.B.; Makridis, A.; Kazeli, K.; Samaras, T.; Angelakeris, M.; Mazzarella, G.; Fanti, A. On the Evaluation of the Hyperthermic Efficiency of Magnetic Scaffolds. IEEE Open J. Eng. Med. Biol. 2023, 5, 88–98. [Google Scholar] [CrossRef]
- Ortolani, A.; Bianchi, M.; Mosca, M.; Caravelli, S.; Fuiano, M.; Marcacci, M.; Russo, A. The Prospective Opportunities Offered by Magnetic Scaffolds for Bone Tissue Engineering: A Review. Joints 2016, 4, 228–235. [Google Scholar] [CrossRef]
- Makridis, A.; Kazeli, K.; Kyriazopoulos, P.; Maniotis, N.; Samaras, T.; Angelakeris, M. An Accurate Standardization Protocol for Heating Efficiency Determination of 3D Printed Magnetic Bone Scaffolds. J. Phys. D Appl. Phys. 2022, 55, 435002. [Google Scholar] [CrossRef]
- Cheng, Z.; Xu, R.; Jiang, P.X. Morphology, Flow and Heat Transfer in Triply Periodic Minimal Surface Based Porous Structures. Int. J. Heat Mass Transf. 2021, 170, 120902. [Google Scholar] [CrossRef]
- Zeigarnik, Y.A.; Polyaev, V.M. Heat Transfer in Porous Structures: State of the Art and Main Lines of Study. Therm. Eng. 1996, 43, 70–79. [Google Scholar]
- Zeigarnik, Y.A.; Ivanov, F.P. Choice of Efficient Linear Scale and Generalized Description of Internal Heat Transfer Coefficient in Porous Structures. J. Eng. Thermophys. 2018, 27, 36–44. [Google Scholar] [CrossRef]
- Delavar, M.A.; Azimi, M. Using Porous Material for Heat Transfer Enhancement in Heat Exchangers. J. Eng. Sci. Technol. Rev. 2013, 6, 14–16. [Google Scholar] [CrossRef]
- Ali, H.M.; Janjua, M.M.; Sajjad, U.; Yan, W.M. A Critical Review on Heat Transfer Augmentation of Phase Change Materials Embedded with Porous Materials/Foams. Int. J. Heat Mass Transf. 2019, 135, 649–673. [Google Scholar] [CrossRef]
- Oladapo, B.I.; Kayode, J.F.; Karagiannidis, P.; Naveed, N.; Mehrabi, H.; Ogundipe, K.O. Polymeric Composites of Cubic-Octahedron and Gyroid Lattice for Biomimetic Dental Implants. Mater. Chem. Phys. 2022, 289, 126454. [Google Scholar] [CrossRef]
- Giannitelli, S.M.; Accoto, D.; Trombetta, M.; Rainer, A. Current Trends in the Design of Scaffolds for Computer-Aided Tissue Engineering. Acta Biomater. 2014, 10, 580–594. [Google Scholar] [CrossRef]
- Han, L.; Che, S. An Overview of Materials with Triply Periodic Minimal Surfaces and Related Geometry: From Biological Structures to Self-Assembled Systems. Adv. Mater. 2018, 30, 1705708. [Google Scholar] [CrossRef]
- Jones, A.; Leary, M.; Bateman, S.; Easton, M. Parametric Design and Evaluation of TPMS-like Cellular Solids. Mater. Des. 2022, 221, 110908. [Google Scholar] [CrossRef]
- Qureshi, Z.A.; O’Neill, W.; Thomas, D. Thermal Characterization of 3D-Printed Lattices Based on Triply Periodic Minimal Surfaces Embedded with Organic Phase Change Material. Case Stud. Therm. Eng. 2021, 27, 101315. [Google Scholar] [CrossRef]
- Al-Ketan, O.; Ali, M.; Khalil, M.; Rowshan, R.; Khan, K.A.; Abu Al-Rub, R.K. Forced Convection CFD Analysis of Architected and 3D Printable Heat Sinks Based on Triply Periodic Minimal Surfaces. J. Therm. Sci. Eng. Appl. 2020, 13, 021010. [Google Scholar] [CrossRef]
- Al-Ketan, O.; Rowshan, R.; Al-Rub, R.K.A. Topology-Mechanical Property Relationship of 3D Printed Strut, Skeletal, and Sheet Based Periodic Metallic Cellular Materials. Addit. Manuf. 2018, 19, 167–183. [Google Scholar] [CrossRef]
- Li, W.; Li, W.; Yu, Z. Heat Transfer Enhancement of Water-Cooled Triply Periodic Minimal Surface Heat Exchangers. Appl. Therm. Eng. 2022, 217, 119198. [Google Scholar] [CrossRef]
- Laureto, J.; Tomasi, J.; King, J.A.; Pearce, J.M. Thermal Properties of 3-D Printed Polylactic Acid-Metal Composites. Prog. Addit. Manuf. 2017, 2, 57–71. [Google Scholar] [CrossRef]
- ProtoPasta. Iron PLA. Available online: https://proto-pasta.com/products/magnetic-iron-pla?srsltid=AfmBOooMUp5L6q2vWoKtWcFH0xr8h6mp7ZYcpio8XvzzfP-PJc293mMj (accessed on 27 August 2025).
- Al-Ketan, O.; Abu Al-Rub, R.K. MSLattice: A Free Software for Generating Uniform and Graded Lattices Based on Triply Periodic Minimal Surfaces. Mater. Des. Process. Commun. 2023, 3, e205. [Google Scholar] [CrossRef]
- Feng, J.; Fu, J.; Yao, X.; He, Y. Triply Periodic Minimal Surface (TPMS) Porous Structures: From Multi-Scale Design, Precise Additive Manufacturing to Multidisciplinary Applications. Int. J. Extrem. Manuf. 2022, 4, 022001. [Google Scholar] [CrossRef]
- Kaur, I.; Singh, P. Flow and Thermal Transport Characteristics of Triply-Periodic Minimal Surface (TPMS)-Based Gyroid and Schwarz-P Cellular Materials. Numer. Heat Transf. Part A Appl. 2021, 79, 553–569. [Google Scholar] [CrossRef]
- Baccoli, R.; Kumar, A.; Concas, A.; Gatto, G.; Pintus, N.; Medda, A.; Rodriguez, G. Thermal Diffusivity from Fourier’s Inverse Problem Supervised by an Optimization Model: Theoretical Analysis and Experimental Validation. Case Stud. Therm. Eng. 2022, 40, 102533. [Google Scholar] [CrossRef]
- Baccoli, R.; Sollai, F.; Medda, A.; Piccolo, A.; Fadda, P. An Adaptive Nonlinear Autoregressive ANN Model for High Time Resolution Traffic Noise Predictions. Build. Environ. 2022, 207, 108551. [Google Scholar] [CrossRef]
- Majumder, A.; Achenza, M.; Mastino, C.C.; Baccoli, R.; Frattolillo, A. Thermo-Acoustic Building Insulation Materials Fabricated with Recycled Fibers—Jute, Wool and Loofah. Energy Build. 2023, 293, 113211. [Google Scholar] [CrossRef]
- Kreith, F.; Manglik, R.M.; Bohn, M.S. Principles of Heat Transfer, 7th ed.; Cengage Learning: Stamford, CT, USA, 2010. [Google Scholar]
- Lodi, M.B.; Bellizzi, G.; Paulis, A.; Grandi, N.; Palmeri, R.; Sekehravani, E.A.; Crocco, L.; Fanti, A.; Scapaticci, R. Electromagnetic Characterization and Biocompatibility Assessment of Magnetic Materials for Biomedical Applications. In Proceedings of the 2025 19th European Conference on Antennas and Propagation (EuCAP), Stockholm, Sweden, 30 March–4 April 2025. [Google Scholar]
TPMS Type | ) | Unit Cell |
---|---|---|
Schwarz primitive (P) | ||
Schwarz diamond (D) | ||
Schoen gyroid (G) | ||
Schoen I-wrapped package-graph (IWP) | ||
Lidinoid (L) |
Parallelepiped Magnetic Scaffolds | ||
---|---|---|
Porosity (%) | Weight (g) | Type |
0% | 128 | - |
30% | 97 | Gyroid (G) |
50% | 69 | Gyroid (G) |
70% | 40 | Gyroid (G) |
85% | 21 | Gyroid (G) |
Cylindrical Magnetic Scaffolds | ||
0% | 333 | - |
64% | 121 | Lidinoid (L) |
85% | 50 | Gyroid (G) |
Porosity (%) | Thermal Conductivity W/m·K) |
---|---|
0% | 0.07984 ± 0.0015968 |
30% | 0.06759 ± 0.0013518 |
50% | 0.0622 ± 0.001244 |
70% | 0.0542 ± 0.001081 |
85% | 0.0549 ± 0.001980 |
Porosity (%) | Thermal Conductivity W/m·K) |
---|---|
0% | 0.10314 ± 0.00206 |
64% | 0.06542 ± 0.00131 |
85% | 0.0690 ± 0.00138 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lodi, M.B.; Possidente, R.; Melis, A.; Di Meglio, A.; Fanti, A.; Baccoli, R. Thermal Behavior of Magnetic Scaffolds for RF-Induced Hyperthermia. Appl. Sci. 2025, 15, 9782. https://doi.org/10.3390/app15179782
Lodi MB, Possidente R, Melis A, Di Meglio A, Fanti A, Baccoli R. Thermal Behavior of Magnetic Scaffolds for RF-Induced Hyperthermia. Applied Sciences. 2025; 15(17):9782. https://doi.org/10.3390/app15179782
Chicago/Turabian StyleLodi, Matteo Bruno, Raffaello Possidente, Andrea Melis, Armando Di Meglio, Alessandro Fanti, and Roberto Baccoli. 2025. "Thermal Behavior of Magnetic Scaffolds for RF-Induced Hyperthermia" Applied Sciences 15, no. 17: 9782. https://doi.org/10.3390/app15179782
APA StyleLodi, M. B., Possidente, R., Melis, A., Di Meglio, A., Fanti, A., & Baccoli, R. (2025). Thermal Behavior of Magnetic Scaffolds for RF-Induced Hyperthermia. Applied Sciences, 15(17), 9782. https://doi.org/10.3390/app15179782