Auxiliary Population Multitask Optimization Based on Chinese Semantic Understanding
Abstract
1. Introduction
- An ASE strategy is designed to mine the distribution information of the populations and evaluate the similarity of tasks, so as to adaptively adjust the KT frequency.
- An APKT method is proposed to map the global best solution from the source task to the target task, which will produce more useful transfer knowledge and facilitate the optimization of the target task.
- APMTO is tested on widely used multitask test suite CEC2022 [22] and compared with several state–of–the–art EMTO algorithms. The experimental results fully reveal the effectiveness and superiority of APMTO.
2. Preliminary
2.1. MTOPs
2.2. Differential Evolution (DE)
- (1)
- Initialization: The N individuals are first randomly initialized within the search space to form the initial population as follows:
- (2)
- Mutation: An individual Xi is mutated to vector Vi. Two mutation strategies are widely used for DE, as follows:
- (3)
- (4)
- In the selection step, the better one of Ui and Xi will be kept to the next generation. In this paper, elitist selection is employed. For N parents and N trial vectors, the best N individuals will be selected.
2.3. Related Works in EMTO
2.4. Motivation
3. APMTO
3.1. Adaptive Similarity Estimation
3.2. Auxiliary-Population-Based KT
Algorithm 1 The optimization process of the auxiliary population |
Input: top -The number of individuals in the auxiliary population; Elite -Elite swarm of the source task; TB -Global best solution of the target task; Median -The (top/2)th best individual of the target task; APMaxFEs -Maximum function evaluation for auxiliary population. Output: Xmap,t -The mapped global best from source task to the target task. |
Begin
|
- (1)
- When the distance of Xmap,t relative to the global best of the target task is closer than the (top/2)th best individual in the target task;
- (2)
- When the global best solution of the auxiliary population is not updated for the continuous two generations.
Algorithm 2 The pseudocode of APKT |
Input: Pt -Population of target task; P3−t -Population of source task; N -Population size of a single task; top - Size of elite swarm; FEs -Current function evaluation numbers. Output: Pt -Population of target task; FEs -Function evaluation numbers after APKT. |
Begin
|
3.3. Complete APMTO
Algorithm 3 The pseudocode of APMTO |
Input: N -The size of population for one task; MaxFEs -The maximum function evaluation. Output: {} -The optimal solutions for the two tasks. |
Begin
|
3.4. Time Complexity for APMTO
3.5. Applied to Chinese Semantic Understanding
4. Experimental Results and Analysis
4.1. Experimental Settings
- Maximum function evaluation: MaxFEs = 1 × 105;
- The number of individuals: N = 100;
- Self-evolution: DE/best/1, F = 0.5, CR = 0.7;
- Size of elite swarm: top = 20;
- Auxiliary population: APMaxFEs = 100;
4.2. Experimental Results on CEC2022
4.3. Component Analysis
4.4. Parameter Sensitivity Analysis
4.5. Real-World Application
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EMTO | Evolutionary multitask optimization |
MTOP | Multitask optimization problem |
KT | Knowledge transfer |
DE | Differential evolution |
ASE | Adaptive similarity estimation |
APKT | Auxiliary-population-based knowledge transfer |
APMTO | Auxiliary-population-based multitask optimization |
References
- Moscato, P. On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts—Towards Memetic Algorithms; California Institute of Technology: Pasadena, CA, USA, 2000. [Google Scholar]
- Storn, R.; Price, K. Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Tran, V.M.; Bui, N.T. Self-Adaptive Differential Evolution with Gauss Distribution for Optimal Mechanism Design. Appl. Sci. 2023, 13, 6284. [Google Scholar] [CrossRef]
- Zhan, Z.H.; Wang, Z.J.; Jin, H.; Zhang, J. Adaptive distributed differential evolution. IEEE Trans. Cybern. 2020, 50, 4633–4647. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995. [Google Scholar]
- Jiang, Z.; Zhu, D.; Li, X.-Y.; Han, L.-B. A Hybrid Adaptive Particle Swarm Optimization Algorithm for Enhanced Performance. Appl. Sci. 2025, 15, 6030. [Google Scholar] [CrossRef]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Wang, Z.J.; Jian, J.R.; Zhan, Z.H.; Li, Y.; Kwong, S.; Zhang, J. Gene targeting differential evolution: A simple and efficient method for large−scale optimization. IEEE Trans. Evol. Comput. 2023, 27, 964–979. [Google Scholar] [CrossRef]
- Li, X.; Yao, X. Cooperatively Coevolving Particle Swarms for Large Scale Optimization. IEEE Trans. Evol. Comput. 2012, 16, 210–224. [Google Scholar]
- Wang, Z.J.; Zhan, Z.H.; Yu, W.J.; Lin, Y.; Zhang, J.; Gu, T.L.; Zhang, J. Dynamic group learning distributed particle swarm optimization for large−scale optimization and its application in cloud workflow scheduling. IEEE Trans. Cybern. 2020, 50, 2715–2729. [Google Scholar] [CrossRef]
- Wang, Z.J.; Zhan, Z.H.; Lin, Y.; Yu, W.J.; Wang, H.; Kwong, S.; Zhang, J. Automatic niching differential evolution with contour prediction approach for multimodal optimization problems. IEEE Trans. Evol. Comput. 2020, 24, 114–128. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhang, Y.; Fan, C.; Gao, X.; Jia, H.; Jiang, L. TCDE: Differential Evolution for Topographical Contour-Based Prediction to Solve Multimodal Optimization Problems. Appl. Sci. 2025, 15, 7557. [Google Scholar] [CrossRef]
- Wang, Z.J.; Zhou, Y.R.; Zhang, J. Adaptive estimation distribution distributed differential evolution for multimodal optimization problems. IEEE Trans. Cybern. 2022, 52, 6059–6070. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.F.; Wang, Z.J.; Jiang, Y.; Zhan, Z.H.; Kwong, S.; Zhang, J. Multi-level and multi-segment learning multitask optimization via A niching method. IEEE Trans. Evol. Comput. 2024. [Google Scholar] [CrossRef]
- Gupta, A.; Ong, Y.S.; Feng, L. Multifactorial evolution: Toward evolutionary multitasking. IEEE Trans. Evol. Comput. 2016, 20, 343–357. [Google Scholar] [CrossRef]
- Feng, L.; Zhou, W.; Zhou, L.; Jiang, S.W.; Zhong, J.H.; Da, B.S.; Zhu, Z.X.; Wang, Y. An empirical study of multifactorial PSO and multifactorial DE. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain, 5–8 June 2017. [Google Scholar]
- Bali, K.K.; Ong, Y.S.; Gupta, A.; Tan, P.S. Multifactorial evolutionary algorithm with online transfer parameter estimation: MFEA-II. IEEE Trans. Evol. Comput. 2020, 24, 69–83. [Google Scholar] [CrossRef]
- Zhou, L.; Feng, L.; Tan, K.C.; Zhong, J.; Zhu, Z.; Liu, K.; Chen, C. Toward adaptive knowledge transfer in multifactorial evolutionary computation. IEEE Trans. Cybern. 2021, 51, 2563–2576. [Google Scholar] [CrossRef]
- Xu, H.; Qin, A.K.; Xia, S. Evolutionary multitask optimization with adaptive knowledge transfer. IEEE Trans. Evol. Comput. 2022, 26, 290–303. [Google Scholar] [CrossRef]
- Wu, D.; Tan, X. Multitasking genetic algorithm (MTGA) for fuzzy system optimization. IEEE Trans. Fuzzy Syst. 2020, 28, 1050–1061. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhan, Z.H.; Tan, K.C.; Zhang, J. Block-level knowledge transfer for evolutionary multitask optimization. IEEE Trans. Cybern. 2024, 54, 558–571. [Google Scholar] [CrossRef]
- IEEE. CEC 2022 Competition on Evolutionary Multitask Optimization. Available online: http://www.bdsc.site/websites/MTO_competition_2021/MTO_Competition_WCCI_2022.html (accessed on 18 July 2022).
- Chen, Y.; Zhong, J.; Feng, L.; Zhang, J. An adaptive archive−based evolutionary framework for many-task optimization. IEEE Trans. Emerg. Top. Comput. Intell. 2020, 4, 3870–3876. [Google Scholar] [CrossRef]
- Xue, Z.F.; Wang, Z.J.; Jiang, Y.; Zhan, Z.H.; Kwong, S.; Zhang, J. Neural network-based knowledge transfer for multitask optimization. IEEE Trans. Cybern. 2024, 54, 7541–7554. [Google Scholar] [CrossRef]
- Liu, Z.; Li, G.; Zhang, H.; Liang, Z.; Zhu, Z. Multifactorial evolutionary algorithm based on diffusion gradient descent. IEEE Trans. Cybern. 2024, 54, 4267–4279. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Y.; Zhan, Z.H.; Tan, K.C.; Zhang, J. A meta-knowledge transfer-based differential evolution for multitask optimization. IEEE Trans. Evol. Comput. 2022, 26, 719–734. [Google Scholar] [CrossRef]
- Wu, S.H.; Zhan, Z.H.; Tan, K.C.; Zhang, J. Orthogonal transfer for multitask optimization. IEEE Trans. Evol. Comput. 2023, 27, 185–200. [Google Scholar] [CrossRef]
- Yao, L.; Zong, X.; Wang, L.; Li, R.; Yi, J. Explicit evolutionary framework with multitasking feature fusion for optimizing operational parameters in aluminum electrolysis process. IEEE Trans. Cybern. 2024, 54, 7527–7540. [Google Scholar] [CrossRef]
- Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30. [Google Scholar]
- Mouret, J.B.; Maguire, G. Quality diversity for multi-task optimization. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference, New York, NY, USA, 8–12 July 2020. [Google Scholar]
- IEEE. CEC 2019 Competition on Evolutionary Multi-Task Optimization. Available online: https://www.bdsc.site/websites/MTO_competiton_2019/MTO_Competition_CEC_2019.html (accessed on 10 June 2019).
- Li, G.; Zhang, Q.; Wang, Z. Evolutionary competitive multitasking optimization. IEEE Trans. Evol. Comput. 2022, 26, 278–289. [Google Scholar] [CrossRef]
- Gomez, F.; Schmidhuber, J.; Miikkulainen, R.; Mitchell, M. Accelerated neural evolution through cooperatively coevolved synapses. J. Mach. Learn. Res. 2008, 99, 937–965. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Wang, X.; Li, S. Multi-Objective Optimization Using Cooperative Garden Balsam Optimization with Multiple Populations. Appl. Sci. 2022, 12, 5524. [Google Scholar] [CrossRef]
- Wang, Z.J.; Zhan, Z.H.; Kwong, S.; Jin, H.; Zhang, J. Adaptive granularity learning distributed particle swarm optimization for large−scale optimization. IEEE Trans. Cybern. 2021, 51, 1175–1188. [Google Scholar] [CrossRef]
- Ma, X.; Liu, F.; Qi, Y.; Wang, X.; Li, L.; Jiao, L.; Yin, M.; Gong, M. A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large−scale variables. IEEE Trans. Evolut. Comput. 2015, 20, 275–298. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Z.J.; Kou, Z.; Zhan, Z.H.; Kwong, S.; Zhang, J. Less is More: A small-scale learning particle swarm optimization for large−scale optimization. IEEE Trans. Cybern. 2025, accepted. [Google Scholar]
- Wang, Z.J.; Zhan, Z.H.; Lin, Y.; Yu, W.J.; Yuan, H.Q.; Gu, T.L.; Kwong, S.; Zhang, J. Dual-strategy differential evolution with affinity propagation clustering for multimodal optimization problems. IEEE Trans. Evol. Comput. 2018, 22, 894–908. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.X.; Yen, G.G.; Song, W. MOMMOP: Multiobjective optimization for locating multiple optimal solutions of multimodal optimization problems. IEEE Trans. Cybern. 2025, 45, 830–843. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.J.; Zhan, Z.H.; Li, Y.; Kwong, S.; Jeon, S.W.; Zhang, J. Fitness and distance based local search with adaptive differential evolution for multimodal optimization problems. IEEE Emerg. Top. Comput. Intell. 2023, 7, 684–699. [Google Scholar] [CrossRef]
- Das, S.; Mandal, A.; Mukherjee, R. An adaptive differential evolution algorithm for global optimization in dynamic environments. IEEE Trans. Cybern. 2014, 44, 966–978. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Li, E. Dynamic Robust Optimization Method Based on Two-Stage Evaluation and Its Application in Optimal Scheduling of Integrated Energy System. Appl. Sci. 2024, 14, 4997. [Google Scholar] [CrossRef]
Algorithm | Time Complexity |
---|---|
APMTO | O(MaxFEs × (D + log(N) + D/N × (top + APMaxFEs))) |
MFEA | O(MaxFEs × (D + log(N))) |
MFDE | O(MaxFEs × (D + log(N))) |
MFPSO | O(MaxFEs × (D + log(N))) |
MFEA-AKT | O(MaxFEs × (D + log(N))) |
MFEA-II | O(MaxFEs × (D + T/N + log(N))) (where T is the time complexity of each calculation for the rmp matrix) |
MFEA-DGD | O(MaxFEs × (D + log(N))) |
AEMTO | O(MaxFEs × (D + 2 + log(N)) |
MTGA | O(MaxFEs × (D + log(N))) |
BLKT-DE | O(MaxFEs × (D + log(N) + t × D × K)) (where t is the average iterations for K-means with K clusters) |
MKTDE | O(MaxFEs × (2 × D + log(N) + 1/N)) |
OTMTO | O(MaxFEs × (D + (T × (nb × D + nb)/N + D/N + 1/(2 × N)))) |
EMFF | O(MaxFEs × D × ((m + u)/N + 1)) (where m is the transferred individual in each generation and u is the number of donor individuals) |
CEC2022 | APMTO | MFEA | MFEA–DGD | AEMTO | MKTDE | OTMTO | BLKT–DE | |
---|---|---|---|---|---|---|---|---|
Benchmark1 | T1 | 6.24 × 102 8.14 × 100 - | 6.52 × 102(+) 8.14 × 100 0.0000 | 6.17 × 102(−) 8.14 × 100 0.0000 | 6.21 × 102(−) 8.14 × 100 0.0152 | 6.09 × 102(−) 8.14 × 100 0.0000 | 6.14 × 102(−) 8.14 × 100 0.0000 | 6.17 × 102(−) 8.14 × 100 0.0000 |
T2 | 6.26 × 102 1.08 × 101 - | 6.51 × 102(+) 1.08 × 101 0.0000 | 6.21 × 102(=) 1.08 × 101 0.4119 | 6.21 × 102(−) 1.08 × 101 0.0059 | 6.08 × 102(−) 1.08 × 101 0.0000 | 6.14 × 102(−) 1.08 × 101 0.0000 | 6.15 × 102(−) 1.08 × 101 0.0000 | |
Benchmark2 | T1 | 7.00 × 102 9.10 × 10−3 - | 7.01 × 102(+) 9.10 × 10−3 0.0000 | 7.05 × 102(+) 9.10 × 10−3 0.0000 | 7.01 × 102(+) 9.10 × 10−3 0.0000 | 7.00 × 102(+) 9.10 × 10−3 0.0000 | 7.00 × 102(+) 9.10 × 10−3 0.0002 | 7.00 × 102(+) 9.10 × 10−3 0.0000 |
T2 | 7.00 × 102 5.55 × 10−3 - | 7.01 × 102(+) 5.55 × 10−3 0.0000 | 7.14 × 102(+) 5.55 × 10−3 0.0000 | 7.01 × 102(+) 5.55 × 10−3 0.0000 | 7.00 × 102(+) 5.55 × 10−3 0.0000 | 7.00 × 102(+) 5.55 × 10−3 0.0173 | 7.00 × 102(+) 5.55 × 10−3 0.0000 | |
Benchmark3 | T1 | 2.92 × 105 1.69 × 105 - | 4.69 × 106(+) 1.69 × 105 0.0000 | 3.13 × 105(=) 1.69 × 105 0.1907 | 2.03 × 107(+) 1.69 × 105 0.0000 | 8.27 × 106(+) 1.69 × 105 0.0000 | 2.54 × 107(+) 1.69 × 105 0.0000 | 3.31 × 106(+) 1.69 × 105 0.0000 |
T2 | 2.71 × 105 1.79 × 105 - | 4.41 × 106(+) 1.79 × 105 0.0000 | 4.28 × 106(+) 1.79 × 105 0.0007 | 2.13 × 107(+) 1.79 × 105 0.0000 | 8.44 × 106(+) 1.79 × 105 0.0000 | 2.43 × 107(+) 1.79 × 105 0.0000 | 4.16 × 106(+) 1.79 × 105 0.0000 | |
Benchmark4 | T1 | 1.30 × 103 1.03 × 10−1 - | 1.30 × 103(−) 1.03 × 10−1 0.0038 | 1.30 × 103(=) 1.03 × 10−1 0.7958 | 1.30 × 103(=) 1.03 × 10−1 0.0798 | 1.30 × 103(=) 1.03 × 10−1 0.4553 | 1.30 × 103(−) 1.03 × 10−1 0.0000 | 1.30 × 103(=) 1.03 × 10−1 0.2838 |
T2 | 1.30 × 103 7.52 × 10−02 - | 1.30 × 103(−) 7.52 × 10−2 0.0000 | 1.30 × 103(+) 7.52 × 10−2 0.0000 | 1.30 × 103(+) 7.52 × 10−2 0.0001 | 1.30 × 103(=) 7.52 × 10−2 0.0963 | 1.30 × 103(−) 7.52 × 10−2 0.0052 | 1.30 × 103(=) 7.52 × 10−2 0.0537 | |
Benchmark5 | T1 | 1.52 × 103 1.04 × 101 - | 1.57 × 103(+) 1.04 × 101 0.0000 | 1.27 × 104(+) 1.04 × 101 0.0000 | 1.54 × 103(+) 1.04 × 101 0.0000 | 1.54 × 103(+) 1.04 × 101 0.0000 | 1.53 × 103(+) 1.04 × 101 0.0001 | 1.54 × 103(+) 1.04 × 101 0.0000 |
T2 | 1.52 × 103 8.95 × 100 - | 1.57 × 103(+) 8.95 × 100 0.0000 | 5.01 × 104(+) 8.95 × 100 0.0000 | 1.54 × 103(+) 8.95 × 100 0.0000 | 1.54 × 103(+) 8.95 × 100 0.0000 | 1.53 × 103(+) 8.95 × 100 0.0000 | 1.54 × 103(+) 8.95 × 100 0.0000 | |
Benchmark6 | T1 | 2.06 × 105 1.11 × 105 - | 2.54 × 106(+) 1.11 × 105 0.0000 | 8.92 × 106(+) 1.11 × 105 0.0000 | 8.75 × 106(+) 1.11 × 105 0.0000 | 2.13 × 107(+) 1.11 × 105 0.0000 | 1.28 × 107(+) 1.11 × 105 0.0000 | 1.96 × 106(+) 1.11 × 105 0.0000 |
T2 | 1.33 × 105 6.49 × 104 - | 2.33 × 106(+) 6.49 × 104 0.0000 | 4.09 × 107(+) 6.49 × 104 0.0000 | 9.23 × 106(+) 6.49 × 104 0.0000 | 2.11 × 107(+) 6.49 × 104 0.0000 | 1.35 × 107(+) 6.49 × 104 0.0000 | 1.79 × 106(+) 6.49 × 104 0.0000 | |
Benchmark7 | T1 | 2.87 × 103 2.82 × 102 - | 3.40 × 103(+) 2.82 × 102 0.0000 | 3.86 × 103(+) 2.82 × 102 0.0000 | 4.09 × 103(+) 2.82 × 102 0.0000 | 4.25 × 103(+) 2.82 × 102 0.0000 | 3.83 × 103(+) 2.82 × 102 0.0000 | 2.95 × 103(=) 2.82 × 102 0.3632 |
T2 | 2.87 × 103 2.53 × 102 - | 3.38 × 103(+) 2.53 × 102 0.0000 | 3.65 × 103(+) 2.53 × 102 0.0000 | 4.13 × 103(+) 2.53 × 102 0.0000 | 4.24 × 103(+) 2.53 × 102 0.0000 | 3.92 × 103(+) 2.53 × 102 0.0000 | 3.09 × 103(+) 2.53 × 102 0.0028 | |
Benchmark8 | T1 | 5.21 × 102 3.34 × 10−2 - | 5.21 × 102(−) 3.34 × 10−2 0.0000 | 5.21 × 102(−) 3.34 × 10−2 0.0000 | 5.21 × 102(=) 3.34 × 10−2 0.1453 | 5.21 × 102(=) 3.34 × 10−2 0.3478 | 5.21 × 102(=) 3.34 × 10−2 0.7618 | 5.21 × 102(=) 3.34 × 10−2 0.1537 |
T2 | 5.21 × 102 2.57 × 10−2 - | 5.21 × 102(−) 2.57 × 10−2 0.0000 | 5.21 × 102(−) 2.57 × 10−2 0.0000 | 5.21 × 102(=) 2.57 × 10−2 0.2838 | 5.21 × 102(=) 2.57 × 10−2 0.8534 | 5.21 × 102(=) 2.57 × 10−2 0.3790 | 5.21 × 102(=) 2.57 × 10−2 0.5997 | |
Benchmark9 | T1 | 1.36 × 104 2.37 × 103 - | 8.39 × 103(−) 2.37 × 103 0.0000 | 1.58 × 104(+) 2.37 × 103 0.0000 | 1.51 × 104(+) 2.37 × 103 0.0000 | 1.49 × 104(+) 2.37 × 103 0.0001 | 1.48 × 104(+) 2.37 × 103 0.0025 | 8.98 × 103(−) 2.37 × 103 0.0000 |
T2 | 1.62 × 103 4.40 × 10−1 - | 1.62 × 103(=) 4.40 × 10−1 0.8187 | 1.62 × 103(−) 4.40 × 10−1 0.0017 | 1.62 × 103(+) 4.40 × 10−1 0.0000 | 1.62 × 103(+) 4.40 × 10−1 0.0000 | 1.62 × 103(+) 4.40 × 10−1 0.0000 | 1.62 × 103(+) 4.40 × 10−1 0.0000 | |
Benchmark10 | T1 | 1.27 × 104 6.47 × 103 - | 4.80 × 104(+) 6.47 × 103 0.0000 | 5.24 × 104(+) 6.47 × 103 0.0000 | 5.57 × 104(+) 6.47 × 103 0.0000 | 6.65 × 104(+) 6.47 × 103 0.0000 | 4.27 × 104(+) 6.47 × 103 0.0000 | 3.77 × 104(+) 6.47 × 103 0.0000 |
T2 | 1.86 × 105 1.23 × 105 - | 4.16 × 106(+) 1.23 × 105 0.0000 | 6.71 × 107(+) 1.23 × 105 0.0000 | 1.03 × 107(+) 1.23 × 105 0.0000 | 2.30 × 107(+) 1.23 × 105 0.0000 | 1.45 × 107(+) 1.23 × 105 0.0000 | 2.71 × 106(+) 1.23 × 105 0.0000 | |
Number of “+/=/−” | 14/1/5 | 13/3/4 | 15/3/2 | 14/4/2 | 14/2/4 | 12/5/3 |
CEC2022 | APMTO | 0.0 | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 | 1.0 | |
---|---|---|---|---|---|---|---|---|---|
Benchmark1 | T1 | 6.24 × 102 8.14 × 100 - | 6.23 × 102(=) 8.14 × 100 0.6414 | 6.24 × 102(=) 8.14 × 100 0.8534 | 6.23 × 102(=) 8.14 × 100 0.1907 | 6.22 × 102(=) 8.14 × 100 0.3183 | 6.23 × 102(=) 8.14 × 100 0.2643 | 6.22 × 102(=) 8.14 × 100 0.2581 | 6.22 × 102(−) 8.14 × 100 0.0116 |
T2 | 6.26 × 102 1.08 × 101 - | 6.26 × 102(=) 1.08 × 101 0.1297 | 6.24 × 102(=) 1.08 × 101 0.9587 | 6.21 × 102(=) 1.08 × 101 0.0679 | 6.22 × 102(=) 1.08 × 101 0.1453 | 6.23 × 102(=) 1.08 × 101 0.1297 | 6.22 × 102(=) 1.08 × 101 0.2062 | 6.20 × 102(−) 1.08 × 101 0.0005 | |
Benchmark2 | T1 | 7.00 × 102 9.10 × 10−3 - | 7.00 × 102(+) 9.10 × 10−3 0.0103 | 7.00 × 102(+) 9.10 × 10−3 0.0037 | 7.00 × 102(+) 9.10 × 10−3 0.0021 | 7.00 × 102(+) 9.10 × 10−3 0.0045 | 7.00 × 102(+) 9.10 × 10−3 0.0049 | 7.00 × 102(+) 9.10 × 10−3 0.0009 | 7.00 × 102(+) 9.10 × 10−3 0.0088 |
T2 | 7.00 × 102 5.55 × 10−3 - | 7.00 × 102(+) 5.55 × 10−3 0.0093 | 7.00 × 102(+) 5.55 × 10−3 0.0002 | 7.00 × 102(=) 5.55 × 10−3 0.2236 | 7.00 × 102(=) 5.55 × 10−3 0.0846 | 7.00 × 102(+) 5.55 × 10−3 0.0167 | 7.00 × 102(+) 5.55 × 10−3 0.0086 | 7.00 × 102(=) 5.55 × 10−3 0.0569 | |
Benchmark3 | T1 | 2.92 × 105 1.69 × 105 - | 3.18 × 105(=) 1.69 × 105 0.6952 | 3.73 × 105(=) 1.69 × 105 0.0773 | 3.40 × 105(=) 1.69 × 105 0.1087 | 3.83 × 105(=) 1.69 × 105 0.1023 | 3.58 × 105(=) 1.69 × 105 0.1669 | 4.78 × 105(+) 1.69 × 105 0.0022 | 4.07 × 105(+) 1.69 × 105 0.0189 |
T2 | 2.71 × 105 1.79 × 105 - | 4.01 × 105(+) 1.79 × 105 0.0116 | 2.97 × 105(=) 1.79 × 105 0.4290 | 3.61 × 105(=) 1.79 × 105 0.0877 | 3.59 × 105(=) 1.79 × 105 0.2116 | 3.38 × 105(=) 1.79 × 105 0.0877 | 4.84 × 105(+) 1.79 × 105 0.0001 | 5.54 × 105(+) 1.79 × 105 0.0011 | |
Benchmark4 | T1 | 1.30 × 103 1.03 × 10−1 - | 1.30 × 103(=) 1.03 × 10−1 0.5592 | 1.30 × 103(=) 1.03 × 10−1 0.7394 | 1.30 × 103(−) 1.03 × 10−1 0.0203 | 1.30 × 103(=) 1.03 × 10−1 0.0798 | 1.30 × 103(=) 1.03 × 10−1 0.8883 | 1.30 × 103(=) 1.03 × 10−1 0.4204 | 1.30 × 103(=) 1.03 × 10−1 0.8418 |
T2 | 1.30 × 103 7.52 × 10−2 - | 1.30 × 103(=) 7.52 × 10−2 0.5395 | 1.30 × 103(=) 7.52 × 10−2 0.8073 | 1.30 × 103(=) 7.52 × 10−2 0.2838 | 1.30 × 103(=) 7.52 × 10−2 0.8534 | 1.30 × 103(=) 7.52 × 10−2 0.6952 | 1.30 × 103(=) 7.52 × 10−2 0.8303 | 1.30 × 103(=) 7.52 × 10−2 0.5997 | |
Benchmark5 | T1 | 1.52 × 103 1.04 × 101 - | 1.54 × 103(+) 1.04 × 101 0.0000 | 1.54 × 103(+) 1.04 × 101 0.0000 | 1.54 × 103(+) 1.04 × 101 0.0000 | 1.54 × 103(+) 1.04 × 101 0.0000 | 1.53 × 103(+) 1.04 × 101 0.0001 | 1.54 × 103(+) 1.04 × 101 0.0000 | 1.54 × 103(+) 1.04 × 101 0.0000 |
T2 | 1.52 × 103 8.95 × 100 - | 1.54 × 103(+) 8.95 × 100 0.0000 | 1.54 × 103(+) 8.95 × 100 0.0000 | 1.53 × 103(+) 8.95 × 100 0.0000 | 1.54 × 103(+) 8.95 × 100 0.0000 | 1.54 × 103(+) 8.95 × 100 0.0000 | 1.54 × 103(+) 8.95 × 100 0.0000 | 1.54 × 103(+) 8.95 × 100 0.0000 | |
Benchmark6 | T1 | 2.06 × 105 1.11 × 105 - | 2.83 × 105(=) 1.11 × 105 0.0798 | 2.25 × 105(=) 1.11 × 105 0.5106 | 3.31 × 105(+) 1.11 × 105 0.0007 | 3.36 × 105(+) 1.11 × 105 0.0014 | 3.57 × 105(+) 1.11 × 105 0.0004 | 4.44 × 105(+) 1.11 × 105 0.0001 | 3.59 × 105(+) 1.11 × 105 0.0003 |
T2 | 1.33 × 105 6.49 × 104 - | 1.92 × 105(+) 6.49 × 104 0.0096 | 2.91 × 105(+) 6.49 × 104 0.0000 | 2.72 × 105(+) 6.49 × 104 0.0000 | 3.08 × 105(+) 6.49 × 104 0.0000 | 3.47 × 105(+) 6.49 × 104 0.0000 | 2.79 × 105(+) 6.49 × 104 0.0000 | 2.87 × 105(+) 6.49 × 104 0.0000 | |
Benchmark7 | T1 | 2.87 × 103 2.82 × 102 - | 2.73 × 103(=) 2.82 × 102 0.0555 | 2.80 × 103(=) 2.82 × 102 0.1858 | 2.70 × 103(−) 2.82 × 102 0.0099 | 2.84 × 103(=) 2.82 × 102 0.4825 | 2.73 × 103(=) 2.82 × 102 0.0519 | 2.72 × 103(−) 2.82 × 102 0.0210 | 2.67 × 103(−) 2.82 × 102 0.0035 |
T2 | 2.87 × 103 2.53 × 102 - | 2.75 × 103(=) 2.53 × 102 0.1297 | 2.80 × 103(=) 2.53 × 102 0.5793 | 2.70 × 103(−) 2.53 × 102 0.0099 | 2.78 × 103(=) 2.53 × 102 0.3632 | 2.83 × 103(=) 2.53 × 102 0.5201 | 2.86 × 103(=) 2.53 × 102 0.6627 | 2.79 × 103(=) 2.53 × 102 0.4464 | |
Benchmark8 | T1 | 5.21 × 102 3.34 × 10−2 - | 5.21 × 102(=) 3.34 × 10−2 0.2838 | 5.21 × 102(=) 3.34 × 10−2 0.1154 | 5.21 × 102(=) 3.34 × 10−2 0.1624 | 5.21 × 102(=) 3.34 × 10−2 0.4464 | 5.21 × 102(=) 3.34 × 10−2 0.3711 | 5.21 × 102(=) 3.34 × 10−2 0.9117 | 5.21 × 102(=) 3.34 × 10−2 0.1715 |
T2 | 5.21 × 102 2.57 × 10−2 - | 5.21 × 102(=) 2.57 × 10−2 0.3403 | 5.21 × 102(=) 2.57 × 10−2 0.1023 | 5.21 × 102(=) 2.57 × 10−2 0.0933 | 5.21 × 102(=) 2.57 × 10−2 0.8303 | 5.21 × 102(=) 2.57 × 10−2 0.0679 | 5.21 × 102(=) 2.57 × 10−2 0.3555 | 5.21 × 102(=) 2.57 × 10−2 0.1494 | |
Benchmark9 | T1 | 1.36 × 104 2.37 × 103 - | 1.47 × 104(=) 2.37 × 103 0.1120 | 1.49 × 104(+) 2.37 × 103 0.0027 | 1.50 × 104(+) 2.37 × 103 0.0000 | 1.48 × 104(+) 2.37 × 103 0.0014 | 1.48 × 104(+) 2.37 × 103 0.0075 | 1.46 × 104(=) 2.37 × 103 0.1373 | 1.50 × 104(+) 2.37 × 103 0.0002 |
T2 | 1.62 × 103 4.40 × 10−1 - | 1.62 × 103(=) 4.40 × 10−1 0.2062 | 1.62 × 103(=) 4.40 × 10−1 0.9705 | 1.62 × 103(+) 4.40 × 10−1 0.0116 | 1.62 × 103(=) 4.40 × 10−1 0.1120 | 1.62 × 103(+) 4.40 × 10−1 0.0019 | 1.62 × 103(+) 4.40 × 10−1 0.0002 | 1.62 × 103(+) 4.40 × 10−1 0.0013 | |
Benchmark10 | T1 | 1.27 × 104 6.47 × 103 - | 1.11 × 104(=) 6.47 × 103 0.4643 | 1.26 × 104(=) 6.47 × 103 0.8883 | 1.58 × 104(=) 6.47 × 103 0.2838 | 1.62 × 104(+) 6.47 × 103 0.0176 | 1.59 × 104(=) 6.47 × 103 0.1188 | 1.49 × 104(=) 6.47 × 103 0.2905 | 1.80 × 104(+) 6.47 × 103 0.0036 |
T2 | 1.86 × 105 1.23 × 105 - | 2.82 × 105(+) 1.23 × 105 0.0006 | 3.56 × 105(+) 1.23 × 105 0.0000 | 4.56 × 105(+) 1.23 × 105 0.0002 | 3.09 × 105(+) 1.23 × 105 0.0007 | 4.04 × 105(+) 1.23 × 105 0.0000 | 4.46 × 105(+) 1.23 × 105 0.0000 | 4.16 × 105(+) 1.23 × 105 0.0000 | |
Number of “+/=/−” | 7/13/0 | 7/13/0 | 8/9/3 | 8/12/0 | 9/11/0 | 10/9/1 | 11/6/3 |
CEC2022 | APMTO | APMTO–w/o–APKT | |
---|---|---|---|
Benchmark1 | T1 | 6.24 × 102 8.14 × 100 - | 6.18 × 102(−) 8.14 × 100 0.0003 |
T2 | 6.26 × 102 1.08 × 101 - | 6.21 × 102(=) 1.08 × 101 0.0850 | |
Benchmark2 | T1 | 7.00 × 102 9.10 × 10−3 - | 7.00 × 102(+) 9.10 × 10−3 0.0049 |
T2 | 7.00 × 102 5.55 × 10−3 - | 7.00 × 102(+) 5.55 × 10−3 0.0215 | |
Benchmark3 | T1 | 2.92 × 105 1.69 × 105 - | 3.87 × 105(+) 1.69 × 105 0.0112 |
T2 | 2.71 × 105 1.79 × 105 - | 4.24 × 105(+) 1.79 × 105 0.0015 | |
Benchmark4 | T1 | 1.30 × 103 1.03 × 10−1 - | 1.30 × 103(=) 1.03 × 10−1 0.5298 |
T2 | 1.30 × 103 7.52 × 10−2 - | 1.30 × 103(=) 7.52 × 10−2 0.3790 | |
Benchmark5 | T1 | 1.52 × 103 1.04 × 101 - | 1.54 × 103(+) 1.04 × 101 0.0000 |
T2 | 1.52 × 103 8.95 × 100 - | 1.54 × 103(+) 8.95 × 100 0.0000 | |
Benchmark6 | T1 | 2.06 × 105 1.11 × 105 - | 4.71 × 105(+) 1.11 × 105 0.0001 |
T2 | 1.33 × 105 6.49 × 104 - | 3.29 × 105(+) 6.49 × 104 0.0000 | |
Benchmark7 | T1 | 2.87 × 103 2.82 × 102 - | 2.70 × 103(−) 2.82 × 102 0.0052 |
T2 | 2.87 × 103 2.53 × 102 - | 2.74 × 103(=) 2.53 × 102 0.1120 | |
Benchmark8 | T1 | 5.21 × 102 3.34 × 10−2 - | 5.21 × 102(=) 3.34 × 10−2 0.5298 |
T2 | 5.21 × 102 2.57 × 10−2 - | 5.21 × 102(=) 2.57 × 10−2 0.6952 | |
Benchmark9 | T1 | 1.36 × 104 2.37 × 103 - | 1.48 × 104(+) 2.37 × 103 0.0108 |
T2 | 1.62 × 103 4.40 × 10−1 - | 1.62 × 103(+) 4.40 × 10−1 0.0018 | |
Benchmark10 | T1 | 1.27 × 104 6.47 × 103 - | 1.67 × 104(+) 6.47 × 103 0.0035 |
T2 | 1.86 × 105 1.23 × 105 - | 3.59 × 105(+) 1.23 × 105 0.0002 | |
Number of “+/=/−” | 12/6/2 |
top | APMTO (20) | 10 | 40 | 50 | 70 | 100 |
---|---|---|---|---|---|---|
Number of “+/=/−” | 7/6/7 | 7/8/5 | 5/11/4 | 10/8/2 | 9/11/0 |
APMaxFEs | APMTO (100) | 0 | 50 | 500 |
---|---|---|---|---|
Number of “+/=/−” | 11/6/3 | 11/9/0 | 9/9/2 |
N | APMTO (100) | 25 | 50 | 75 |
---|---|---|---|---|
Number of “+/=/−” | 14/4/2 | 6/10/4 | 4/13/3 |
F | APMTO (0.5) | 0.6 | 0.7 | 0.9 |
---|---|---|---|---|
Number of “+/=/−” | 12/6/2 | 16/2/2 | 18/2/0 |
CR | APMTO (0.7) | 0.6 | 0.8 | 0.9 |
---|---|---|---|---|
Number of “+/=/−” | 5/13/2 | 4/8/8 | 8/4/8 |
PKACP | APMTO | MFEA | MFEA–DGD | AEMTO | MKTDE | OTMTO | BLKT–DE | |
---|---|---|---|---|---|---|---|---|
d20 | T1 | 3.57 × 10−1 8.06 × 10−5 - | 3.57 × 10−1(+) 8.06 × 10−5 0.0022 | 3.66 × 10−1(+) 8.06 × 10−5 0.0000 | 3.57 × 10−1(=) 8.06 × 10−5 0.2905 | 3.57 × 10−1(=) 8.06 × 10−5 0.3329 | 3.57 × 10−1(=) 8.06 × 10−5 0.9234 | 3.57 × 10−1(−) 8.06 × 10−5 0.0000 |
T2 | 2.46 × 10−1 5.44 × 10−4 - | 2.48 × 10−1(+) 5.44 × 10−4 0.0000 | 2.46 × 10−1(−) 5.44 × 10−4 0.0000 | 2.48 × 10−1(+) 5.44 × 10−4 0.0000 | 2.46 × 10−1(+) 5.44 × 10−4 0.0000 | 2.46 × 10−1(+) 5.44 × 10−4 0.0000 | 2.46 × 10−1(+) 5.44 × 10−4 0.0000 | |
d25 | T1 | 3.58 × 10−1 1.20 × 10−4 - | 3.58 × 10−1(+) 1.20 × 10−4 0.0000 | 3.67 × 10−1(+) 1.20 × 10−4 0.0000 | 3.58 × 10−1(+) 1.20 × 10−4 0.0085 | 3.58 × 10−1(=) 1.20 × 10−4 0.7062 | 3.58 × 10−1(+) 1.20 × 10−4 0.0189 | 3.58 × 10−1(−) 1.20 × 10−4 0.0014 |
T2 | 2.49 × 10−1 9.60 × 10−4 - | 2.51 × 10−1(+) 9.60 × 10−4 0.0000 | 2.48 × 10−1(−) 9.60 × 10−4 0.0000 | 2.51 × 10−1(+) 9.60 × 10−4 0.0000 | 2.49 × 10−1(+) 9.60 × 10−4 0.0000 | 2.49 × 10−1(+) 9.60 × 10−4 0.0000 | 2.48 × 10−1(+) 9.60 × 10−4 0.0002 | |
d30 | T1 | 3.58 × 10−1 5.73 × 10−5 - | 3.58 × 10−1(+) 5.73 × 10−5 0.0000 | 3.70 × 10−1(+) 5.73 × 10−5 0.0000 | 3.58 × 10−1(+) 5.73 × 10−5 0.0000 | 3.58 × 10−1(+) 5.73 × 10−5 0.0242 | 3.58 × 10−1(+) 5.73 × 10−5 0.0009 | 3.58 × 10−1(−) 5.73 × 10−5 0.0196 |
T2 | 2.50 × 10−1 5.64 × 10−4 - | 2.57 × 10−1(+) 5.64 × 10−4 0.0000 | 2.50 × 10−1(−) 5.64 × 10−4 0.0000 | 2.54 × 10−1(+) 5.64 × 10−4 0.0000 | 2.51 × 10−1(+) 5.64 × 10−4 0.0000 | 2.50 × 10−1(+) 5.64 × 10−4 0.0001 | 2.50 × 10−1(+) 5.64 × 10−4 0.0226 | |
d35 | T1 | 4.94 × 10−2 4.08 × 10−4 - | 4.98 × 10−2(+) 4.08 × 10−4 0.0000 | 5.51 × 10−2(+) 4.08 × 10−4 0.0000 | 5.00 × 10−2(+) 4.08 × 10−4 0.0000 | 4.94 × 10−2(+) 4.08 × 10−4 0.0001 | 5.18 × 10−2(+) 4.08 × 10−4 0.0000 | 4.93 × 10−2(+) 4.08 × 10−4 0.0042 |
T2 | 4.92 × 10−1 1.44 × 10−5 - | 4.92 × 10−1(+) 1.44 × 10−5 0.0000 | 4.94 × 10−1(+) 1.44 × 10−5 0.0000 | 4.92 × 10−1(+) 1.44 × 10−5 0.0000 | 4.92 × 10−1(+) 1.44 × 10−5 0.0099 | 4.93 × 10−1(+) 1.44 × 10−5 0.0000 | 4.92 × 10−1(+) 1.44 × 10−5 0.0012 | |
d40 | T1 | 2.14 × 10−1 1.06 × 10−4 - | 2.15 × 10−1(+) 1.06 × 10−4 0.0000 | 2.27 × 10−1(+) 1.06 × 10−4 0.0000 | 2.14 × 10−1(+) 1.06 × 10−4 0.0000 | 2.14 × 10−1(+) 1.06 × 10−4 0.0007 | 2.15 × 10−1(+) 1.06 × 10−4 0.0000 | 2.14 × 10−1(=) 1.06 × 10−4 0.1087 |
T2 | 2.90 × 10−1 2.04 × 10−3 - | 3.00 × 10−1(+) 2.04 × 10−3 0.0000 | 2.97 × 10−1(+) 2.04 × 10−3 0.0000 | 2.97 × 10−1(+) 2.04 × 10−3 0.0000 | 2.91 × 10−1(=) 2.04 × 10−3 0.0748 | 2.96 × 10−1(+) 2.04 × 10−3 0.0000 | 2.89 × 10−1(−) 2.04 × 10−3 0.0005 | |
d50 | T1 | 2.83 × 10−1 4.64 × 10−3 - | 2.97 × 10−1(+) 4.64 × 10−3 0.0000 | 2.79 × 10−1(−) 4.64 × 10−3 0.0000 | 2.93 × 10−1(+) 4.64 × 10−3 0.0000 | 2.84 × 10−1(=) 4.64 × 10−3 0.0594 | 2.86 × 10−1(+) 4.64 × 10−3 0.0001 | 2.80 × 10−1(−) 4.64 × 10−3 0.0003 |
T2 | 3.37 × 10−1 7.08 × 10−5 - | 3.37 × 10−1(+) 7.08 × 10−5 0.0000 | 3.49 × 10−1(+) 7.08 × 10−5 0.0000 | 3.37 × 10−1(+) 7.08 × 10−5 0.0000 | 3.37 × 10−1(+) 7.08 × 10−5 0.0000 | 3.37 × 10−1(+) 7.08 × 10−5 0.0000 | 3.37 × 10−1(+) 7.08 × 10−5 0.0000 | |
d100 | T1 | 4.82 × 10−1 1.39 × 10−4 - | 4.83 × 10−1(+) 1.39 × 10−4 0.0000 | 4.90 × 10−1(+) 1.39 × 10−4 0.0000 | 4.82 × 10−1(+) 1.39 × 10−4 0.0000 | 4.82 × 10−1(=) 1.39 × 10−4 0.1669 | 4.84 × 10−1(+) 1.39 × 10−4 0.0000 | 4.82 × 10−1(+) 1.39 × 10−4 0.0088 |
T2 | 1.46 × 10−1 1.09 × 10−2 - | 1.90 × 10−1(+) 1.09 × 10−2 0.0000 | 1.10 × 10−1(−) 1.09 × 10−2 0.0000 | 1.81 × 10−1(+) 1.09 × 10−2 0.0000 | 1.46 × 10−1(=) 1.09 × 10−2 0.9587 | 1.84 × 10−1(+) 1.09 × 10−2 0.0000 | 1.26 × 10−1(−) 1.09 × 10−2 0.0000 | |
Number of “+/=/−” | 14/0/0 | 9/0/5 | 13/1/0 | 8/6/0 | 13/1/0 | 7/1/6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, J.-H.; Zhou, S.-Y.; Wang, Z.-J. Auxiliary Population Multitask Optimization Based on Chinese Semantic Understanding. Appl. Sci. 2025, 15, 9746. https://doi.org/10.3390/app15179746
Yuan J-H, Zhou S-Y, Wang Z-J. Auxiliary Population Multitask Optimization Based on Chinese Semantic Understanding. Applied Sciences. 2025; 15(17):9746. https://doi.org/10.3390/app15179746
Chicago/Turabian StyleYuan, Ji-Heng, Shi-Yuan Zhou, and Zi-Jia Wang. 2025. "Auxiliary Population Multitask Optimization Based on Chinese Semantic Understanding" Applied Sciences 15, no. 17: 9746. https://doi.org/10.3390/app15179746
APA StyleYuan, J.-H., Zhou, S.-Y., & Wang, Z.-J. (2025). Auxiliary Population Multitask Optimization Based on Chinese Semantic Understanding. Applied Sciences, 15(17), 9746. https://doi.org/10.3390/app15179746