Uncertainty-Based Design Optimization Framework Based on Improved Chicken Swarm Algorithm and Bayesian Optimization Neural Network
Abstract
1. Introduction
2. Basic Methods and Models
2.1. Optimization Algorithm
2.1.1. Chicken Swarm Optimization Algorithm
2.1.2. Butterfly Optimization Algorithm
2.1.3. A Summary of the Strengths and Weaknesses of Original Optimization Algorithms
2.2. BP Neural Network Model
3. UBDO Based on BLCSO and BO-BP Neural Network Model
3.1. Improved CSO Based on Butterfly Optimization Strategy
3.1.1. Dynamic Multi-Population Partitioning Strategy
- (1)
- Rooster search strategy integrating butterfly algorithm
- (2)
- Hen search strategy based on Levy flight
- (3)
- The overall computational procedure of the BLCSO algorithm
3.1.2. Complexity Calculation of the BLCSO Algorithm
3.1.3. Convergence Analysis of the BLCSO Algorithm
- 1.
- Markov Model: Within the probability space , consider a one-dimensional countable set of random variables , where each random variable takes values , with satisfying:
- 2.
- Definition of chicken states and state space: The position of each chicken in the flock constitutes its individual state, and the set of all possible states of this chicken forms its state space, denoted as , where represents the feasible solution space.
- 3.
- Definition of flock states and state space: The states of all chickens in the population constitute the flock state, denoted as , where represents the state of the -th chicken, and is the total number of individuals in the flock. The set composed of all possible states in the flock forms the flock state space, denoted as .
- 4.
- Equivalence of flock states:
- 5.
- Equivalence classes of flock states: A population state partitioning model can be constructed based on the state equivalence relation. Let the universal set of population states be denoted as . Then, the corresponding set of equivalence classes for population states can be formally defined as , which possesses the following properties:
- For any equivalence class within the flock, any two states within it satisfy a complete equivalence relation: ;
- There are no overlapping states between different equivalence classes, that is, , .
- 6.
- For any two states of an individual, if there exists a transition operator such that the state transition of the individual satisfies , then the individual transition probability in the chicken swarm algorithm is given by:
- 1.
- The global optimal solution to the optimization problem is denoted as , and the set of optimal solutions is , with .
- 2.
- If for any initial state , it holds that , then the algorithm is said to converge in probability to the global optimal solution.
3.2. The UBDO Framework Integrating Neural Networks with Novel Optimization Algorithms
3.2.1. BO-BP Neural Network Model
BO-BP neural network agent model |
Input: |
Output: Ideal parameters and hyperparameter combination |
1. Initial dataset →D |
2. for |
3. |
4. |
5. |
6. |
7. end for |
- (1)
- Determine the objective function, the feasible domain of parameters and hyperparameters, the acquisition function , and the probabilistic surrogate model .
- (2)
- Generate the initial dataset : First, perform random sampling within the feasible domain of parameters and hyperparameters, and substitute the samples you obtained into the objective function to work out the target value, that is, . Therefore, the initial dataset is obtained.
- (3)
- Specify the quantity of iterations . This quantity denotes the number of instances the objective function is executed. Since the objective function requires a lot of computation, the number of iterations cannot be too large.
- (4)
- Calculate the posterior probability of the data sample based on the selected probabilistic surrogate model and the generated dataset .
- (5)
- Based on the posterior probability distribution obtained by the probabilistic surrogate model, the acquisition function is used to select the next most promising parameter and hyperparameter combination .
- (6)
- Substitute the most promising parameter and hyperparameter combination into the objective function to calculate the target value that is, .
- (7)
- Add the new data sample to the dataset as a surrogate model for the historical information update probability.
- (8)
- Repeat steps (4) to (7) until the iteration is completed and the optimal combination of parameters and hyperparameters is output.
3.2.2. UBDO Framework
4. Example Study Verification
4.1. Verification Based on Test Functions
4.2. Validation of Uncertainty Optimization Case Studies
4.2.1. Mathematical Example
4.2.2. The 10-Rod Truss Structure
4.2.3. Cantilever Beam Structure
4.2.4. Vehicle Side Impact
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Function | Range | |
---|---|---|
30 | [−5.12, 5.12] D | |
30 | [−2.048, 2.048] D | |
30 | [−32.768, 32.768] D | |
10 | [−5.12, 5.12] D | |
30 | [−600, 600] D | |
50 | [−500, 500] D |
Functions | r | The minimum Value of the Optimal Solution | The Average Value of the Optimal Solutions | The Maximum Value of the Optimal Solution | The Standard Deviation of the Optimal Solutions | Convergence Speed (s) |
---|---|---|---|---|---|---|
F1 | 0.1 | 1.2674 × 10−35 | 2.6401 × 10−33 | 1.2571 × 10−32 | 4.1469 × 10−33 | 0.029508 |
0.2 | 0.00015681 | 0.002091 | 0.0047768 | 0.001546 | 0.12979 | |
0.3 | 2.071 × 10−214 | 9.0618 × 10−69 | 9.0618 × 10−68 | 2.8656 × 10−68 | 0.030281 | |
0.4 | 6.051 × 10−35 | 2.5161 × 10−25 | 2.5156 × 10−24 | 7.9549 × 10−25 | 0.022371 | |
0.5 | 0.25392 | 0.52169 | 0.74901 | 0.13485 | 0.015554 | |
0.6 | 4.2816 × 10−7 | 3.8951 × 10−6 | 7.0286 × 10−6 | 1.9831 × 10−6 | 0.030294 | |
0.7 | 0 | 2.2684 × 10−125 | 1.7343 × 10−124 | 5.5562 × 10−125 | 0.026011 | |
0.8 | 3.3767 × 10−35 | 1.1359 × 10−33 | 8.1204 × 10−33 | 2.4834 × 10−33 | 0.028445 | |
0.9 | 1.6341 × 10−37 | 7.7333 × 10−25 | 6.0758 × 10−24 | 1.8921 × 10−24 | 0.021513 | |
1 | 6.9763 × 10−7 | 2.2024 × 10−6 | 5.8204 × 10−6 | 1.6029 × 10−6 | 0.028347 | |
F2 | 0.1 | −418.33 | −415.76 | −405.75 | 3.7741 | 0.018862 |
0.2 | −418.33 | −412.94 | −409.25 | 4.2267 | 0.046129 | |
0.3 | −418.33 | −417.56 | −416.14 | 0.7413 | 0.01932 | |
0.4 | −418.33 | −413.42 | −410.14 | 4.2303 | 0.0077923 | |
0.5 | −418.33 | −415.87 | −410.13 | 3.9568 | 0.013134 | |
0.6 | −418.33 | −417.07 | −410.14 | 2.4965 | 0.02676 | |
0.7 | −418.33 | −418.33 | −418.33 | 9.5296 × 10−5 | 0.018653 | |
0.8 | −418.33 | −418.33 | −418.32 | 0.0044498 | 0.066814 | |
0.9 | −418.33 | −417.8 | −416.14 | 0.76649 | 0.01952 | |
1 | −418.33 | −416.96 | −410.14 | 2.4589 | 0.026582 | |
F3 | 0.1 | −2.6097 | −2.2255 | −1.8999 | 0.24426 | 0.009646 |
0.2 | −2.7176 | −2.7155 | −2.7092 | 0.0024518 | 0.046611 | |
0.3 | −2.718 | −2.7156 | −2.7128 | 0.0017583 | 0.046178 | |
0.4 | −2.7179 | −2.7156 | −2.7132 | 0.001481 | 0.046432 | |
0.5 | −2.7183 | −2.7183 | −2.7183 | 7.0086 × 10−7 | 0.014749 | |
0.6 | −2.7183 | −2.7183 | −2.7183 | 2.2083 × 10−7 | 0.021694 | |
0.7 | −2.7183 | −2.7183 | −2.7183 | 4.6811 × 10−16 | 0.028963 | |
0.8 | −2.7183 | −2.7183 | −2.7183 | 4.6811 × 10−16 | 0.02057 | |
0.9 | −2.7183 | −2.7183 | −2.7183 | 3.7855 × 10−12 | 0.020766 | |
1 | −2.7177 | −2.7152 | −2.707 | 0.0032081 | 0.046641 | |
F4 | 0.1 | 4.7243 × 10−7 | 0.00011708 | 0.00070876 | 0.00021327 | 0.046361 |
0.2 | 0 | 2.2273 | 10.945 | 4.1622 | 0.020712 | |
0.3 | 4.3039 × 10−8 | 3.8361 | 7.3024 | 2.2435 | 0.014527 | |
0.4 | 1.4924 × 10−6 | 0.11326 | 1.0379 | 0.32613 | 0.045362 | |
0.5 | 0.067671 | 0.00016892 | 0.0009582 | 0.00029693 | 0.021115 | |
0.6 | 0 | 6.0606 × 10−5 | 0.00028943 | 9.3136 × 10−5 | 0.0091597 | |
0.7 | 0 | 0 | 0 | 0 | 0.014531 | |
0.8 | 0 | 1.6538 × 10−6 | 0.00013503 | 2.0429 × 10−6 | 0.028017 | |
0.9 | 6.8531 × 10−6 | 0.00020814 | 0.0010683 | 0.00031516 | 0.019713 | |
1 | 1.4704 × 10−6 | 0.00028076 | 0.0016492 | 0.00054483 | 0.067671 | |
F5 | 0.1 | 0.43399 | 0.71257 | 0.95111 | 0.19868 | 0.00983 |
0.2 | 0.015268 | 0.082615 | 0.17984 | 0.056173 | 0.014997 | |
0.3 | 0.0038319 | 0.096991 | 0.27921 | 0.092249 | 0.046197 | |
0.4 | 0.002467 | 0.024119 | 0.081303 | 0.027423 | 0.021265 | |
0.5 | 0.0024663 | 0.0068887 | 0.024551 | 0.0077457 | 0.028851 | |
0.6 | 0.0024696 | 0.0069524 | 0.036808 | 0.01062 | 0.068428 | |
0.7 | 0.0024663 | 0.0044396 | 0.0098544 | 0.0027945 | 0.02841 | |
0.8 | 0.0024663 | 0.0056693 | 0.014762 | 0.0040234 | 0.040013 | |
0.9 | 0.0024696 | 0.013298 | 0.041803 | 0.013017 | 0.0207 | |
1 | 0.0056531 | 0.072293 | 0.26635 | 0.077289 | 0.020923 | |
F6 | 0.1 | 12,880 | 13,971 | 14,647 | 596.08 | 0.20069 |
0.2 | 8749.5 | 10,715 | 11,564 | 845.16 | 0.11394 | |
0.3 | 9231.3 | 11,289 | 12,765 | 986.73 | 0.025697 | |
0.4 | 10,053 | 12,516 | 17,438 | 1965.6 | 0.048951 | |
0.5 | 7273.4 | 8865.6 | 10,498 | 1089.2 | 0.043216 | |
0.6 | 5447.8 | 9140.3 | 11,694 | 1888.9 | 0.041474 | |
0.7 | 2554.7 | 8678.2 | 9758.6 | 927.63 | 0.032363 | |
0.8 | 7341.4 | 9150.9 | 9776 | 768.61 | 0.04254 | |
0.9 | 9398.3 | 11,396 | 13,030 | 1183.2 | 0.025367 | |
1 | 8641.8 | 9979.2 | 11,260 | 831.14 | 0.11218 |
Appendix B
Function | Indicator | PSO | GWO | HHO | GA | SSA | CSO | BLCSO |
---|---|---|---|---|---|---|---|---|
F1 | Ave | 2.6948 × 106 | 11150 | 1.1609 × 107 | 7.453 × 109 | 1.2153 × 109 | 8.3445 × 107 | 3960.1 |
Std | 2.7113 × 106 | 5486.7 | 2.438 × 106 | 5.8434 × 109 | 8.4496 × 108 | 4.046 × 107 | 4204.3 | |
p-valve | 2 × 10−6 | 2 × 10−6 | 2 × 10−6 | 2 × 10−6 | 2 × 10−6 | 2 × 10−6 | -- | |
Cliff’s delta | −1.000 | −1.000 | −1.000 | −1.000 | −1.000 | −1.000 | -- | |
Rank | 3 | 2 | 4 | 7 | 6 | 5 | 1 | |
F2 | Ave | 12,477 | 52,701 | 25,599 | 1.2014 × 105 | 2.372 × 105 | 41,642 | 12,879 |
Std | 6581.8 | 12,254 | 8994.4 | 40,918 | 52,094 | 4050.7 | 4907.9 | |
p-valve | 0.7343 | 2 × 10−6 | 9 × 10−6 | 2 × 10−6 | 1.7 × 10−6 | 0.0064 | -- | |
Cliff’s delta | −0.009 | −0.996 | −0.824 | −1.000 | −1.000 | −0.436 | -- | |
Rank | 1 | 5 | 3 | 6 | 7 | 4 | 2 | |
F3 | Ave | 540.11 | 570.99 | 575.94 | 982.32 | 499.08 | 663.63 | 476.68 |
Std | 12.776 | 51.759 | 63.045 | 384.98 | 17.736 | 42.514 | 9.8982 | |
p-valve | 1.7 × 10−6 | 2.9 × 10−6 | 5.2 × 10−6 | 1.2 × 10−5 | 2.8 × 10−5 | 1.7 × 10−6 | -- | |
Cliff’s delta | −1.000 | −0.933 | −0.924 | −0.836 | −0.762 | −1.000 | -- | |
Rank | 3 | 4 | 5 | 7 | 2 | 6 | 1 | |
F4 | Ave | 655.13 | 634.42 | 736.12 | 720.25 | 755.18 | 797.68 | 629.43 |
Std | 29.004 | 63.974 | 43.668 | 58.041 | 59.344 | 87.691 | 21.356 | |
p-valve | 0.00039 | 0.44 | 1.9 × 10−6 | 5.8 × 10−6 | 2.4 × 10−6 | 2.6 × 10−6 | -- | |
Cliff’s delta | −0.567 | −0.027 | −0.958 | −0.893 | −0.936 | −0.933 | -- | |
Rank | 3 | 2 | 5 | 4 | 6 | 7 | 1 | |
F5 | Ave | 645.55 | 604.44 | 662.85 | 623.39 | 647.5 | 674.67 | 608.1 |
Std | 6.1205 | 1.1778 | 2.9074 | 11.993 | 11.105 | 11.994 | 1.6554 | |
p-valve | 1.7 × 10−6 | 1.7 × 10−6 | 1.7 × 10−6 | 1.2 × 10−5 | 1.7 × 10−6 | 1.7 × 10−6 | -- | |
Cliff’s delta | −1.000 | 0.922 | −1.000 | −0.840 | −1.000 | −1.000 | -- | |
Rank | 4 | 1 | 6 | 3 | 5 | 7 | 2 | |
F6 | Ave | 941.36 | 907.42 | 1277.7 | 983 | 1228.3 | 1291.7 | 878.84 |
Std | 39.698 | 32.512 | 113.08 | 98.178 | 95.887 | 140.18 | 51.132 | |
p-valve | 3.4 × 10−5 | 0.0032 | 1.7 × 10−6 | 5.3 × 10−5 | 1.7 × 10−6 | 1.7 × 10−6 | -- | |
Cliff’s delta | −0.722 | −0.462 | −1.000 | −0.729 | −1.000 | −0.984 | -- | |
Rank | 3 | 2 | 6 | 4 | 5 | 7 | 1 | |
F7 | Ave | 922.63 | 976.41 | 968.35 | 975.11 | 1044.4 | 896.27 | 872.42 |
Std | 20.547 | 12.266 | 26.826 | 42.983 | 50.973 | 26.261 | 19.587 | |
p-valve | 2.6 × 10−6 | 1.7 × 10−6 | 1.7 × 10−6 | 1.9 × 10−6 | 1.7 × 10−6 | 0.00031 | -- | |
Cliff’s delta | −0.931 | −1.000 | −0.996 | −0.951 | −0.998 | −0.571 | -- | |
Rank | 3 | 6 | 4 | 5 | 7 | 2 | 1 | |
F8 | Ave | 7298.5 | 5887.3 | 5318.2 | 9601.8 | 3866.5 | 2155.2 | 2049 |
Std | 942.08 | 1833.7 | 178.37 | 2273.2 | 1806.6 | 969.72 | 1478.8 | |
p-valve | 1.7 × 10−6 | 2.9 × 10−6 | 1.7 × 10−6 | 1.7 × 10−6 | 0.00021 | 0.29 | -- | |
Cliff’s delta | −1.000 | −0.904 | −1.000 | −0.996 | −0.611 | −0.124 | -- | |
Rank | 6 | 5 | 4 | 7 | 3 | 2 | 1 | |
F9 | Ave | 5757.5 | 6756 | 5254 | 5285.1 | 4975 | 6017.1 | 3945 |
Std | 494.77 | 291.87 | 709.68 | 478.02 | 379.36 | 684.34 | 252.38 | |
p-valve | 1.7 × 10−6 | 1.7 × 10−6 | 2.9 × 10−6 | 1.9 × 10−6 | 1.9 × 10−6 | 1.7 × 10−6 | -- | |
Cliff’s delta | −1.000 | −1.000 | −0.924 | −0.976 | −0.971 | −0.991 | -- | |
Rank | 5 | 7 | 3 | 4 | 2 | 6 | 1 | |
F10 | Ave | 1331.2 | 1390.3 | 1322.6 | 1758.6 | 1270.3 | 5157.5 | 1248.9 |
Std | 44.563 | 48.162 | 42.595 | 269.39 | 65.073 | 1132.4 | 42.233 | |
p-valve | 4.7 × 10−6 | 1.7 × 10−6 | 7 × 10−6 | 2.6 × 10−6 | 0.043 | 1.7 × 10−6 | -- | |
Cliff’s delta | −0.851 | −0.973 | −0.811 | −0.933 | −0.231 | −1.000 | -- | |
Rank | 4 | 5 | 3 | 6 | 2 | 7 | 1 | |
F11 | Ave | 4.0014 × 106 | 1.1835 × 108 | 3.035 × 107 | 4.2306 × 107 | 2.7555 × 106 | 2.1966 × 108 | 2.0016 × 105 |
Std | 1.7018 × 106 | 1.018 × 108 | 2.0077 × 107 | 7.0855 × 107 | 1.5392 × 106 | 1.0772 × 108 | 2.2045 × 105 | |
p-valve | 1.9 × 10−6 | 1.6 × 10−5 | 5.8 × 10−6 | 0.0044 | 3.5 × 10−6 | 1.9 × 10−6 | -- | |
Cliff’s delta | −0.933 | −0.800 | −0.933 | −0.467 | −0.933 | −0.933 | -- | |
Rank | 3 | 6 | 4 | 5 | 2 | 7 | 1 | |
F12 | Ave | 45,729 | 1.2644 × 105 | 4.5846 × 105 | 9.2591 × 105 | 21,206 | 5.3441 × 105 | 28,735 |
Std | 31,092 | 37090 | 1.3208 × 105 | 1.9676 × 106 | 11,899 | 4.6919 × 105 | 12,156 | |
p-valve | 0.0036 | 1.9 × 10−6 | 1.7 × 10−6 | 0.024 | 0.098 | 3.4 × 10−5 | -- | |
Cliff’s delta | −0.389 | −0.964 | −1.000 | −0.322 | 0.280 | −0.800 | -- | |
Rank | 3 | 4 | 5 | 7 | 1 | 6 | 2 | |
F13 | Ave | 86,655 | 2.4615 × 105 | 1.3344 × 105 | 30,987 | 5773.6 | 1.1669 × 106 | 3216.9 |
Std | 55,422 | 2.1085 × 105 | 1.2696 × 105 | 27,317 | 3860.4 | 7.3443 × 105 | 3471.8 | |
p-valve | 5.8 × 10−6 | 1.6 × 10−5 | 4.1 × 10−5 | 3.7 × 10−5 | 0.0024 | 4.3 × 10−6 | -- | |
Cliff’s delta | −0.933 | −0.800 | −0.800 | −0.756 | −0.429 | −0.933 | -- | |
Rank | 4 | 6 | 5 | 3 | 2 | 7 | 1 | |
F14 | Ave | 18,292 | 50,617 | 35,615 | 1.0176 × 106 | 7945.9 | 62,452 | 7459.3 |
Std | 10,716 | 27,787 | 12,378 | 1.9419 × 106 | 3798.7 | 26,804 | 4263.2 | |
p-valve | 6.9 × 10−5 | 5.8 × 10−6 | 1.9 × 10−6 | 0.01 | 0.25 | 2.1 × 10−6 | -- | |
Cliff’s delta | −0.696 | −0.924 | −0.940 | −0.400 | −0.131 | −0.933 | -- | |
Rank | 3 | 5 | 4 | 7 | 2 | 6 | 1 | |
F15 | Ave | 2666.4 | 3242.6 | 3088.4 | 3142.2 | 2557 | 3533.5 | 2273.4 |
Std | 247.5 | 479.41 | 377.89 | 389.89 | 134.76 | 656.39 | 152.23 | |
p-valve | 5.8 × 10−6 | 2.4 × 10−6 | 2.4 × 10−6 | 1.9 × 10−6 | 3.9 × 10−6 | 2.6 × 10−6 | -- | |
Cliff’s delta | −0.873 | −0.936 | −0.940 | −0.940 | −0.871 | −0.933 | -- | |
Rank | 3 | 6 | 4 | 5 | 2 | 7 | 1 | |
F16 | Ave | 2165.7 | 2077.9 | 2395.5 | 2465 | 2555.2 | 2512.8 | 2065.5 |
Std | 261.02 | 59.968 | 299.12 | 248.41 | 249.73 | 265.94 | 103.28 | |
p-valve | 0.02 | 0.18 | 3.1 × 10−5 | 5.2 × 10−6 | 2.4 × 10−6 | 3.9 × 10−6 | -- | |
Cliff’s delta | −0.271 | −0.167 | −0.753 | −0.884 | −0.927 | −0.911 | -- | |
Rank | 3 | 2 | 4 | 5 | 7 | 6 | 1 | |
F17 | Ave | 2.3416 × 106 | 2.0959 × 106 | 6.1878 × 105 | 7.125 × 105 | 7.069 × 106 | 5.9273 × 105 | 82,689 |
Std | 5.5303 × 105 | 1.9468 × 106 | 2.919 × 105 | 7.4786 × 105 | 5.4647 × 106 | 5.3013 × 105 | 18,258 | |
p-valve | 1.7 × 10−6 | 4.1 × 10−5 | 2.6 × 10−6 | 0.00024 | 1.2 × 10−5 | 4.4 × 10−5 | -- | |
Cliff’s delta | −1.000 | −0.800 | −0.933 | −0.549 | −0.800 | −0.747 | -- | |
Rank | 6 | 5 | 3 | 4 | 7 | 2 | 1 | |
F18 | Ave | 28,290 | 2.4408 × 105 | 3.1424 × 105 | 3.8196 × 106 | 7.4957 × 106 | 9.436 × 105 | 4762.1 |
Std | 19,780 | 53,198 | 1.8894 × 105 | 4.6224 × 106 | 4.5621 × 106 | 7.145 × 105 | 4389.2 | |
p-valve | 2.2 × 10−5 | 1.7 × 10−6 | 3.9 × 10−6 | 0.00033 | 3.9 × 10−6 | 1.2 × 10−5 | -- | |
Cliff’s delta | −0.809 | −1.000 | −0.933 | −0.533 | −0.933 | −0.831 | -- | |
Rank | 2 | 3 | 4 | 6 | 7 | 5 | 1 | |
F19 | Ave | 2526.5 | 2386.2 | 2767 | 2449.3 | 2620 | 2694.3 | 2250.3 |
Std | 231.6 | 148.13 | 245.7 | 234.24 | 238.29 | 313.55 | 51.841 | |
p-valve | 2 × 10−5 | 0.00011 | 1.9 × 10−6 | 0.00021 | 5.2 × 10−6 | 7.7 × 10−6 | -- | |
Cliff’s delta | −0.811 | −0.642 | −0.933 | −0.611 | −0.916 | −0.893 | -- | |
Rank | 4 | 2 | 7 | 3 | 5 | 6 | 1 | |
F20 | Ave | 2453 | 2488.3 | 2553.5 | 2460.5 | 2500.8 | 2550.4 | 2396.9 |
Std | 55.299 | 12.039 | 39.853 | 40.851 | 45.704 | 84.677 | 42.472 | |
p-valve | 0.00017 | 1.7 × 10−6 | 1.7 × 10−6 | 2.2 × 10−5 | 2.9 × 10−6 | 2.9 × 10−6 | -- | |
Cliff’s delta | −0.624 | −0.987 | −0.996 | −0.769 | −0.922 | −0.909 | -- | |
Rank | 2 | 4 | 7 | 3 | 5 | 6 | 1 | |
F21 | Ave | 5069.1 | 4964.9 | 7475.4 | 5617.3 | 3102.5 | 7781.6 | 3428.9 |
Std | 2418.5 | 626.63 | 358.73 | 2039.8 | 1789.3 | 790.32 | 1321.3 | |
p-valve | 0.0015 | 1.1 × 10−5 | 1.7 × 10−6 | 7.5 × 10−5 | 0.86 | 1.7 × 10−6 | -- | |
Cliff’s delta | −0.487 | −0.764 | −1.000 | −0.684 | 0.087 | −0.996 | -- | |
Rank | 4 | 3 | 6 | 5 | 1 | 7 | 2 | |
F22 | Ave | 2980.1 | 2829.5 | 3147.2 | 2796.6 | 3042.3 | 3067.9 | 2770.3 |
Std | 90.326 | 17.923 | 75.85 | 41.128 | 135.32 | 104.51 | 29.821 | |
p-valve | 1.9 × 10−6 | 2.1 × 10−6 | 1.7 × 10−6 | 0.0024 | 2.1 × 10−6 | 1.7 × 10−6 | -- | |
Cliff’s delta | −0.942 | −0.929 | −1.000 | −0.440 | −0.933 | −0.984 | -- | |
Rank | 4 | 3 | 7 | 2 | 5 | 6 | 1 | |
F23 | Ave | 3093.3 | 3029.3 | 3401.1 | 2971.5 | 3116.7 | 3230.1 | 2920.5 |
Std | 81.288 | 15.5034 | 79.465 | 24.971 | 103.66 | 99.543 | 83.648 | |
p-valve | 2.9 × 10−6 | 4.3 × 10−6 | 1.7 × 10−6 | 0.00066 | 3.9 × 10−6 | 1.7 × 10−6 | -- | |
Cliff’s delta | −0.882 | −0.858 | −1.000 | −0.549 | −0.878 | −0.984 | -- | |
Rank | 4 | 3 | 7 | 2 | 5 | 6 | 1 | |
F24 | Ave | 2940 | 2896.8 | 2936.4 | 3169.4 | 2894.4 | 3062.9 | 2995.9 |
Std | 18.369 | 2.2586 | 28.62 | 209.55 | 28.3295 | 50.951 | 14.57 | |
p-valve | 1.7 × 10−6 | 1.7 × 10−6 | 2.4 × 10−6 | 0.00028 | 1.7 × 10−6 | 1.2 × 10−5 | -- | |
Cliff’s delta | 0.971 | 1.000 | 0.853 | −0.558 | 1.000 | −0.842 | -- | |
Rank | 4 | 1 | 3 | 7 | 2 | 6 | 5 | |
F25 | Ave | 6237.9 | 5502.4 | 6985 | 5623.7 | 5898.3 | 7441.6 | 4513.5 |
Std | 642.06 | 142.64 | 2176.7 | 608.53 | 1951.4 | 1689.4 | 155.07 | |
p-valve | 1.9 × 10−6 | 1.7 × 10−6 | 2.6 × 10−5 | 2.9 × 10−6 | 0.00096 | 3.2 × 10−6 | -- | |
Cliff’s delta | −0.971 | −1.000 | −0.800 | −0.929 | −0.476 | −0.933 | -- | |
Rank | 5 | 2 | 6 | 3 | 4 | 7 | 1 | |
F26 | Ave | 3272.9 | 3228.7 | 3476.2 | 3247.1 | 3278.1 | 3434 | 3235.8 |
Std | 18.59 | 4.3929 | 104.85 | 15.1 | 10.192 | 80.496 | 14.667 | |
p-valve | 2.9 × 10−6 | 0.032 | 1.9 × 10−6 | 0.0015 | 1.7 × 10−6 | 1.9 × 10−6 | -- | |
Cliff’s delta | −0.896 | 0.316 | −0.933 | −0.471 | −0.996 | −0.940 | -- | |
Rank | 4 | 1 | 7 | 3 | 5 | 6 | 2 | |
F27 | Ave | 3297.2 | 3299.8 | 3310 | 4510.5 | 3487.3 | 3370.7 | 3243.9 |
Std | 30.382 | 11.639 | 40.678 | 476.76 | 72.122 | 36.426 | 24.532 | |
p-valve | 4.7 × 10−6 | 1.7 × 10−6 | 5.2 × 10−6 | 1.9 × 10−6 | 1.7 × 10−6 | 1.7 × 10−6 | -- | |
Cliff’s delta | −0.860 | −0.982 | −0.878 | −0.962 | −1.000 | −0.996 | -- | |
Rank | 2 | 3 | 4 | 7 | 6 | 5 | 1 | |
F28 | Ave | 4228.1 | 4065.4 | 4621.6 | 4027.2 | 3943.7 | 5157 | 3837.9 |
Std | 307.46 | 141.38 | 92.231 | 271.55 | 173.57 | 502.42 | 187.59 | |
p-valve | 2.8 × 10−5 | 3.4 × 10−5 | 1.7 × 10−6 | 0.0016 | 0.0057 | 1.9 × 10−6 | -- | |
Cliff’s delta | −0.756 | −0.722 | −1.000 | −0.482 | −0.384 | −0.964 | -- | |
Rank | 5 | 4 | 6 | 3 | 2 | 7 | 1 | |
F29 | Ave | 1.7902 × 105 | 1.2564 × 105 | 2.1557 × 106 | 3.256 × 105 | 8.9325 × 106 | 1.6245 × 107 | 16,244 |
Std | 1.5375 × 105 | 55,218 | 8.6316 × 105 | 3.3875 × 105 | 9.4394 × 106 | 6.1396 × 106 | 8111.9 | |
p-valve | 3.4 × 10−5 | 2.4 × 10−6 | 1.9 × 10−6 | 9.7 × 10−5 | 6.3 × 10−5 | 1.9 × 10−6 | -- | |
Cliff’s delta | −0.800 | −0.933 | −0.933 | −0.667 | −0.667 | −0.933 | -- | |
Rank | 3 | 2 | 5 | 4 | 6 | 7 | 1 |
References
- Luo, C.; Zhu, S.P.; Keshtegar, B.; Macek, W.; Branco, R.; Meng, D. Active Kriging-based conjugate first-order reliability method for highly efficient structural reliability analysis using resample strategy. Comput. Methods Appl. Mech. Eng. 2024, 423, 116863. [Google Scholar] [CrossRef]
- Meng, D.; Yang, S.; Yang, H.; De Jesus, A.M.; Correia, J.; Zhu, S.P. Intelligent-inspired framework for fatigue reliability evaluation of offshore wind turbine support structures under hybrid uncertainty. Ocean Eng. 2024, 307, 118213. [Google Scholar] [CrossRef]
- Meng, D.; Yang, H.; Yang, S.; Zhang, Y.; De Jesus, A.M.; Correia, J.; Zhu, S.P. Kriging-assisted hybrid reliability design and optimization of offshore wind turbine support structure based on a portfolio allocation strategy. Ocean Eng. 2024, 295, 116842. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, Q. Stability analysis of discrete-time semi-Markov jump linear systems. IEEE Trans. Autom. Control 2020, 65, 5415–5421. [Google Scholar] [CrossRef]
- Yang, X.; Zhu, Q. Stabilization of stochastic retarded systems based on sampled-data feedback control. IEEE Trans. Syst. Man Cybern. Syst. 2019, 51, 5895–5904. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, H.; Wu, T.; Xu, J.; Jiang, C. A novel reliability-based design optimization method through instance-based transfer learning. Comput. Methods Appl. Mech. Eng. 2024, 432, 117388. [Google Scholar] [CrossRef]
- Meng, D.; Yang, S.; De Jesus, A.M.; Fazeres-Ferradosa, T.; Zhu, S.P. A novel hybrid adaptive Kriging and water cycle algorithm for reliability-based design and optimization strategy: Application in offshore wind turbine monopile. Comput. Methods Appl. Mech. Eng. 2023, 412, 116083. [Google Scholar] [CrossRef]
- Meng, D.; Yang, S.; De Jesus, A.M.; Zhu, S.P. A novel Kriging-model-assisted reliability-based multidisciplinary design optimization strategy and its application in the offshore wind turbine tower. Renew. Energy 2023, 203, 407–420. [Google Scholar] [CrossRef]
- Lai, X.; Chen, Y.; Zhang, Y.; Wang, C. Fast solution of reliability-based robust design optimization by reducing the evaluation number for the performance functions. Int. J. Struct. Integr. 2023, 14, 946–965. [Google Scholar] [CrossRef]
- Yang, S.; Guo, C.; Meng, D.; Guo, Y.; Guo, Y.; Pan, L.; Zhu, S.P. MECSBO: Multi-strategy enhanced circulatory system based optimisation algorithm for global optimisation and reliability-based design optimisation problems. IET Collab. Intell. Manuf. 2024, 6, e12097. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, Q. pth Moment Exponential Stability of Highly Nonlinear Neutral Hybrid Stochastic Delayed Systems with Impulsive Effect; IEEE: New York, NY, USA, 2025. [Google Scholar]
- Meng, Z.; Li, C.; Hao, P. Unified reliability-based design optimization with probabilistic, uncertain-but-bounded and fuzzy variables. Comput. Methods Appl. Mech. Eng. 2023, 407, 115925. [Google Scholar] [CrossRef]
- van Mierlo, C.; Persoons, A.; Faes, M.G.; Moens, D. Robust design optimisation under lack-of-knowledge uncertainty. Comput. Struct. 2023, 275, 106910. [Google Scholar] [CrossRef]
- Farahmand-Tabar, S.; Shirgir, S. Positron-enabled atomic orbital search algorithm for improved reliability-based design optimization. In Handbook of Formal Optimization; Springer Nature: Singapore, 2024; pp. 389–418. [Google Scholar]
- Ebrahimi, B.; Bataleblu, A.A. Intelligent reliability-based design optimization: Past and future research trends. In Developments in Reliability Engineering; Elsevier: Amsterdam, The Netherlands, 2024; pp. 787–826. [Google Scholar]
- Hu, W.; Cheng, S.; Yan, J.; Cheng, J.; Peng, X.; Cho, H.; Lee, I. Reliability-based design optimization: A state-of-the-art review of its methodologies, applications, and challenges. Struct. Multidiscip. Optim. 2024, 67, 168. [Google Scholar] [CrossRef]
- Yang, S.; Meng, D.; Guo, Y.; Nie, P.; de Jesus, A.M. A reliability-based design and optimization strategy using a novel MPP searching method for maritime engineering structures. Int. J. Struct. Integr. 2023, 14, 809–826. [Google Scholar] [CrossRef]
- Yang, S.; Meng, D.; Wang, H.; Yang, C. A novel learning function for adaptive surrogate-model-based reliability evaluation. Philos. Trans. R. Soc. A 2024, 382, 20220395. [Google Scholar] [CrossRef]
- Abualigah, L.; Sheikhan, A.; Ikotun, A.M.; Zitar, R.A.; Alsoud, A.R.; Al-Shourbaji, I.; Jia, H. Particle Swarm Optimization Algorithm: Review and Applications; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Alhijawi, B.; Awajan, A. Genetic algorithms: Theory, genetic operators, solutions, and applications. Evol. Intell. 2024, 17, 1245–1256. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Wang, J.H.; Wang, Y.; Jia, Z.C.; Sun, Q.; Pei, Q.Y.; Wu, D. Intelligent planning of fire evacuation routes in buildings based on improved adaptive ant colony algorithm. Comput. Ind. Eng. 2024, 194, 110335. [Google Scholar] [CrossRef]
- He, K.; Zhang, Y.; Wang, Y.K.; Zhou, R.H.; Zhang, H.Z. EABOA: Enhanced adaptive butterfly optimization algorithm for numerical optimization and engineering design problems. Alex. Eng. J. 2024, 87, 543–573. [Google Scholar] [CrossRef]
- Meng, D.; Zhu, S.-P. Multidisciplinary Design Optimization of Complex Structures Under Uncertainty, 1st ed.; CRC Press: Boca Raton, FL, USA, 2024; ISBN 9781003464792. [Google Scholar]
- Ghasemi, M.; Zare, M.; Trojovský, P.; Rao, R.V.; Trojovská, E.; Kandasamy, V. Optimization based on the smart behavior of plants with its engineering applications: Ivy algorithm. Knowl.-Based Syst. 2024, 295, 111850. [Google Scholar] [CrossRef]
- Zhu, F.; Li, G.; Tang, H.; Li, Y.; Lv, X.; Wang, X. Dung beetle optimization algorithm based on quantum computing and multi-strategy fusion for solving engineering problems. Expert Syst. Appl. 2024, 236, 121219. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.C.; Hu, X.X.; Qiu, L.; Zang, H.F. Black-winged kite algorithm: A nature-inspired meta-heuristic for solving benchmark functions and engineering problems. Artif. Intell. Rev. 2024, 57, 98. [Google Scholar] [CrossRef]
- Meng, D.; Yang, S.; Zhang, Y.; Zhu, S.-P. Structural reliability analysis and uncertainties-based collaborative design and optimization of turbine blades using surrogate model. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 1219–1227. [Google Scholar] [CrossRef]
- Meng, Z.; Yıldız, B.S.; Li, G.; Zhong, C.; Mirjalili, S.; Yildiz, A.R. Application of state-of-the-art multiobjective metaheuristic algorithms in reliability-based design optimization: A comparative study. Struct. Multidiscip. Optim. 2023, 66, 191. [Google Scholar] [CrossRef]
- Hamza, F.; Ferhat, D.; Abderazek, H.; Dahane, M. A new efficient hybrid approach for reliability-based design optimization problems. Eng. Comput. 2022, 38, 1953–1976. [Google Scholar] [CrossRef]
- Zadeh, P.M.; Mohagheghi, M. An efficient Bi-level hybrid multi-objective reliability-based design optimization of composite structures. Compos. Struct. 2022, 296, 115862. [Google Scholar] [CrossRef]
- Chun, J. Reliability-based design optimization of structures using complex-step approximation with sensitivity analysis. Appl. Sci. 2021, 11, 4708. [Google Scholar] [CrossRef]
- Lai, X.; Huang, J.; Zhang, Y.; Wang, C.; Zhang, X. A general methodology for reliability-based robust design optimization of computation-intensive engineering problems. J. Comput. Des. Eng. 2022, 9, 2151–2169. [Google Scholar] [CrossRef]
- Meng, X.J.; Zhang, L.X.; Pan, Y.; Liu, Z.M. Reliability-based multidisciplinary concurrent design optimization method for complex engineering systems. Eng. Optim. 2022, 54, 1374–1394. [Google Scholar] [CrossRef]
- Li, X.; Zhu, H.; Chen, Z.; Ming, W.; Cao, Y.; He, W.; Ma, J. Limit state Kriging modeling for reliability-based design optimization through classification uncertainty quantification. Reliab. Eng. Syst. Saf. 2022, 224, 108539. [Google Scholar] [CrossRef]
- Meng, D.; Li, Y.; He, C.; Guo, J.; Lv, Z.; Wu, P. Multidisciplinary design for structural integrity using a collaborative optimization method based on adaptive surrogate modelling. Mater. Des. 2021, 206, 109789. [Google Scholar] [CrossRef]
- Yu, C.; Lv, X.; Huang, D.; Jiang, D. Reliability-based design optimization of offshore wind turbine support structures using RBF surrogate model. Front. Struct. Civ. Eng. 2023, 17, 1086–1099. [Google Scholar] [CrossRef]
- Allahvirdizadeh, R.; Andersson, A.; Karoumi, R. Improved dynamic design method of ballasted high-speed railway bridges using surrogate-assisted reliability-based design optimization of dependent variables. Reliab. Eng. Syst. Saf. 2023, 238, 109406. [Google Scholar] [CrossRef]
- Fu, C.; Liu, J.; Xu, W.; Yu, H. A reliability based multidisciplinary design optimization method with multi-source uncertainties. J. Phys. Conf. Ser. 2020, 1654, 012043. [Google Scholar] [CrossRef]
- Ni, P.; Li, J.; Hao, H.; Zhou, H. Reliability based design optimization of bridges considering bridge-vehicle interaction by Kriging surrogate model. Eng. Struct. 2021, 246, 112989. [Google Scholar] [CrossRef]
- Su, X.; Hong, Z.; Xu, Z.; Qian, H. An improved CREAM model based on Deng entropy and evidence distance. Nucl. Eng. Technol. 2025, 57, 103485. [Google Scholar] [CrossRef]
- Huang, J.; Ai, Q. Key vulnerability parameters for steel pipe pile-supported wharves considering the uncertainties in structural design. Int. J. Ocean Syst. Manag. 2025, 2, 35–51. [Google Scholar] [CrossRef]
- Correia, J.A.; Haselibozchaloee, D.; Zhu, S.P. A review on fatigue design of offshore structures. Int. J. Ocean Syst. Manag. 2025, 2, 1–18. [Google Scholar] [CrossRef]
- Su, X.; Zhong, J.; Hong, Z.; Qian, H.; Pelusi, D. A novel belief entropy and its application in cooperative situational awareness. Expert Syst. Appl. 2025, 286, 128027. [Google Scholar] [CrossRef]
- Yang, S.; Chen, Y. Modelling and analysis of offshore wind turbine gearbox under multi-field coupling. Int. J. Ocean. Syst. Manag. 2025, 2, 52–66. [Google Scholar] [CrossRef]
- Gargama, H.; Chaturvedi, S.K.; Rai, R.N. Genetic Algorithm and Artificial Neural Networks in Reliability-Based Design Optimization. Reliab. Anal. Mod. Power Syst. 2024, 8, 125–141. [Google Scholar]
- Wang, Y.; Sha, W.; Xiao, M.; Qiu, C.W.; Gao, L. Deep-Learning-Enabled Intelligent Design of Thermal Metamaterials (Adv. Mater. 33/2023). Adv. Mater. 2023, 35, 2370237. [Google Scholar] [CrossRef]
- Chen, B.; Cao, L.; Chen, C.; Chen, Y.; Yue, Y. A comprehensive survey on the chicken swarm optimization algorithm and its applications: State-of-the-art and research challenges. Artif. Intell. Rev. 2024, 57, 170. [Google Scholar] [CrossRef]
- Arora, S.; Singh, S. Butterfly optimization algorithm: A novel approach for global optimization. Soft Comput. 2019, 23, 715–734. [Google Scholar] [CrossRef]
- Dong, Z.; Sheng, Z.; Zhao, Y.; Zhi, P. Robust optimization design method for structural reliability based on active-learning MPA-BP neural network. Int. J. Struct. Integr. 2023, 14, 248–266. [Google Scholar] [CrossRef]
- Song, X.; Zou, L.; Tang, M. An improved Monte Carlo reliability analysis method based on BP neural network. Appl. Sci. 2025, 15, 4438. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Zhong, C.; Wang, M.; Dang, C.; Ke, W.; Guo, S. First-order reliability method based on Harris Hawks Optimization for high-dimensional reliability analysis. Struct. Multidiscip. Optim. 2020, 62, 1951–1968. [Google Scholar] [CrossRef]
- Gharehchopogh, F.S.; Namazi, M.; Ebrahimi, L.; Abdollahzadeh, B. Advances in sparrow search algorithm: A comprehensive survey. Arch. Comput. Methods Eng. 2023, 30, 427–455. [Google Scholar] [CrossRef]
- Zhang, Z.; Deng, W.; Jiang, C. A PDF-based performance shift approach for reliability-based design optimization. Comput. Methods Appl. Mech. Eng. 2021, 374, 113610. [Google Scholar] [CrossRef]
Algorithm | Parameters |
---|---|
All algorithms | Maximum iterative number , Population size |
PSO | Acceleration constant ; Weight factor 0.9; |
GWO | Universal parameters (i.e., and ) |
GA | Recombination probability: 0.7; Mutation probability: 0.001 |
SSA | Ratio of discoverer: 0.7; Ratio of vigilant: 0.2; Ratio of followers: 0.1 |
BLCSO | , , , , , |
Iterations | Number of Sample Points | ||||
---|---|---|---|---|---|
1 | 5 | 5 | 3.6608 | 10 | 26 |
2 | 4.5342 | 4.1249 | 2.9457 | 8.3254 | 13 |
3 | 4.9274 | 3.5429 | 2.9739 | 8.5342 | 9 |
4 | 5.2315 | 3.4221 | 3.1901 | 8.5212 | 5 |
5 | 5.1156 | 3.4045 | 3.0451 | 8.5242 | 3 |
6 | 5.1158 | 3.4011 | 3.0012 | 8.5234 | 2 |
7 | 5.1125 | 3.4058 | 3.0001 | 8.524 | 0 |
Methods | Number of Sample Points | ||||
---|---|---|---|---|---|
Kriging-method | 5.2587 | 3.4098 | 3.0077 | 8.6685 | 71 |
RSM-method | 5.2816 | 3.4079 | 3.1021 | 8.6895 | 67 |
SVR-method | 5.3147 | 3.4102 | 3.1892 | 8.7249 | 82 |
RBF-method | 5.2906 | 3.4127 | 3.1088 | 8.7033 | 65 |
BLCSO-None BP | 5.1138 | 3.4059 | 2.9910 | 8.5197 | -- |
BLCSO-BP | 5.2632 | 3.4149 | 2.9957 | 8.6781 | 77 |
CSO-BO-BP | 5.2975 | 3.4121 | 3.0121 | 8.7096 | 63 |
BLSO-PSO-BP | 5.2788 | 3.4099 | 3.0904 | 8.6887 | 65 |
BLCSO-BO-BP | 5.1137 | 3.4065 | 3.0004 | 8.5202 | 58 |
Iterations | Number of Sample Points | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2.08 | 12,589 | 192 |
2 | 3.4235 | 2.4392 | 2.4683 | 2.4456 | 3.5674 | 2.4355 | 2.4657 | 2.5435 | 2.4452 | 2.4415 | 1.57 | 11,067 | 125 |
3 | 3.9875 | 2.6759 | 2.3526 | 2.1574 | 3.6521 | 1.9684 | 2.8976 | 2.0843 | 2.0881 | 2.0806 | 1.25 | 10,738 | 98 |
4 | 3.6897 | 1.6984 | 1.5235 | 1.5732 | 4.4624 | 1.9808 | 2.8649 | 1.5332 | 1.5378 | 2.4581 | 2.24 | 9580 | 121 |
5 | 3.8425 | 2.3562 | 1.3624 | 1.5321 | 3.6023 | 2.4557 | 2.9536 | 1.2343 | 1.3287 | 2.1083 | −0.89 | 9438 | 79 |
6 | 4.0874 | 1.6749 | 1.2341 | 1.2351 | 3.7902 | 3.0242 | 1.9885 | 1.0985 | 1.1023 | 3.2019 | 0.09 | 9193 | 82 |
7 | 4.1537 | 1.9685 | 1.3442 | 1.0231 | 5.0312 | 2.5564 | 1.5676 | 1 | 1.0284 | 2.1473 | 1.36 | 8823 | 65 |
8 | 4.0213 | 1.7694 | 1 | 1 | 4.3235 | 2.7546 | 2.4231 | 1 | 1.0035 | 2.6749 | 1.96 | 8979 | 43 |
9 | 3.9979 | 1.9534 | 1 | 1 | 4.4563 | 2.8645 | 2.1893 | 1 | 1 | 2.7434 | 2.00 | 9045 | 25 |
Method | Kriging-Method | RSM-Method | SVR-Method | RBF-Method | BLCSO-None BP | BLCSO-BP | CSO-BO-BP | BLCSO-PSO-BP | BLCSO-BO-BP |
---|---|---|---|---|---|---|---|---|---|
3.7869 | 4.0261 | 3.8278 | 3.9972 | 3.7922 | 3.9678 | 3.9706 | 3.9885 | 3.9979 | |
1.9476 | 1.9070 | 1.9546 | 1.9572 | 1.9595 | 1.9757 | 1.9031 | 1.9022 | 1.9534 | |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
4.9834 | 4.3789 | 4.9575 | 4.8540 | 4.5655 | 4.7431 | 4.7269 | 4.5199 | 4.4563 | |
2.8720 | 2.7942 | 2.8649 | 2.8003 | 2.9035 | 2.9392 | 2.9046 | 2.8976 | 2.8645 | |
2.2461 | 2.3416 | 2.2157 | 2.3419 | 2.1849 | 2.2655 | 2.2097 | 2.2102 | 2.1893 | |
1 | 1.0804 | 1 | 1.0042 | 1 | 1 | 1 | 1 | 1 | |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
2.4759 | 2.6894 | 2.5970 | 2.5915 | 2.7934 | 2.5172 | 2.8235 | 2.8300 | 2.7434 | |
2.0027 | 2.082 | 2.1012 | 2.1567 | 1.9927 | 2.0988 | 2.1121 | 1.9908 | 2.0015 | |
9093.7 | 9062.4 | 9126.1 | 9181.7 | 9048.6 | 9141.4 | 9174.7 | 9098.8 | 9045.6 | |
Sample data volume | 2594 | 4839 | 6948 | 3171 | -- | 5502 | 1344 | 1499 | 830 |
Iterations | Number of Sample Points | |||||
---|---|---|---|---|---|---|
1 | 2 | 4 | 0.5366 | 0.2312 | 8 | 95 |
2 | 2.4683 | 3.6482 | 2.0843 | 2.4873 | 9.0049 | 114 |
3 | 2.6894 | 3.5842 | 2.4838 | 3.8725 | 9.6393 | 79 |
4 | 2.5849 | 3.6471 | 2.3847 | 3.6784 | 9.4274 | 74 |
5 | 2.4463 | 3.7592 | 2.4897 | 4.0921 | 9.1961 | 85 |
6 | 2.4493 | 3.7542 | 2.5933 | 3.5403 | 9.1952 | 82 |
7 | 2.4512 | 3.7549 | 2.5893 | 3.5081 | 9.2040 | 74 |
Method | Number of Sample Points | |||||
---|---|---|---|---|---|---|
Kriging-method | 2.5436 | 3.6398 | 9.2582 | 2.6127 | 3.6134 | 2894 |
RSM-method | 2.4733 | 3.7536 | 9.2838 | 2.6324 | 3.6097 | 2916 |
SVR-method | 2.7850 | 3.7547 | 10.4568 | 2.7575 | 3.5965 | 1934 |
RBF-method | 2.5176 | 3.6970 | 9.3076 | 2.5972 | 3.5484 | 1655 |
BLCSO-None BP | 2.4575 | 3.7550 | 9.2279 | 2.5147 | 3.6058 | -- |
BLCSO-BP | 2.5008 | 3.6149 | 9.0401 | 2.4218 | 3.5917 | 1678 |
CSO-BO-BP | 2.4792 | 3.7957 | 9.4103 | 2.7035 | 3.7491 | 1125 |
BLCSO-PSO-BP | 2.4660 | 3.7819 | 9.3261 | 2.6599 | 3.6251 | 1092 |
BLCSO-BO-BP | 2.4512 | 3.7549 | 9.2040 | 2.5893 | 3.5081 | 603 |
Random Variable | Symbol | Upper Boundary | Mean | Lower Boundary | Standard Deviation |
---|---|---|---|---|---|
Thickness of the inner side of the B-pillar | 0.5 | 1.5 | 0.03 | ||
Reinforcement thickness of the B-pillar | 0.45 | 1.35 | 0.03 | ||
Thickness of the inner side of the floor panel | 0.5 | 1.5 | 0.03 | ||
Thickness of transverse members | 0.5 | 1.5 | 0.03 | ||
Thickness of the door beam | 0.875 | 2.625 | 0.05 | ||
Thickness of reinforcement for the door wire | 0.4 | 1.2 | 0.03 | ||
Thickness of the roof side rail | 0.4 | 1.2 | 0.03 | ||
Material strength of the inner side of the B-pillar | -- | 0.192/0.345 | -- | 0.006 | |
Strength of the inner layer material on the side of the floor | -- | 0.192/0.345 | -- | 0.006 | |
Obstacle height | -- | 0 | -- | 10 | |
Impact location of the obstacle | -- | 0 | -- | 10 |
Method | Minimum Reliability Index | Number of Sample Points | ||
---|---|---|---|---|
Kriging-method | (0.8344, 1.4387, 0.7381, 1.5000, 1.0765, 1.2000, 0.7195) | 30.7120 | 2.9993 | 3170 |
RSM-method | (0.7904, 1.2754, 0.7620, 1.5000, 1.0679, 1.2000, 0.7551) | 29.6559 | 2.9350 | 3851 |
SVR-method | (0.8162, 1.3119, 0.7498, 1.4997, 1.0740, 1.2000, 0.7583) | 29.9590 | 2.9143 | 2988 |
RBF-method | (0.7822, 1.3813, 0.7551, 1.5000, 1.0506, 1.2000, 0.6991) | 30.0903 | 2.9254 | 2890 |
BLCSO-None BP | (0.7872, 1.3500, 0.6887, 1.5000, 1.0706, 1.2000, 0.7284) | 29.5581 | 3.0046 | -- |
BLCSO-BP | (0.7890, 1.3959, 0.7547, 1.5000, 1.0493, 1.2000, 0.7288) | 30.2969 | 2.9407 | 2874 |
CSO-BO-BP | (0.8168, 1.3489, 0.7445, 1.5000, 1.0646, 1.2000, 0.7283) | 30.0743 | 2.9120 | 2176 |
BLCSO-PSO-BP | (0.8090, 1.3502, 0.7299, 1.5000, 1.0753, 1.2000, 0.7183) | 33.5185 | 3.1082 | 2209 |
BLCSO-BO-BP | (0.7971, 1.2813, 0.6948, 1.5000, 1.0317, 1.2000, 0.7284) | 29.1217 | 2.9766 | 1992 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Q.; Li, R.; Jing, S. Uncertainty-Based Design Optimization Framework Based on Improved Chicken Swarm Algorithm and Bayesian Optimization Neural Network. Appl. Sci. 2025, 15, 9671. https://doi.org/10.3390/app15179671
Ji Q, Li R, Jing S. Uncertainty-Based Design Optimization Framework Based on Improved Chicken Swarm Algorithm and Bayesian Optimization Neural Network. Applied Sciences. 2025; 15(17):9671. https://doi.org/10.3390/app15179671
Chicago/Turabian StyleJi, Qiang, Ran Li, and Shi Jing. 2025. "Uncertainty-Based Design Optimization Framework Based on Improved Chicken Swarm Algorithm and Bayesian Optimization Neural Network" Applied Sciences 15, no. 17: 9671. https://doi.org/10.3390/app15179671
APA StyleJi, Q., Li, R., & Jing, S. (2025). Uncertainty-Based Design Optimization Framework Based on Improved Chicken Swarm Algorithm and Bayesian Optimization Neural Network. Applied Sciences, 15(17), 9671. https://doi.org/10.3390/app15179671