Radar Technologies in Motion-Adaptive Cancer Radiotherapy
Abstract
1. Introduction
2. Materials and Methods
Search Strategy
3. Results
3.1. Group 1: USA, 2011–2017
3.1.1. Study (a): First Feasibility Study
3.1.2. Study (b): Tumor Motion Estimation
3.1.3. Study (c): Tests with RT Beam on
3.1.4. Study (d): Multi-Point Measurements
3.1.5. Study (e): Stationary Information
3.2. Group 2: USA, 2013–2021
3.2.1. Study (a): Inner Tumor Detection
3.2.2. Study (b): Fiducial Marker Localization
3.3. Group 3: Japan, 2016
Fine Separation of Points
3.4. Group 4: Canada, 2022
LINAC Motion Noise
3.5. Group 5: USA, 2019–2024
3.5.1. Study (a): Presence of Obstacles
3.5.2. Study (b): Submillimetric Accuracy
3.6. Group 6: Japan, 2025
Towards Clinical Implementation
3.7. Applications in Imaging
4. Discussion
4.1. Intra-Fraction Motion in RT: Can Radars Solve the Unmet Needs?
4.2. Radars: An Established Technology for a Novel Application
4.3. How Far Are We from Real-World Clinical Applications?
- Radar and antenna technology: A variety of radar units, working frequencies, and antenna types have been explored. The best trade-off between the radar unit size, antenna gain and emitted power, spatial and temporal resolution, and motion tracking accuracy should be pursued. In practice, as the signal is attenuated as it travels through tissues, it is important to evaluate the effective attenuation in the back and forth path of transmitted and received pulses, respectively, to assess the optimal radar working parameters [56]. It may help to perform numerical and empirical simulations with human models of different sizes and tissue thicknesses to accurately determine the frequency and power ranges that should be valid for most patient categories.
- Real-world accuracy: For most advanced RT techniques, a high level of accuracy is required. For instance, in PT, the sharp dose gradients are vulnerable to even small variations in patient geometry [2]. Experiments show that in simulation scenarios or in very controlled environments, this goal can be achieved [34,44,47], but in real clinical scenarios, with the presence of thermoplastic mask and gantry motions, the accuracy often dramatically decreases below the requested needs. In addition, motion perpendicular to radar LOS is difficult to track and can undermine the overall system performance [54]. In this regard, it could be interesting to test the systems against all the complexities characterizing a real-world clinical environment at once.
- RT integration: Most available commercial devices for respiration monitoring in RT are well integrated with hardware and software components of modern LINACs. Proper systems for anchoring radar units to LINACs and thorough analyses of the best layout in the room are warranted to make the most of this technology. Integration with RT software should be pursued as well. Wired and wireless connection options from the treatment bunker to local control room should be also investigated.
- RT compatibility: Some authors have investigated compatibility with beam and gantry motions. However, studies to assess any possible interference with different types and energies of radiation (e.g., not only photons but also charged particles), with different accelerator architectures, and with other technologies populating RT bunkers should be also assessed.
- Compatibility with cardiac electronic implantable devices (CIEDs): To monitor respiration, thorax motion is usually tracked. This means that the electromagnetic waves are directed towards mediastinal organs including the heart and possible CIEDs. The presence of CIEDs is generally allowed for RT treatments, as long as accurate monitoring of the device is performed [57]. In the use of radars in patients with CIED, an accurate evaluation of the power of the transmitted wave is, therefore, mandatory to assess the electromagnetic compatibility. As a reference, for high-frequency signals (i.e., >150 kHz), 141 V/m is set as the limit for safe use of Medtronic CIEDs (Medtronic PLC, Minneapolis, MN), according to the standards ANSI/AAMI/ISO 14117 [58], EN 45502-1 [59], EN 45502-2-1 [60], EN 45502-2-2 [61], ISO 14708-1 [62], ISO 14708-2 [63], ISO 14708-6 [64], ANSI C95.6 [65], ICNIRP guidelines [66].
- Presence of metallic implants. Patients undergoing RT sometimes present with metallic implants. While this does not represent a contraindication per se to the use of radars, the implants may distort the reflected signal, if placed along the beam path. A careful analysis of the reflected signal is, therefore, useful to detect any anomalies.
4.4. Radars in Particle Therapy: A Niche in a Niche
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
4DCT | 4D CT |
A | Amplitude |
AAPM | American Association of Physicists in Medicine |
AC | Alternating current |
ANN | Artificial neural network |
BW | Bandwidth |
CBCT | Cone beam computed tomography |
CIED | Cardiac implantable electronic device |
CT | Computed tomography |
CZT | Chirp z transform-based (algorithm) |
dBm | Decibel-milliwatt |
DC | Direct current |
DCMP | Directionally constrained minimization of power |
DIBH | Deep inspiration breath hold |
DOA | Direction of arrival |
ECG | Electrocardiogram |
FFT | Fast Fourier transform |
FMCW | Frequency-modulated continuous wave |
FOV | Field of view |
GS | Gold standard |
IMRT | Intensity-modulated RT |
LINAC | Linear accelerator |
LOS | Line of sight |
MIMO | Multiple input multiple output |
MLC | Multi-leaf collimator |
mmWave | Millimetric wave |
MR | Magnetic resonance |
MWS | mmWave Doppler sensor |
OAR | Organ at risk |
P | Power |
PT | Particle therapy |
RF | Radiofrequency |
RGP | Respiratory gating platform |
RMSE | Root mean square error |
RPM | Real-time position management |
RT | Radiotherapy |
RX | Receiver |
SBRT | Stereotactic body RT |
SNR | Signal-to-noise ratio |
SSD | Source to skin distance |
T | Period |
TG-76 | Task Group 76 |
TX | Transmitter |
UWB | Ultra-wideband |
VMAT | Volumetric-modulated arc therapy |
VNA | Virtual network analyzer |
wrt | With respect to |
References
- Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci. 2012, 9, 193. [Google Scholar] [CrossRef]
- Pakela, J.M.; Knopf, A.; Dong, L.; Rucinski, A.; Zou, W. Management of motion and anatomical variations in charged particle therapy: Past, present, and into the future. Front. Oncol. 2022, 12, 806153. [Google Scholar] [CrossRef] [PubMed]
- Brandner, E.D.; Chetty, I.J.; Giaddui, T.G.; Xiao, Y.; Huq, M.S. Motion management strategies and technical issues associated with stereotactic body radiotherapy of thoracic and upper abdominal tumors: A review from NRG oncology. Med. Phys. 2017, 44, 2595–2612. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Gu, C.; Li, C.; Lin, J. Doppler radar noncontact vital sign monitoring. In Neural Computation, Neural Devices, and Neural Prosthesis; Springer: New York, NY, USA, 2014; pp. 41–62. [Google Scholar]
- Wu, V.W.; Ng, A.P.; Cheung, E.K. Intrafractional motion management in external beam radiotherapy. J. X-Ray Sci. Technol. 2019, 27, 1071–1086. [Google Scholar] [CrossRef] [PubMed]
- Yoganathan, S.A.; Das, K.M.; Agarwal, A.; Kumar, S. Magnitude, impact, and management of respiration-induced target motion in radiotherapy treatment: A comprehensive review. J. Med. Phys. 2017, 42, 101–115. [Google Scholar] [CrossRef]
- Ferris, W.S.; Kissick, M.W.; Bayouth, J.E.; Culberson, W.S.; Smilowitz, J.B. Evaluation of radixact motion synchrony for 3D respiratory motion: Modeling accuracy and dosimetric fidelity. J. Appl. Clin. Med. Phys. 2020, 21, 96–106. [Google Scholar] [CrossRef]
- Farzaneh, M.J.K.; Momennezhad, M.; Naseri, S. Gated radiotherapy development and its expansion. J. Biomed. Phys. Eng. 2021, 11, 239. [Google Scholar]
- Ball, H.J.; Santanam, L.; Senan, S.; Tanyi, J.A.; van Herk, M.; Keall, P.J. Results from the AAPM Task Group 324 respiratory motion management in radiation oncology survey. J. Appl. Clin. Med. Phys. 2022, 23, e13810. [Google Scholar] [CrossRef]
- Bertholet, J.; Knopf, A.; Eiben, B.; McClelland, J.; Grimwood, A.; Harris, E.; Menten, M.; Poulsen, P.; Nguyen, D.T.; Oelfke, U. Real-time intrafraction motion monitoring in external beam radiotherapy. Phys. Med. Biol. 2019, 64, 15TR01. [Google Scholar] [CrossRef]
- Luo, G.; Zhang, Y.; Rumgay, H.; Morgan, E.; Langselius, O.; Vignat, J.; Colombet, M.; Bray, F. Estimated worldwide variation and trends in incidence of lung cancer by histological subtype in 2022 and over time: A population-based study. Lancet Respir. Med. 2025, 13, 348–363. [Google Scholar] [CrossRef]
- Cheng, M.; Jolly, S.; Quarshie, W.O.; Kapadia, N.; Vigneau, F.D. Modern radiation further improves survival in non-small cell lung cancer: An analysis of 288,670 patients. J. Cancer 2019, 10, 168. [Google Scholar] [CrossRef]
- Gu, C.; Li, C. From tumor targeting to speech monitoring: Accurate respiratory monitoring using medical continuous-wave radar sensors. IEEE Microw. Mag. 2014, 15, 66–76. [Google Scholar] [CrossRef]
- Mori, S.; Knopf, A.C.; Umegaki, K. Motion management in particle therapy. Med. Phys. 2018, 45, e994–e1010. [Google Scholar] [CrossRef] [PubMed]
- Darréon, J.; Bouilhol, G.; Aillières, N.; Bouscayrol, H.; Simon, L.; Ayadi, M. Respiratory motion management for external radiotherapy treatment. Cancer/Radiothérapie 2022, 26, 50–58. [Google Scholar] [CrossRef]
- Fontanarosa, D.; Van der Meer, S.; Bamber, J.; Harris, E.; O’Shea, T.; Verhaegen, F. Review of ultrasound image guidance in external beam radiotherapy: I. Treatment planning and inter-fraction motion management. Phys. Med. Biol. 2015, 60, R77. [Google Scholar]
- O’Shea, T.; Bamber, J.; Fontanarosa, D.; Van Der Meer, S.; Verhaegen, F.; Harris, E. Review of ultrasound image guidance in external beam radiotherapy part II: Intra-fraction motion management and novel applications. Phys. Med. Biol. 2016, 61, R90. [Google Scholar] [CrossRef]
- Parikh, P.J.; Lee, P.; Low, D.A.; Kim, J.; Mittauer, K.E.; Bassetti, M.F.; Glide-Hurst, C.K.; Raldow, A.C.; Yang, Y.; Chuong, M.D.; et al. A multi-institutional phase 2 trial of ablative 5-fraction stereotactic magnetic resonance-guided on-table adaptive radiation therapy for borderline resectable and locally advanced pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys. 2023, 117, 799–808. [Google Scholar] [CrossRef]
- Boldrini, L.; Alongi, F.; Romano, A.; Davies, D.C.; Bassetti, M.; Chiloiro, G.; Corradini, S.; Gambacorta, M.A.; Placidi, L.; Nicosia, L.; et al. Current practices and perspectives on the integration of contrast agents in MRI-guided radiation therapy clinical practice: A worldwide survey. Clin. Transl. Radiat. Oncol. 2023, 40, 100615. [Google Scholar] [CrossRef]
- Ng, J.; Gregucci, F.; Pennell, R.T.; Nagar, H.; Golden, E.B.; Knisely, J.P.; Sanfilippo, N.J.; Formenti, S.C. MRI-LINAC: A transformative technology in radiation oncology. Front. Oncol. 2023, 13, 1117874. [Google Scholar] [CrossRef]
- Chuong, M.D.; Lee, P.; Low, D.A.; Kim, J.; Mittauer, K.E.; Bassetti, M.F.; Glide-Hurst, C.K.; Raldow, A.C.; Yang, Y.; Parikh, P.J. Stereotactic MR-guided on-table adaptive radiation therapy (SMART) for borderline resectable and locally advanced pancreatic cancer: A multi-center, open-label phase 2 study. Radiother. Oncol. 2024, 191, 110064. [Google Scholar] [CrossRef]
- Hoffmann, A.; Oborn, B.; Moteabbed, M.; Yan, S.; Bortfeld, T.; Knopf, A.; Fuchs, H.; Georg, D.; Seco, J.; Parodi, K. MR-guided proton therapy: A review and a preview. Radiat. Oncol. 2020, 15, 129. [Google Scholar] [CrossRef]
- Fioranelli, D.F.; Shah, D.S.A.; Li, H.; Shrestha, A.; Yang, D.S.; Kernec, D.J.L. Radar sensing for healthcare: Associate editor francesco fioranelli on the applications of radar in monitoring vital signs and recognising human activity patterns. Electron. Lett. 2019, 55, 1022–1024. [Google Scholar] [CrossRef]
- Li, C.; Gu, C.; Li, R.; Jiang, S.B. Radar motion sensing for accurate tumor tracking in radiation therapy. In WAMICON 2011 Conference Proceedings; IEEE: New York, NY, USA, 2011; pp. 1–6. [Google Scholar]
- Adib, F.; Mao, H.; Kabelac, Z.; Katabi, D.; Miller, R.C. Smart homes that monitor breathing and heart rate. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul, Republic of Korea, 18–23 April 2015; pp. 837–846. [Google Scholar]
- Alizadeh, M.; Shaker, G.; De Almeida, J.C.M.; Morita, P.P.; Safavi-Naeini, S. Remote monitoring of human vital signs using mm-wave FMCW radar. IEEE Access 2019, 7, 54958–54968. [Google Scholar] [CrossRef]
- Apriono, C.; Muin, F.; Juwono, F.H. Portable micro-Doppler radar with quadrature radar architecture for non-contact human breath detection. Sensors 2021, 21, 5807. [Google Scholar] [CrossRef] [PubMed]
- Kakouche, I.; Maali, A.; El Korso, M.N.; Mesloub, A.; Azzaz, M.S. Fast and cost-effective method for non-contact respiration rate tracking using UWB impulse radar. Sens. Actuators A Phys. 2021, 329, 112814. [Google Scholar] [CrossRef]
- Lv, W.; He, W.; Lin, X.; Miao, J. Non-contact monitoring of human vital signs using FMCW millimeter wave radar in the 120 GHz band. Sensors 2021, 21, 2732. [Google Scholar] [CrossRef]
- Mauro, G.; De Carlos Diez, M.; Ott, J.; Servadei, L.; Cuellar, M.P.; Morales-Santos, D.P. Few-shot user-adaptable radar-based breath signal sensing. Sensors 2023, 23, 804. [Google Scholar] [CrossRef]
- Gu, C.; Li, R.; Li, C.; Jiang, S.B. Doppler radar respiration measurement for gated lung cancer radiotherapy. In Proceedings of the 2011 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems, Phoenix, AZ, USA, 16–19 January 2011; pp. 91–94. [Google Scholar]
- Gu, C.; Li, R.; Jiang, S.B.; Li, C. A multi-radar wireless system for respiratory gating and accurate tumor tracking in lung cancer radiotherapy. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 417–420. [Google Scholar]
- Gu, C.; Li, R.; Yang, X.; Li, C.; Jiang, S.B. Radar sensor based accurate tumor tracking for respiratory-gated lung cancer radiotherapy. In Proceedings of the 8th International Workshop on Structural Health Monitoring 2011: Condition-Based Maintenance and Intelligent Structures, Stanford, CA, USA, 13–15 September 2011; pp. 1788–1795. [Google Scholar]
- Gu, C.; Li, R.; Zhang, H.; Fung, A.Y.; Torres, C.; Jiang, S.B.; Li, C. Accurate respiration measurement using DC-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy. IEEE Trans. Biomed. Eng. 2012, 59, 3117–3123. [Google Scholar]
- Gu, C.; Salmani, Z.; Zhang, H.; Li, C. Antenna array technology for radar respiration measurement in motion-adaptive lung cancer radiotherapy. In Proceedings of the 2012 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), Santa Clara, CA, USA, 15–18 January 2012; pp. 21–24. [Google Scholar]
- Gu, C.; Li, C. Distortion analysis of continuous-wave radar sensor for complete respiration pattern monitoring. In Proceedings of the 2013 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems, Austin, TX, USA, 20–23 January 2013; pp. 7–9. [Google Scholar]
- Salmani, Z.; Gu, C.; Li, C.; Zhang, H. High gain Fermi antenna array for radar-aided radiotherapy system. Microw. Opt. Technol. Lett. 2012, 54, 1649–1654. [Google Scholar] [CrossRef]
- Salmani, Z.; Gu, C.; Ren, H.; Li, C.; Zhang, H. Application of fermi-antenna array for radar respiration measurement. In Proceedings of the 2012 IEEE International Workshop on Antenna Technology (iWAT), Tucson, AZ, USA, 5–7 March 2012; pp. 60–63. [Google Scholar]
- Ren, H.; Shao, J.; Arigong, B.; Zhang, H.; Gu, C.; Li, C. Application of phased array antenna for radar respiration measurement. In Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, Chicago, IL, USA, 8–14 July 2012; pp. 1–2. [Google Scholar]
- Fung, A.; Li, C.; Torres, C. TH-AB-202-07: Radar Tracking of Respiratory Motion in Real Time. Med. Phys. 2016, 43 Pt 44, 3858. [Google Scholar] [CrossRef]
- Li, C.; Gu, C. System, Method and Apparatus for Tracking Targets During Treatment Using a Radar Motion Sensor. US Patent 9,314,648, 19 April 2016. [Google Scholar]
- Han-Oh, S.; Oh, E.; Tryggestad, E.; DeWeese, T. WE-A-134-10: Non-Ionizing, Non-Invasive, Non-Contact, and Real-Time Tumor Detection Using Ultra-Wideband (UWB) Radar: A Feasibility Study. Med. Phys. 2013, 40 Pt 28, 471. [Google Scholar] [CrossRef]
- Han-Oh, S.; Ding, K.; Song, D.; Narang, A.; Wong, J.; Rong, Y.; Bliss, D. Feasibility study of fiducial marker localization using microwave radar. Med. Phys. 2021, 48, 7271–7282. [Google Scholar] [CrossRef] [PubMed]
- Muragaki, M.; Okumura, S.; Sakamoto, T.; Sato, T. Non-contact respiration measurement using ultra-wideband array radar with adaptive beamforming technique for cancer radiotherapy. In Proceedings of the 2016 International Symposium on Antennas and Propagation (ISAP), Okinawa, Japan, 24–28 October 2016; pp. 440–441. [Google Scholar]
- Fallatah, A.; Bolic, M.; MacPherson, M.; La Russa, D.J. Monitoring respiratory motion during VMAT treatment delivery using ultra-wideband radar. Sensors 2022, 22, 2287. [Google Scholar] [CrossRef] [PubMed]
- Olick-Gibson, J.; Cai, B.; Zhou, S.; Mutic, S.; Carter, P.; Hugo, G.; Zhang, T. Feasibility study of surface motion tracking with millimeter wave technology during radiotherapy. Med. Phys. 2020, 47, 1229–1237. [Google Scholar] [CrossRef]
- Bressler, M.; Zhu, J.; Olick-Gibson, J.; Haefner, J.; Zhou, S.; Chen, Q.; Mazur, T.; Hao, Y.; Carter, P.; Zhang, T. Millimeter wave-based patient setup verification and motion tracking during radiotherapy. Med. Phys. 2024, 51, 2967–2974. [Google Scholar] [CrossRef] [PubMed]
- Kosaka, H.; Kubo, K.; Matsumoto, K.; Nakamura, Y.; Monzen, H. Exploring the feasibility of millimeter-wave sensors for non-invasive respiratory motion visualization in diagnostic imaging and therapy. Med. Phys. 2025, 52, 3088–3096. [Google Scholar] [CrossRef]
- Smith, K.; Bourqui, J.; Wang, Z.; Besler, B.; Lesiuk, M.; Roumeliotis, M.; Quirk, S.; Grendarova, P.; Pinilla, J.; Fear, E.; et al. Microwave imaging for monitoring breast cancer treatment: A pilot study. Med. Phys. 2023, 50, 7118–7129. [Google Scholar] [CrossRef]
- Li, C.; Peng, Z.; Huang, T.Y.; Fan, T.; Wang, F.K.; Horng, T.S.; Munoz-Ferreras, J.-M.; Gomez-Garcia, R.; Ran, L.; Lin, J. A review on recent progress of portable short-range noncontact microwave radar systems. IEEE Trans. Microw. Theory Tech. 2017, 65, 1692–1706. [Google Scholar] [CrossRef]
- Gu, C.; Li, C. Assessment of human respiration patterns via noncontact sensing using doppler multi-radar system. Sensors 2015, 15, 6383–6398. [Google Scholar] [CrossRef]
- Muragaki, M.; Okumura, S.; Maehara, K.; Sakamoto, T.; Yoshioka, M.; Inoue, K.; Fukuda, T.; Sakai, H.; Sato, T. Noncontact respiration monitoring of multiple closely positioned patients using ultra-wideband array radar with adaptive beamforming technique. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 1118–1122. [Google Scholar]
- Pfanner, F.; Maier, J.; Allmendinger, T.; Flohr, T.; Kachelrieß, M. Monitoring internal organ motion with continuous wave radar in CT. Med. Phys. 2013, 40, 091915. [Google Scholar] [CrossRef]
- Neumann, T.J.; Kerkering, K.M.; Speier, P.; Seifert, F.; Schaeffter, T.; Kolbitsch, C. Ultra-wide band radar for prospective respiratory motion correction in the liver. Phys. Med. Biol. 2023, 68, 055021. [Google Scholar] [CrossRef]
- Schwarz, U.; Thiel, F.; Seifert, F.; Stephan, R.; Hein, M. Ultra-wideband antennas for combined magnetic resonance imaging and UWB radar applications. In Proceedings of the 2009 IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA, 7–12 June 2009; pp. 1433–1436. [Google Scholar]
- Varotto, G.; Staderini, E.M. A 2D simple attenuation model for EM waves in human tissues: Comparison with a FDTD 3D simulator for UWB medical radar. In Proceedings of the 2008 IEEE International Conference On Ultra-Wideband, Hannover, Germany, 10–12 September 2008; Volume 3, pp. 1–4. [Google Scholar]
- Corzani, A.; Ziacchi, M.; Biffi, M.; Allaria, L.; Diemberger, I.; Martignani, C.; Bratten, T.; Gardini, B.; Boriani, G. Clinical management of electromagnetic interferences in patients with pacemakers and implantable cardioverter-defibrillators: Review of the literature and focus on magnetic resonance conditional devices. J. Cardiovasc. Med. 2015, 16, 704. [Google Scholar] [CrossRef]
- ANSI/AAMI/ISO 14117; Active Implantable Medical Devices—Electromagnetic Compatibility—EMC Test Protocols for Implantable Cardiac Pacemakers, Implantable Cardioverter Defibrillators and Cardiac Resynchronization Devices. AAMI (ANSI recognized consensus standard): Arlington, TX, USA, 2019.
- EN 45502-1; Active Implantable Medical Devices—Part 1: General Requirements for Safety, Marking and Information to Be Provided by the Manufacturer. CEN/CENELEC: Brussels, Belgium, 2015.
- EN 45502-2-1; Active Implantable Medical Devices—Part 2-1: Particular Requirements for Active Implantable Medical Devices Intended to Treat Bradyarrhythmia (Cardiac Pacemakers). CENELEC: Brussels, Belgium, 2003.
- EN 45502-2-2; Active Implantable Medical Devices—Part 2-2: Particular Requirements for Active Implantable Medical Devices Intended to Treat Tachyarrhythmia (Includes Implantable Defibrillators). CENELEC: Brussels, Belgium, 2008.
- ISO 14708-1; Implants for Surgery—Active Implantable Medical Devices—Part 1: General Requirements. ISO: Geneva, Switzerland, 2014.
- ISO 14708-2; Implants for Surgery—Active Implantable Medical Devices—Part 2: Cardiac Pacemakers. ISO: Geneva, Switzerland, 2023.
- ISO 14708-6; Implants for Surgery—Active Implantable Medical Devices—Part 6: Implantable Cardioverter-Defibrillator (ICD) Systems. ISO: Geneva, Switzerland, 2023.
- IEEE C95.6-2002; IEEE Standard for Safety Levels with Respect to Human Exposure to Electromagnetic Fields, 0–3 kHz. Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2002.
- ICNIRP. Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz). Health Phys. 2020, 118. [Google Scholar] [CrossRef]
- Lombardo, E.; Dhont, J.; Page, D.; Garibaldi, C.; Künzel, L.A.; Hurkmans, C.; Tijssen, R.H.N.; Paganelli, C.; Liu, P.Z.Y.; Placidi, L.; et al. Real-time motion management in MRI-guided radiotherapy: Current status and AI-enabled prospects. Radiother. Oncol. 2023, 190, 109970. [Google Scholar] [CrossRef]
- Zhang, Y.; Trnkova, P.; Toshito, T.; Heijmen, B.; Richter, C.; Aznar, M.; Albertini, F.; Bolsi, A.; Daartz, J.; Knopf, A.; et al. A survey of practice patterns for real-time intrafractional motion-management in particle therapy. Phys. Imaging Radiat. Oncol. 2023, 26, 100439. [Google Scholar] [CrossRef]
Research Team | Papers | Sensing Infrastructure | Object Tracked | Experimental Setup/Tests | Gold Standard (GS) | Main Findings |
---|---|---|---|---|---|---|
Group 1 USA, 2011–2017
| Study (a) |
|
|
|
|
|
Study (b) |
|
|
|
|
| |
Study (c) |
|
|
|
|
| |
Study (d) |
|
|
|
| ||
Study (e)
|
|
|
|
|
| |
Group 2 USA, 2013–2021
| Study (a)
|
|
|
|
|
|
Study (b)
|
|
|
|
|
| |
Group 3 Japan, 2016
|
|
|
|
|
|
|
Group 4 Canada, 2022
|
|
|
|
|
|
|
Group 5 USA, 2019–2024
| Study (a)
|
|
|
|
|
|
Study (b)
|
|
|
|
|
| |
Group 6 Japan, 2025
|
|
|
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pepa, M.; Sellaro, G.; Marchesi, G.; Caracciolo, A.; Serra, A.; Orlandi, E.; Baroni, G.; Pella, A. Radar Technologies in Motion-Adaptive Cancer Radiotherapy. Appl. Sci. 2025, 15, 9670. https://doi.org/10.3390/app15179670
Pepa M, Sellaro G, Marchesi G, Caracciolo A, Serra A, Orlandi E, Baroni G, Pella A. Radar Technologies in Motion-Adaptive Cancer Radiotherapy. Applied Sciences. 2025; 15(17):9670. https://doi.org/10.3390/app15179670
Chicago/Turabian StylePepa, Matteo, Giulia Sellaro, Ganesh Marchesi, Anita Caracciolo, Arianna Serra, Ester Orlandi, Guido Baroni, and Andrea Pella. 2025. "Radar Technologies in Motion-Adaptive Cancer Radiotherapy" Applied Sciences 15, no. 17: 9670. https://doi.org/10.3390/app15179670
APA StylePepa, M., Sellaro, G., Marchesi, G., Caracciolo, A., Serra, A., Orlandi, E., Baroni, G., & Pella, A. (2025). Radar Technologies in Motion-Adaptive Cancer Radiotherapy. Applied Sciences, 15(17), 9670. https://doi.org/10.3390/app15179670