Characterization of Core Microbiomes of Olive Tree Rhizospheres Under Drought Stress Conditions
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Seasonal Study
2.2. Sampling and DNA Extraction from Soil- and Root-Associated Microorganisms
2.3. Library Construction and Sequencing
2.4. Bioinformatic Analysis for Taxonomy Classification and Functional Annotation
2.5. Data Mining
- “TITLE-ABS-KEY (microbiome or microbes or bacteria) AND (drought or “water stress”) AND (soil or rhizosphere) AND olive”;
- “TITLE-ABS-KEY (microbiome or microbes or bacteria) AND (drought or “water stress”) AND (endophyte*) AND olive”.
2.6. Statistical Analysis
3. Results
3.1. The Literature-Based Co-Occurrence Analysis of Drought-Related Microbes and Functions
3.2. Taxonomic and Functional Core of the Bacterial Communities
3.3. Core Microbiomes
3.4. Functions Related to Stress Response and Enrichment
4. Discussion
4.1. Rhizosphere Stability Under Drought
4.2. Root-Associated Microbial Shifts and Functional Significance
4.3. Applications for Drought-Resilient Farming
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Orozco-Mosqueda, M.D.C.; Fadiji, A.E.; Babalola, O.O.; Glick, B.R.; Santoyo, G. Rhizobiome Engineering: Unveiling Complex Rhizosphere Interactions to Enhance Plant Growth and Health. Microbiol. Res. 2022, 263, 127137. [Google Scholar] [CrossRef]
- Pandey, K.; Saharan, B.S. Soil Microbiomes: A Promising Strategy for Boosting Crop Yield and Advancing Sustainable Agriculture. Discov. Agric. 2025, 3, 54. [Google Scholar] [CrossRef]
- Anas, M.; Khalid, A.; Saleem, M.H.; Ali Khan, K.; Ahmed Khattak, W.; Fahad, S. Symbiotic Synergy: Unveiling Plant-Microbe Interactions in Stress Adaptation. J. Crop Health 2025, 77, 18. [Google Scholar] [CrossRef]
- Castellano-Hinojosa, A.; Strauss, S.L. Insights into the Taxonomic and Functional Characterization of Agricultural Crop Core Rhizobiomes and Their Potential Microbial Drivers. Sci. Rep. 2021, 11, 10068. [Google Scholar] [CrossRef] [PubMed]
- Shu, W.-S.; Huang, L.-N. Microbial Diversity in Extreme Environments. Nat. Rev. Microbiol. 2022, 20, 219–235. [Google Scholar] [CrossRef]
- Neu, A.T.; Allen, E.E.; Roy, K. Defining and Quantifying the Core Microbiome: Challenges and Prospects. Proc. Natl. Acad. Sci. USA 2021, 118, e2104429118. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Van Der Heijden, M.G.A. Soil Microbiomes and One Health. Nat. Rev. Microbiol. 2023, 21, 6–20. [Google Scholar] [CrossRef] [PubMed]
- Sneha, G.R.; Swarnalakshmi, K.; Sharma, M.; Reddy, K.; Bhoumik, A.; Suman, A.; Kannepalli, A. Soil Type Influence Nutrient Availability, Microbial Metabolic Diversity, Eubacterial and Diazotroph Abundance in Chickpea Rhizosphere. World J. Microbiol. Biotechnol. 2021, 37, 167. [Google Scholar] [CrossRef]
- Ling, N.; Wang, T.; Kuzyakov, Y. Rhizosphere Bacteriome Structure and Functions. Nat. Commun. 2022, 13, 836. [Google Scholar] [CrossRef]
- Aley, P.; Singh, J.; Kumar, P. Adapting the Changing Environment: Microbial Way of Life. In Microbiome Under Changing Climate; Elsevier: Amsterdam, The Netherlands, 2022; pp. 507–525. ISBN 978-0-323-90571-8. [Google Scholar]
- Toor, M.D.; Ur Rehman, M.; Abid, J.; Nath, D.; Ullah, I.; Basit, A.; Ud Din, M.M.; Mohamed, H.I. Microbial Ecosystems as Guardians of Food Security and Water Resources in the Era of Climate Change. Water Air Soil. Pollut. 2024, 235, 741. [Google Scholar] [CrossRef]
- Kalra, A.; Goel, S.; Elias, A.A. Understanding Role of Roots in Plant Response to Drought: Way Forward to Climate-resilient Crops. Plant Genome 2024, 17, e20395. [Google Scholar] [CrossRef]
- Poudel, M.; Mendes, R.; Costa, L.A.S.; Bueno, C.G.; Meng, Y.; Folimonova, S.Y.; Garrett, K.A.; Martins, S.J. The Role of Plant-Associated Bacteria, Fungi, and Viruses in Drought Stress Mitigation. Front. Microbiol. 2021, 12, 743512. [Google Scholar] [CrossRef]
- Dao, J.; Xing, Y.; Chen, C.; Chen, M.; Wang, Z. Adaptation of Rhizosphere Bacterial Communities of Drought-Resistant Sugarcane Varieties under Different Degrees of Drought Stress. Microbiol. Spectr. 2023, 11, e01184-23. [Google Scholar] [CrossRef]
- Santos-Medellín, C.; Liechty, Z.; Edwards, J.; Nguyen, B.; Huang, B.; Weimer, B.C.; Sundaresan, V. Prolonged Drought Imparts Lasting Compositional Changes to the Rice Root Microbiome. Nat. Plants 2021, 7, 1065–1077. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Kang, C.; Wang, S.; Zhang, Y.; Yang, G.; Zhou, L.; Xiang, Z.; Huang, L.; Liu, D.; et al. Drought Stress Modifies the Community Structure of Root-Associated Microbes That Improve Atractylodes lancea Growth and Medicinal Compound Accumulation. Front. Plant Sci. 2022, 13, 1032480. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Gholami, R.; Fahadi Hoveizeh, N.; Zahedi, S.M.; Gholami, H.; Carillo, P. Effect of Three Water-Regimes on Morpho-Physiological, Biochemical and Yield Responses of Local and Foreign Olive Cultivars under Field Conditions. BMC Plant Biol. 2022, 22, 477. [Google Scholar] [CrossRef] [PubMed]
- Boussadia, O.; Zgallai, H.; Mzid, N.; Zaabar, R.; Braham, M.; Doupis, G.; Koubouris, G. Physiological Responses of Two Olive Cultivars to Salt Stress. Plants 2023, 12, 1926. [Google Scholar] [CrossRef] [PubMed]
- Piwowar, H.; Priem, J.; Larivière, V.; Alperin, J.P.; Matthias, L.; Norlander, B.; Farley, A.; West, J.; Haustein, S. The State of OA: A Large-Scale Analysis of the Prevalence and Impact of Open Access Articles. PeerJ 2018, 6, e4375. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Blagodatskaya, E. Microbial Hotspots and Hot Moments in Soil: Concept & Review. Soil. Biol. Biochem. 2015, 83, 184–199. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.; Xu, Z.; Song, Y. Editorial: Beneficial Microbe-Plant Interactions under Biotic/Abiotic Stress Conditions. Front. Microbiol. 2023, 14, 1294042. [Google Scholar] [CrossRef]
- Rubin, R.L.; Van Groenigen, K.J.; Hungate, B.A. Plant Growth Promoting Rhizobacteria Are More Effective under Drought: A Meta-Analysis. Plant Soil. 2017, 416, 309–323. [Google Scholar] [CrossRef]
- Pokorny, J.J.; Norman, A.; Zanesco, A.P.; Bauer-Wu, S.; Sahdra, B.K.; Saron, C.D. Network Analysis for the Visualization and Analysis of Qualitative Data. Psychol. Methods 2018, 23, 169–183. [Google Scholar] [CrossRef]
- Jacomy, M.; Venturini, T.; Heymann, S.; Bastian, M. ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software. PLoS ONE 2014, 9, e98679. [Google Scholar] [CrossRef]
- Love, M.; Anders, S. DESeq2 2017. Available online: https://bioconductor.org/packages/release/bioc/html/DESeq2.html (accessed on 1 August 2025).
- Chen, H.; Boutros, P.C. VennDiagram: A Package for the Generation of Highly-Customizable Venn and Euler Diagrams in R. BMC Bioinform. 2011, 12, 35. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Tang, F.; Wang, J.; Dong, J.; Xing, J.; Shi, F. Drought-Induced Recruitment of Specific Root-Associated Bacteria Enhances Adaptation of Alfalfa to Drought Stress. Front. Microbiol. 2023, 14, 1114400. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Cui, J.; Ren, G.; Wei, S.; Yang, P.; Yin, C.; Liang, H.; Chang, J. Changes in the Root-Associated Bacteria of Sorghum Are Driven by the Combined Effects of Salt and Sorghum Development. Environ. Microbiome 2021, 16, 14. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.K.; Sahu, P.K.; Kumar, K.; Pal, G.; Gond, S.K.; Kharwar, R.N.; White, J.F. Endophyte Roles in Nutrient Acquisition, Root System Architecture Development and Oxidative Stress Tolerance. J. Appl. Microbiol. 2021, 131, 2161–2177. [Google Scholar] [CrossRef]
- Ayangbenro, A.S.; Babalola, O.O. Reclamation of Arid and Semi-Arid Soils: The Role of Plant Growth-Promoting Archaea and Bacteria. Curr. Plant Biol. 2021, 25, 100173. [Google Scholar] [CrossRef]
- Ben Gaied, R.; Brígido, C.; Sbissi, I.; Tarhouni, M. Sustainable Strategy to Boost Legumes Growth under Salinity and Drought Stress in Semi-Arid and Arid Regions. Soil. Syst. 2024, 8, 84. [Google Scholar] [CrossRef]
- Kour, D.; Yadav, A.N. Bacterial Mitigation of Drought Stress in Plants: Current Perspectives and Future Challenges. Curr. Microbiol. 2022, 79, 248. [Google Scholar] [CrossRef]
- Ma, Y.; Dias, M.C.; Freitas, H. Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants. Front. Plant Sci. 2020, 11, 591911. [Google Scholar] [CrossRef]
- Abideen, Z.; Cardinale, M.; Zulfiqar, F.; Koyro, H.-W.; Rasool, S.G.; Hessini, K.; Darbali, W.; Zhao, F.; Siddique, K.H.M. Seed Endophyte Bacteria Enhance Drought Stress Tolerance in Hordeum Vulgare by Regulating, Physiological Characteristics, Antioxidants and Minerals Uptake. Front. Plant Sci. 2022, 13, 980046. [Google Scholar] [CrossRef]
- Cui, X.; He, W.; Christensen, M.J.; Yue, J.; Zeng, F.; Zhang, X.; Nan, Z.; Xia, C. Abscisic Acid May Play a Critical Role in the Moderating Effect of Epichloë Endophyte on Achnatherum inebrians under Drought Stress. J. Fungi 2022, 8, 1140. [Google Scholar] [CrossRef]
- Muhammad, M.; Wahab, A.; Waheed, A.; Mohamed, H.I.; Hakeem, K.R.; Li, L.; Li, W.-J. Harnessing Bacterial Endophytes for Environmental Resilience and Agricultural Sustainability. J. Environ. Manag. 2024, 368, 122201. [Google Scholar] [CrossRef] [PubMed]
- Ahlawat, O.P.; Yadav, D.; Walia, N.; Kashyap, P.L.; Sharma, P.; Tiwari, R. Root Exudates and Their Significance in Abiotic Stress Amelioration in Plants: A Review. J. Plant Growth Regul. 2024, 43, 1736–1761. [Google Scholar] [CrossRef]
- Ansari, M.; Devi, B.M.; Sarkar, A.; Chattopadhyay, A.; Satnami, L.; Balu, P.; Choudhary, M.; Shahid, M.A.; Jailani, A.A.K. Microbial Exudates as Biostimulants: Role in Plant Growth Promotion and Stress Mitigation. J. Xenobiotics 2023, 13, 572–603. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Kosma, D.K.; Lü, S. Functional Role of Long-Chain Acyl-CoA Synthetases in Plant Development and Stress Responses. Front. Plant Sci. 2021, 12, 640996. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Lu, M.; Wang, Y.; Wang, Y.; Liu, Z.; Chen, S. Response Mechanism of Plants to Drought Stress. Horticulturae 2021, 7, 50. [Google Scholar] [CrossRef]
- Kumar, P.; Paul, D.; Jhajhriya, S.; Kumar, R.; Dutta, S.; Siwach, P.; Das, S. Understanding Heat-Shock Proteins’ Abundance and Pivotal Function under Multiple Abiotic Stresses. J. Plant Biochem. Biotechnol. 2024, 33, 492–513. [Google Scholar] [CrossRef]
- Aghaie, P.; Tafreshi, S.A.H. Central Role of 70-kDa Heat Shock Protein in Adaptation of Plants to Drought Stress. Cell Stress. Chaperones 2020, 25, 1071–1081. [Google Scholar] [CrossRef] [PubMed]
- Hamid, R.; Ghorbanzadeh, Z.; Jacob, F.; Nekouei, M.K.; Zeinalabedini, M.; Mardi, M.; Sadeghi, A.; Ghaffari, M.R. Decoding Drought Resilience: A Comprehensive Exploration of the Cotton Eceriferum (CER) Gene Family and Its Role in Stress Adaptation. BMC Plant Biol. 2024, 24, 468. [Google Scholar] [CrossRef]
- Srivastava, S.; Yadav, S. A Positive Role of Polyunsaturated Fatty Acids on Sustainable Crop Production against Salt Stress: An Overview. Biologia 2024, 79, 1599–1610. [Google Scholar] [CrossRef]
- Wei, H.; Movahedi, A.; Zhang, Y.; Aghaei-Dargiri, S.; Liu, G.; Zhu, S.; Yu, C.; Chen, Y.; Zhong, F.; Zhang, J. Long-Chain Acyl-CoA Synthetases Promote Poplar Resistance to Abiotic Stress by Regulating Long-Chain Fatty Acid Biosynthesis. IJMS 2022, 23, 8401. [Google Scholar] [CrossRef] [PubMed]
- Abdul Rahman, N.S.N.; Abdul Hamid, N.W.; Nadarajah, K. Effects of Abiotic Stress on Soil Microbiome. IJMS 2021, 22, 9036. [Google Scholar] [CrossRef]
- Aqeel, M.; Ran, J.; Hu, W.; Irshad, M.K.; Dong, L.; Akram, M.A.; Eldesoky, G.E.; Aljuwayid, A.M.; Chuah, L.F.; Deng, J. Plant-Soil-Microbe Interactions in Maintaining Ecosystem Stability and Coordinated Turnover under Changing Environmental Conditions. Chemosphere 2023, 318, 137924. [Google Scholar] [CrossRef]
- Philippot, L.; Griffiths, B.S.; Langenheder, S. Microbial Community Resilience across Ecosystems and Multiple Disturbances. Microbiol. Mol. Biol. Rev. 2021, 85, e00026-20. [Google Scholar] [CrossRef]
- De Mandal, S.; Sonali; Singh, S.; Hussain, K.; Hussain, T. Plant–Microbe Association for Mutual Benefits for Plant Growth and Soil Health. In Current Trends in Microbial Biotechnology for Sustainable Agriculture; Yadav, A.N., Singh, J., Singh, C., Yadav, N., Eds.; Environmental and Microbial Biotechnology; Springer: Singapore, 2021; pp. 95–121. ISBN 978-981-15-6948-7. [Google Scholar]
- Bandopadhyay, S.; Li, X.; Bowsher, A.W.; Last, R.L.; Shade, A. Disentangling Plant- and Environment-Mediated Drivers of Active Rhizosphere Bacterial Community Dynamics during Short-Term Drought. Nat. Commun. 2024, 15, 6347. [Google Scholar] [CrossRef]
- Loiko, N.; Islam, M.N. Plant–Soil Microbial Interaction: Differential Adaptations of Beneficial vs. Pathogenic Bacterial and Fungal Communities to Climate-Induced Drought. Agronomy 2024, 14, 1949. [Google Scholar] [CrossRef]
- Bundschuh, M.; Mesquita-Joanes, F.; Rico, A.; Camacho, A. Understanding Ecological Complexity in a Chemical Stress Context: A Reflection on Recolonization, Recovery, and Adaptation of Aquatic Populations and Communities. Environ. Toxicol. Chem. 2023, 42, 1857–1866. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, J.W.; Shade, A. Dormancy Dynamics and Dispersal Contribute to Soil Microbiome Resilience. Phil. Trans. R. Soc. B 2020, 375, 20190255. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, D.; Li, F.; Dong, Y.; Jin, Z.; Liao, Y.; Li, X.; Peng, S.; Delgado-Baquerizo, M.; Li, X. Superiority of Native Soil Core Microbiomes in Supporting Plant Growth. Nat. Commun. 2024, 15, 6599. [Google Scholar] [CrossRef] [PubMed]
- Maisnam, P.; Jeffries, T.C.; Szejgis, J.; Bristol, D.; Singh, B.K.; Eldridge, D.J.; Horn, S.; Chieppa, J.; Nielsen, U.N. Severe Prolonged Drought Favours Stress-Tolerant Microbes in Australian Drylands. Microb. Ecol. 2023, 86, 3097–3110. [Google Scholar] [CrossRef]
- Heinemann, B.; Hildebrandt, T.M. The Role of Amino Acid Metabolism in Signaling and Metabolic Adaptation to Stress-Induced Energy Deficiency in Plants. J. Exp. Bot. 2021, 72, 4634–4645. [Google Scholar] [CrossRef]
- Ingrisano, R.; Tosato, E.; Trost, P.; Gurrieri, L.; Sparla, F. Proline, Cysteine and Branched-Chain Amino Acids in Abiotic Stress Response of Land Plants and Microalgae. Plants 2023, 12, 3410. [Google Scholar] [CrossRef] [PubMed]
- Le, X.H.; Millar, A.H. The Diversity of Substrates for Plant Respiration and How to Optimize Their Use. Plant Physiol. 2023, 191, 2133–2149. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.S.; Jeong, H.I.; Bang, S.W.; Jung, S.E.; Kim, G.; Kim, Y.S.; Redillas, M.C.F.R.; Oh, S.-J.; Seo, J.S.; Kim, J.-K. Drought-Induced Branched-Chain Amino Acid Aminotransferase Enhances Drought Tolerance in Rice. Plant Physiol. 2023, 191, 1435–1447. [Google Scholar] [CrossRef]
- Stavridou, E.; Voulgari, G.; Michailidis, M.; Kostas, S.; Chronopoulou, E.G.; Labrou, N.E.; Madesis, P.; Nianiou-Obeidat, I. Overexpression of A Biotic Stress-Inducible Pvgstu Gene Activates Early Protective Responses in Tobacco under Combined Heat and Drought. IJMS 2021, 22, 2352. [Google Scholar] [CrossRef]
- Xu, J.; Xing, X.-J.; Tian, Y.-S.; Peng, R.-H.; Xue, Y.; Zhao, W.; Yao, Q.-H. Transgenic Arabidopsis Plants Expressing Tomato Glutathione S-Transferase Showed Enhanced Resistance to Salt and Drought Stress. PLoS ONE 2015, 10, e0136960. [Google Scholar] [CrossRef]
- Yang, G.; Wang, Y.; Xia, D.; Gao, C.; Wang, C.; Yang, C. Correction to: Overexpression of a GST Gene (ThGSTZ1) from Tamarix hispida Improves Drought and Salinity Tolerance by Enhancing the Ability to Scavenge Reactive Oxygen Species. Plant Cell Tissue Organ Cult. 2022, 150, 247–249. [Google Scholar] [CrossRef]
- Zhang, Y.; He, J.; Xiao, Y.; Zhang, Y.; Liu, Y.; Wan, S.; Liu, L.; Dong, Y.; Liu, H.; Yu, Y. CsGSTU8, a Glutathione S-Transferase From Camellia Sinensis, Is Regulated by CsWRKY48 and Plays a Positive Role in Drought Tolerance. Front. Plant Sci. 2021, 12, 795919. [Google Scholar] [CrossRef]
- Ahmed, N.; Rahman, K.; Rahman, M.; Sathi, K.S.; Alam, M.M.; Nahar, K.; Islam, M.S.; Hasanuzzaman, M. Insight into the Thiourea-Induced Drought Tolerance in Two Chickpea Varieties: Regulation of Osmoprotection, Reactive Oxygen Species Metabolism and Glyoxalase System. Plant Physiol. Biochem. 2021, 167, 449–458. [Google Scholar] [CrossRef]
- Pandey, M. Thiourea and Hydrogen Peroxide Priming Improved K+ Retention and Source-Sink Relationship for Mitigating Salt Stress in Rice. Sci. Rep. 2021, 11, 3000. [Google Scholar] [CrossRef]
- Sahu, M.P. Role of Sulfhydryl Bioregulator Thiourea in Mitigating Drought Stress in Crops. In Plant Stress Mitigators; Elsevier: Amsterdam, The Netherlands, 2023; pp. 293–304. ISBN 978-0-323-89871-3. [Google Scholar]
- Sehar, Z.; Gautam, H.; Iqbal, N.; Alvi, A.F.; Jahan, B.; Fatma, M.; Albaqami, M.; Khan, N.A. The Functional Interplay between Ethylene, Hydrogen Sulfide, and Sulfur in Plant Heat Stress Tolerance. Biomolecules 2022, 12, 678. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, X.; Kitagawa, Y.; Calamita, G.; Ding, X. Plant Aquaporins: Their Roles beyond Water Transport. Crop J. 2024, 12, 641–655. [Google Scholar] [CrossRef]
- Matilla, M.A.; Krell, T. Bacterial Amino Acid Chemotaxis: A Widespread Strategy with Multiple Physiological and Ecological Roles. J. Bacteriol. 2024, 206, e00300-24. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Ali, S.; Afzal, M.; Nizami, A.-S.; Han, S.; Dar, M.A.; Zhu, D. Advancements in Bacterial Chemotaxis: Utilizing the Navigational Intelligence of Bacteria and Its Practical Applications. Sci. Total Environ. 2024, 931, 172967. [Google Scholar] [CrossRef]
- Xiong, Y.-W.; Li, X.-W.; Wang, T.-T.; Gong, Y.; Zhang, C.-M.; Xing, K.; Qin, S. Root Exudates-Driven Rhizosphere Recruitment of the Plant Growth-Promoting Rhizobacterium Bacillus flexus KLBMP 4941 and Its Growth-Promoting Effect on the Coastal Halophyte Limonium sinense under Salt Stress. Ecotoxicol. Environ. Saf. 2020, 194, 110374. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Mishra, R.; Rai, S.; Bano, A.; Pathak, N.; Fujita, M.; Kumar, M.; Hasanuzzaman, M. Mechanistic Insights of Plant Growth Promoting Bacteria Mediated Drought and Salt Stress Tolerance in Plants for Sustainable Agriculture. IJMS 2022, 23, 3741. [Google Scholar] [CrossRef]
- Mishra, P.; Mishra, J.; Arora, N.K. Plant Growth Promoting Bacteria for Combating Salinity Stress in Plants–Recent Developments and Prospects: A Review. Microbiol. Res. 2021, 252, 126861. [Google Scholar] [CrossRef]
- Parasar, B.J.; Sharma, I.; Agarwala, N. Root Exudation Drives Abiotic Stress Tolerance in Plants by Recruiting Beneficial Microbes. Appl. Soil. Ecol. 2024, 198, 105351. [Google Scholar] [CrossRef]
KO | Genus | Description |
---|---|---|
K00384 | Microvirga | trxB, TRR; thioredoxin reductase (NADPH) [EC:1.8.1.9] |
K00799 | Microvirga | GST, gst; glutathione S-transferase [EC:2.5.1.18] |
K01897 | Pseudonocardia | ACSL, fadD; long-chain acyl-CoA synthetase [EC:6.2.1.3] |
K01997 | Microvirga | livH; branched-chain amino acid transport system permease protein |
K01998 | Solirubrobacter | livM; branched-chain amino acid transport system permease protein |
K01999 | Solirubrobacter | livK; branched-chain amino acid transport system substrate-binding protein |
K03406 | Microvirga | mcp; methyl-accepting chemotaxis protein |
K03654 | Solirubrobacter | recQ; ATP-dependent DNA helicase RecQ [EC:3.6.4.12] |
K03704 | Pseudonocardia | cspA; cold shock protein (beta-ribbon, CspA family) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visca, A.; Nolfi, L.; Di Gregorio, L.; Costanzo, M.; Clagnan, E.; Sevi, F.; Sbarra, F.; Bernini, R.; Valeri, M.C.; Franco, E.; et al. Characterization of Core Microbiomes of Olive Tree Rhizospheres Under Drought Stress Conditions. Appl. Sci. 2025, 15, 9667. https://doi.org/10.3390/app15179667
Visca A, Nolfi L, Di Gregorio L, Costanzo M, Clagnan E, Sevi F, Sbarra F, Bernini R, Valeri MC, Franco E, et al. Characterization of Core Microbiomes of Olive Tree Rhizospheres Under Drought Stress Conditions. Applied Sciences. 2025; 15(17):9667. https://doi.org/10.3390/app15179667
Chicago/Turabian StyleVisca, Andrea, Lorenzo Nolfi, Luciana Di Gregorio, Manuela Costanzo, Elisa Clagnan, Filippo Sevi, Federico Sbarra, Roberta Bernini, Maria Cristina Valeri, Edoardo Franco, and et al. 2025. "Characterization of Core Microbiomes of Olive Tree Rhizospheres Under Drought Stress Conditions" Applied Sciences 15, no. 17: 9667. https://doi.org/10.3390/app15179667
APA StyleVisca, A., Nolfi, L., Di Gregorio, L., Costanzo, M., Clagnan, E., Sevi, F., Sbarra, F., Bernini, R., Valeri, M. C., Franco, E., Calderini, O., Baldoni, L., Perrotta, G., & Bevivino, A. (2025). Characterization of Core Microbiomes of Olive Tree Rhizospheres Under Drought Stress Conditions. Applied Sciences, 15(17), 9667. https://doi.org/10.3390/app15179667