Fast Quantification of Lithium Concentration in Non-Compliant Materials Using Laser-Induced Breakdown Spectroscopy
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alessia, A.; Alessandro, B.; Maria, V.G.; Carlos, V.A.; Francesca, B. Challenges for sustainable lithium supply: A critical review. J. Clean. Prod. 2021, 300, 126954. [Google Scholar] [CrossRef]
- Balaram, V.; Santosh, M.; Satyanarayanan, M.; Srinivas, N.; Gupta, H. Lithium: A review of applications, occurrence, exploration, extraction, recycling, analysis, and environmental impact. Geosci. Front. 2024, 15, 101868. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Dallas, J.; Casanova, S.; Pelech, T.; Bournival, G.; Saydam, S.; Canbulat, I. Towards a low-carbon society: A review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives. Miner. Eng. 2021, 163, 106743. [Google Scholar] [CrossRef]
- Garcia, L.V.; Ho, Y.C.; Myo Thant, M.M.; Han, D.S.; Lim, J.W. Lithium in a Sustainable Circular Economy: A Comprehensive Review. Processes 2023, 11, 418. [Google Scholar] [CrossRef]
- Swain, B. Recovery and recycling of lithium: A review. Sep. Purif. Technol. 2017, 172, 388–403. [Google Scholar] [CrossRef]
- Holland, W.; Beall, G. Glass-ceramic technology. In The American Ceramic Society, 1st ed.; The American Ceramic Society: Westerville, OH, USA, 2002. [Google Scholar]
- Kyrl, H. Handbook for Bayer Enamels; Bayer AG: Leverkusen, Germany, 1976. [Google Scholar]
- Volf, M.B. Chemical Approach to Glass; Glassworks, I., Ed.; Elsevier: Amsterdam, The Netherlands, 2011; Available online: https://books.google.com/books/about/Chemical_Approach_to_Glass.html?hl=it&id=Zh0EfAEACAAJ (accessed on 15 March 2025).
- Lee, D.; Joo, S.-H.; Shin, D.J.; Shin, S.M. Evaluation of leaching characteristic and kinetic study of lithium from lithium aluminum silicate glass-ceramics by NaOH. J. Environ. Sci. 2021, 107, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Joo, S.-H.; Shin, D.J.; Shin, S.M. Recovery of Li from lithium aluminum silicate (LAS) glass-ceramics after heat treatment at 1000 °C and Ca salt-assisted water leaching in two stages before and after calcination at 600 °C. Hydrometallurgy 2022, 211, 105876. [Google Scholar] [CrossRef]
- Kim, Y.; Han, Y.; Kim, S.; Jeon, H.-S. Green extraction of lithium from waste lithium aluminosilicate glass-ceramics using a water leaching process. Process Saf. Environ. Prot. 2021, 148, 765–774. [Google Scholar] [CrossRef]
- Tao, X.; Li, B.; Peng, A.; Zhang, H.; Wang, J.; Zheng, Y.; Yang, L.; Luo, X.; Luo, S.; Shao, P. High-efficiency and environment-friendly extraction of lithium from waste LAS glass-ceramics by roasting with KOH at low temperature. Resour. Conserv. Recycl. 2024, 209, 107775. [Google Scholar] [CrossRef]
- Cremers, D.A.; Radziemski, L.J. Handbook of Laser-Induced Breakdown Spectroscopy; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Touchet, K.; Chartier, F.; Hermann, J.; Sirven, J.B. Laser-induced breakdown self-reversal isotopic spectrometry for isotopic analysis of lithium. Spectrochim. Acta Part B At. Spectrosc. 2020, 168, 105868. [Google Scholar] [CrossRef]
- Galli, E.; Massa, M.; Zanoletti, A.; De Iuliis, S.; Bontempi, E.; Depero, L.E.; Palleschi, V.; Borgese, L. Determination of lithium concentration in black mass using laser-induced breakdown spectroscopy hand-held instrumentation. Sci. Rep. 2025, 15, 17483. [Google Scholar] [CrossRef] [PubMed]
- Bertolini, A.; Carelli, G.; Francesconi, F.; Francesconi, M.; Marchesini, L.; Marsili, P.; Sorrentino, F.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; et al. Modì: A new mobile instrument for in situ double-pulse LIBS analysis. Anal. Bioanal. Chem. 2006, 385, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Balaram, V.; Subramanyam, K.S.V. Sample preparation for geochemical analysis: Strategies and significance. Adv. Sample Prep. 2022, 1, 100010. [Google Scholar] [CrossRef]
- Legnaioli, S.; Botto, A.; Campanella, B.; Poggialini, F.; Raneri, S.; Palleschi, V. Univariate Linear Methods. In Chemometrics and Numerical Methods in LIBS; John Wiley & Sons: Hoboken, NJ, USA, 2022; pp. 259–276. ISBN 978-1-119-75957-7. [Google Scholar]
- Fabre, C.; Boiron, M.C.; Dubessy, J.; Chabiron, A.; Charoy, B.; Martin Crespo, T. Advances in Lithium Analysis in Solids by Means of Laser-Induced Breakdown Spectroscopy: An Exploratory Study. Geochim. Cosmochim. Acta 2002, 66, 1401–1407. [Google Scholar] [CrossRef]
- Molina, J.M.; Sarchi, C.; Tesio, A.Y.; Costa-Vera, C.; Díaz Pace, D.M. Quantitative Analysis of Lithium in Natural Brines from the Lithium Triangle by Laser-Induced Breakdown Spectroscopy. Atoms 2025, 13, 56. [Google Scholar] [CrossRef]
- Mezoued, N.; Fabre, C.; Cauzid, J.; Kahou, Z.S.; Rocher, O. Handheld LIBS Contribution to Quantify Critical Elements during Mining Operations: The Beauvoir Granite Case Study. J. Geochem. Explor. 2025, 271, 107689. [Google Scholar] [CrossRef]
- Lepore, K.H.; Fassett, C.I.; Breves, E.A.; Byrne, S.; Giguere, S.; Boucher, T.; Rhodes, J.M.; Vollinger, M.; Anderson, C.H.; Murray, R.W.; et al. Matrix Effects in Quantitative Analysis of Laser-Induced Breakdown Spectroscopy (LIBS) of Rock Powders Doped with Cr, Mn, Ni, Zn, and Co. Appl. Spectrosc. 2017, 71, 600–626. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, F.; Cristoforetti, G.; Tognoni, E.; Legnaioli, S.; Palleschi, V.; Safi, A. A review of the current analytical approaches for evaluating, compensating and exploiting self-absorption in Laser Induced Breakdown Spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2020, 169, 105878. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, H.; Li, H. Chemometrics in Laser-Induced Breakdown Spectroscopy. J. Chemom. 2018, 32, e2983. [Google Scholar] [CrossRef]
- Senesi, G.S.; Allegretta, I.; Marangoni, B.S.; Ribeiro, M.C.S.; Porfido, C.; Terzano, R.; De Pascale, O.; Eramo, G. Geochemical Identification and Classification of Cherts Using Handheld Laser Induced Breakdown Spectroscopy (LIBS) Supported by Supervised Machine Learning Algorithms. Appl. Geochem. 2023, 151, 105625. [Google Scholar] [CrossRef]
Sample | Li2O | Na2O | K2O | MgO | CaO | BaO | ZnO | B2O3 | Al2O3 | SiO2 | ZrO2 | TiO2 | Fe2O3 | F | MnO2 | CoO | CuO | NiO | Cr2O3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AMSP 1305 | 2.96 | 8.00 | 1.65 | 2.78 | 5.44 | 1.33 | 10.60 | 2.38 | 50.21 | 0.01 | 1.98 | 4.01 | 1.10 | 2.69 | 1.46 | 2.03 | 1.32 | ||
AMSP 1346 | 2.58 | 9.46 | 2.81 | 0.01 | 1.00 | 0.76 | 14.16 | 1.59 | 54.98 | 1.59 | 2.85 | 3.62 | 0.25 | 1.71 | 1.11 | 1.03 | 0.50 | ||
AMSP 1279 | 2.50 | 11.56 | 2.02 | 0.39 | 4.05 | 8.25 | 1.76 | 63.40 | 0.03 | 2.28 | 0.14 | 1.33 | 0.33 | 1.21 | 0.74 | ||||
AMSP 1135 | 2.34 | 8.54 | 4.30 | 0.23 | 2.35 | 0.05 | 13.66 | 1.30 | 52.78 | 0.49 | 3.80 | 2.98 | 0.90 | 3.30 | 0.80 | 1.00 | 0.50 | 0.52 | |
AMSP 1290 | 1.83 | 8.84 | 1.94 | 0.39 | 3.67 | 0.18 | 0.05 | 14.92 | 1.32 | 55.86 | 3.86 | 0.11 | 4.83 | 0.40 | 0.68 | 0.64 | 0.03 | 0.19 | |
AMSP 1361 | 1.07 | 10.66 | 3.27 | 3.83 | 14.30 | 2.81 | 50.77 | 0.35 | 3.87 | 1.10 | 4.30 | 1.24 | 1.25 | 1.10 | |||||
AMSP 1340 | 0.98 | 9.87 | 4.45 | 0.30 | 1.56 | 0.09 | 15.27 | 1.08 | 53.17 | 0.96 | 0.85 | 4.75 | 0.83 | 3.22 | 1.01 | 0.86 | 0.70 | ||
TLF 109 | 2.89 | 8.01 | 3.02 | 14.99 | 0.29 | 55.8 | 0.03 | 3.01 | 3.01 | 5.17 | 1.06 | 1.51 | 1.01 | ||||||
AMSP 1251 | 2.58 | 9.96 | 2.42 | 1.37 | 15.06 | 1.34 | 53.19 | 1.69 | 2.43 | 4.77 | 2.14 | 1.09 | 1.30 | 0.67 | |||||
AMSP 1349 | 2.30 | 8.23 | 3.89 | 1.17 | 2.59 | 13.13 | 0.31 | 60.59 | 1.86 | 1.94 | 1.00 | 1.40 | 0.50 | 0.30 | |||||
AMSP 1325 | 1.92 | 10.04 | 2.82 | 0.41 | 1.17 | 14.44 | 1.30 | 57.52 | 3.19 | 1.61 | 3.63 | 0.98 | 0.69 | 0.03 | |||||
AMSP 1275 | 1.87 | 11.37 | 0.69 | 3.25 | 15.10 | 1.87 | 53.31 | 2.45 | 1.21 | 5.94 | 0.72 | 0.87 | 0.67 | 0.67 | |||||
AMSP 1215 | 2.60 | 8.46 | 3.75 | 0.21 | 0.91 | 14.57 | 1.57 | 56.04 | 1.25 | 2.10 | 3.95 | 2.88 | 0.98 | 0.61 |
Sample | Li2O | Na2O | K2O | MgO | CaO | BaO | B2O3 | Al2O3 | SiO2 | Fe2O3 | ZnO | SrO | PbO | CdO |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BCR 126A | 0.494 | 3.57 | 9.99 | 0.512 | 1.033 | 1.053 | 0.126 | 57.80 | 0.0055 | 1.01 | 23.98 | |||
SRM 1412 | (4.50) | 4.69 | 4.14 | (4.69) | 4.53 | 4.67 | 4.53 | 7.52 | 42.38 | (0.03) | 4.48 | 4.55 | 4.40 | 4.38 |
R | Mean Error (wt.%) | Mean Relative Error (%) | RMSE (wt.%) | Bias (wt.%) | |
---|---|---|---|---|---|
LIBS (ANN) | 0.958 | 0.25 | 14 | 0.97 | 0.07 |
LIBS (Univariate calibration curve) | 0.939 | 0.45 | 18 | 1.27 | 0.22 |
ICP-OES | 0.954 | 0.18 | 8 | 0.28 | −0.04 |
Sample | Li2O wt.% (Nominal) | Li2O wt.% (ICP-OES) | Li2O wt.% (LIBS Calibration) | Li2O wt.% (LIBS ANN) |
---|---|---|---|---|
BCR126A | 0.49 | 0.49 | 0.48 | 0.59 |
AMSP1340 | 0.98 | 0.93 | 1.71 | 1.19 |
AMSP1361 | 1.07 | 1.19 | 1.82 | 1.57 |
AMSP1290 | 1.83 | 1.83 | 2.42 | 2.36 |
AMSP1275 | 1.87 | 1.98 | 2.42 | 2.21 |
AMSP1325 | 1.92 | 2.61 | 2.42 | 2.44 |
AMSP1349 | 2.30 | 2.18 | 2.23 | 2.27 |
AMSP1135 | 2.34 | 1.62 | 2.23 | 2.22 |
AMSP1279 | 2.50 | 2.26 | 2.30 | 2.18 |
AMSP1251 | 2.58 | 2.52 | 2.88 | 2.62 |
AMSP1346 | 2.58 | 2.34 | 2.88 | 2.42 |
AMSP1215 | 2.60 | 2.45 | 2.88 | 2.53 |
TLF109 | 2.89 | 3.04 | 3.34 | 2.76 |
AMSP1305 | 2.96 | 2.93 | 2.90 | 2.68 |
SRM1412 | 4.50 | 4.50 | 3.34 | 2.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raneri, S.; Palleschi, V.; Poggialini, F.; Campanella, B.; Lorenzetti, G.; Costagliola, P.; Rimondi, V.; Morelli, G.; Legnaioli, S. Fast Quantification of Lithium Concentration in Non-Compliant Materials Using Laser-Induced Breakdown Spectroscopy. Appl. Sci. 2025, 15, 9583. https://doi.org/10.3390/app15179583
Raneri S, Palleschi V, Poggialini F, Campanella B, Lorenzetti G, Costagliola P, Rimondi V, Morelli G, Legnaioli S. Fast Quantification of Lithium Concentration in Non-Compliant Materials Using Laser-Induced Breakdown Spectroscopy. Applied Sciences. 2025; 15(17):9583. https://doi.org/10.3390/app15179583
Chicago/Turabian StyleRaneri, Simona, Vincenzo Palleschi, Francesco Poggialini, Beatrice Campanella, Giulia Lorenzetti, Pilario Costagliola, Valentina Rimondi, Guia Morelli, and Stefano Legnaioli. 2025. "Fast Quantification of Lithium Concentration in Non-Compliant Materials Using Laser-Induced Breakdown Spectroscopy" Applied Sciences 15, no. 17: 9583. https://doi.org/10.3390/app15179583
APA StyleRaneri, S., Palleschi, V., Poggialini, F., Campanella, B., Lorenzetti, G., Costagliola, P., Rimondi, V., Morelli, G., & Legnaioli, S. (2025). Fast Quantification of Lithium Concentration in Non-Compliant Materials Using Laser-Induced Breakdown Spectroscopy. Applied Sciences, 15(17), 9583. https://doi.org/10.3390/app15179583