The House Cricket (Acheta domesticus Linnaeus) in Food Industry: Farming, Technological Challenges, and Sustainability Considerations
Abstract
1. Introduction
2. The House Cricket (Acheta domesticus Linnaeus)
- (1)
- An aromatic–arboreal diet (AAD),
- (2)
- A dairy cow diet (DCD),
- (3)
- The dairy cow diet supplemented with yeast (DCD + Y), and
- (4)
- A human refuse diet (HRD) (Table 1).
Ingredients Aromatic—Arboreal Diet (AAD) | Grams | |
---|---|---|
False acacia | 4.1 | |
Yeast (Saccharomyces cerevisiae) | 2.9 | |
Basel (Ocimum basilicum) | 1.3 | |
Sage leaves (Salvia officinalis) | 1.0 | |
Hazel leaves (Corylus avellana) | 0.5 | |
Maple leaves (Acer campestre) | 0.2 | |
Sum | 10.0 | |
Ingredients Dairy Cow Diet with Yeast (DCD+Y) | grams | |
Soybean flour (Glycine max) | 2.07 | |
Lucern (Medicago sativa) | 1.78 | |
Corn flour (Zea mays) | 1.46 | |
Wheat flour (Triticum durum | 1.31 | |
Yeast (Saccharomyces cerevisiae) | 1.15 | |
Sugar beet (Beta vulgaris var. esculenta) | 1.13 | |
Silo | 1.10 | |
Sum | 10.0 | |
Ingredients Dairy Cow Diet (DCD) | grams | |
Soybean flour (Glycine max) | 2.26 | |
Lucern (Medicago sativa) | 1.97 | |
Corn flour (Zea mays) 1.65 | 1.65 | |
Wheat (Triticum durum | 1.50 | |
Sugar beet (Beta vulgaris var. esculenta) | 1.32 | |
Silage corn | 1.30 | |
Sum | 10.00 | |
Ingredients of Human Refuse Diet (HRD) | grams | |
Fruits and vegetables (peel and leftover) | 3.4 | |
Rice and pasta | 2.7 | |
Pork and beef meat | 1.1 | |
Bread | 1.1 | |
Cheese skins | 1.1 | |
Yolk | 0.6 | |
Sum | 10.00 |
3. Prospective Alternatives for Insect Consumption
4. Nutritional Potential and Applications of Crickets as an Alternative Protein Source
4.1. Protein Content and Amino Acids
4.2. Fatty Acids and Energy
4.3. Micronutrient and Mineral Composition
4.4. Chitin Content in Crickets
5. Environmental Control in Cricket Farming
6. Feed and Nutrition for Crickets
7. Challenges in Cricket Farming
7.1. Biosecurity and Disease Control
7.2. Chitin Content and Digestibility
8. Crickets: Opportunities and Regulation
8.1. Food Applications
8.2. Sustainability and Circular Economy
8.3. Risks and Safety
8.4. Regulation and Authorisation
8.5. Food Regulations for Crickets
9. Consumer Acceptance and Market Opportunities
9.1. Cultural Barriers and Sensory Preferences
9.2. Market Opportunities
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shaheen, S.; Ahmad, M.; Haroon, N. Edible Wild Plants: An Alternative Approach to Food Security, 1st ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Smarzyński, K.; Sarbak, P.; Kowalczewski, P.Ł.; Różańska, M.B.; Rybicka, I.; Polanowska, K.; Baranowska, H.M. Low-Field NMR Study of Shortcake Biscuits with Cricket Powder, and Their Nutritional and Physical Characteristics. Molecules 2021, 26, 5417. [Google Scholar] [CrossRef]
- Huis, A.V.; Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; FAO Forestry Paper 171; FAO: Rome, Italy, 2013. [Google Scholar]
- Ismail, B.P.; Senaratne-Lenagala, L.; Stube, A.; Brackenridge, A. Protein Demand: Review of Plant and Animal Proteins Used in Alternative Protein Product Development and Production. Anim. Front. 2020, 10, 53–63. [Google Scholar] [CrossRef]
- Baiano, A. Edible Insects: An Overview on Nutritional Characteristics, Safety, Farming, Production Technologies, Regulatory Framework, and Socio-Economic and Ethical Implications. Trends Food Sci. Technol. 2020, 100, 35–50. [Google Scholar] [CrossRef]
- Vantomme, P.; Mertens, E.; Van Huis, A.; Klunder, H. Assessing the Potential of Insects as Food and Feed in Assuring Food Security; Summary Report, Technical Consultation Meeting; FAO: Rome, Italy, 2012; pp. 23–25. [Google Scholar]
- Zhong, A. Product Development Considerations for a Nutrient Rich Bar Using Cricket (Acheta domesticus) Protein; California State University: Long Beach, CA, USA, 2017. [Google Scholar]
- Ribeiro, J.C.; Sousa-Pinto, B.; Fonseca, J.; Fonseca, S.C.; Cunha, L.M. Edible Insects and Food Safety: Allergy. J. Insects Food Feed. 2021, 7, 833–847. [Google Scholar] [CrossRef]
- Mafu, A.; Ketnawa, S.; Phongthai, S.; Schönlechner, R.; Rawdkuen, S. Whole Wheat Bread Enriched with Cricket Powder as an Alternative Protein. Foods 2022, 11, 2142. [Google Scholar] [CrossRef]
- Vogel, G. For More Protein, Filet of Cricket. Science 2010, 327, 811. [Google Scholar] [CrossRef]
- Zanolli, L. Insect Farming Is Taking Shape as Demand for Animal Feed Rises. MIT Techology Review, 20 August 2014. [Google Scholar]
- Fiala, N. Meeting the Demand: An Estimation of Potential Future Greenhouse Gas Emissions from Meat Production. Ecol. Econ. 2008, 67, 412–419. [Google Scholar] [CrossRef]
- Dossey, A.; Tatum, J.; McGill, W. Modern Insect-Based Food Industry: Current Status, Insect Processing Technology, and Recommendations Moving Forward. In Insects as Sustainable Food Ingredients; Rojas, M., Ed.; Elsevier: London, UK, 2016; pp. 122–145. [Google Scholar]
- Sponheimer, M.; de Ruiter, D.; Lee-Thorp, J.; Späth, A. Sr/Ca and Early Hominin Diets Revisited: New Data from Modern and Fossil Tooth Enamel. J. Hum. Evol. 2005, 48, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Elorduy, J. Anthropo-Entomophagy: Cultures, Evolution and Sustainability. Entomol. Res. 2009, 39, 271–288. [Google Scholar] [CrossRef]
- De Castro, R.J.S.; Ohara, A.; Aguilar, J.G.D.S.; Domingues, M.A.F. Nutritional, Functional and Biological Properties of Insect Proteins: Processes for Obtaining, Consumption and Future Challenges. Trends Food Sci. Technol. 2018, 76, 82–89. [Google Scholar] [CrossRef]
- Gómez-Luciano, C.A.; de Aguiar, L.K.; Vriesekoop, F.; Urbano, B. Consumers’ Willingness to Purchase Three Alternatives to Meat Proteins in the United Kingdom, Spain, Brazil and the Dominican Republic. Food Qual. Prefer. 2019, 78, 103732. [Google Scholar] [CrossRef]
- Oonincx, D.G.; van Itterbeeck, J.; Heetkamp, M.J.; van den Brand, H.; van Loon, J.J.; van Huis, A. An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption. PLoS ONE 2010, 5, e14445. [Google Scholar] [CrossRef]
- Finke, M.D.; Rojo, S.; Roos, N.; van Huis, A.; Yen, A. The European Food Safety Authority Scientific Opinion on a Risk Profile Related to Production and Consumption of Insects as Food and Feed. J. Insects Food Feed. 2015, 1, 245–247. [Google Scholar] [CrossRef]
- Oonincx, D.G.; Van Broekhoven, S.; Van Huis, A.; van Loon, J.J. Feed Conversion, Survival and Development, and Composition of Four Insect Species on Diets Composed of Food By-Products. PLoS ONE 2015, 10, e0144601. [Google Scholar] [CrossRef] [PubMed]
- Čičková, H.; Newton, G.L.; Lacy, R.C.; Kozánek, M. The Use of Fly Larvae for Organic Waste Treatment. Waste Manag. 2015, 35, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Kovács, K.; Szűcs, R.S. Az Entomofágiával, Azaz a Rovarok Fogyasztásával Kapcsolatos Attitűdök Vizsgálata. Jelenkori Társadalmi és Gazdasági Folyamatok 2023, 18, 119–138. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Nutritional Composition and Safety Aspects of Edible Insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef]
- Tzompa-Sosa, D.A.; Dewettinck, K.; Provijn, P.; Brouwers, J.F.; De Meulenaer, B.; Oonincx, D.G. Lipidome of Cricket Species Used as Food. Food Chem. 2021, 349, 129077. [Google Scholar] [CrossRef]
- Carcea, M. Quality and Nutritional/Textural Properties of Durum Wheat Pasta Enriched with Cricket Powder. Foods 2020, 9, 1298. [Google Scholar] [CrossRef]
- Payne, C.L.R.; Scarborough, P.; Rayner, M.; Nonaka, K. Are Edible Insects More or Less Healthy than Commonly Consumed Meats? A Comparison Using Two Nutrient Profiling Models Developed to Combat Over- and Undernutrition. Eur. J. Clin. Nutr. 2016, 70, 285–291. [Google Scholar] [CrossRef]
- Kulma, M.; Kouřimská, L.; Plachý, V.; Božik, M.; Adámková, A.; Vrabec, V. Effect of Sex on the Nutritional Value of House Cricket, Acheta domestica L. Food Chem. 2019, 272, 267–272. [Google Scholar] [CrossRef]
- Megido, R.C.; Francis, F.; Haubruge, E.; Le Gall, P.; Tomberlin, J.K.; Miranda, C.D.; van Huis, A. A Worldwide Overview of the Status and Prospects of Edible Insect Production. Entomol. Gen. 2024, 44, 3–27. [Google Scholar] [CrossRef]
- von Hackewitz, L. The House Cricket Acheta domesticus, a Potential Source of Protein for Human Consumption; SLU, Department of Molecular Sciences: Uppsala, Sweden, 2018. [Google Scholar]
- Oonincx, D.G.A.B. Insects as Food and Feed: Nutrient Composition and Environmental Impact; Wageningen University: Wageningen, The Netherlands, 2015. [Google Scholar]
- Nakagaki, B.J.; DeFoliart, G.R. Comparison of Diets for Mass-Rearing Acheta domesticus (Orthoptera: Gryllidae) as a Novelty Food, and Comparison of Food Conversion Efficiency with Values Reported for Livestock. J. Econ. Entomol. 1991, 84, 891–896. [Google Scholar] [CrossRef]
- Halloran, A.; Roos, N.; Eilenberg, J.; Cerutti, A.; Bruun, S. Life Cycle Assessment of Edible Insects for Food Protein: A Review. Agron. Sustain. Dev. 2016, 36, 57. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; de Boer, I.J.M. Environmental Impact of the Production of Mealworms as a Protein Source for Humans—A Life Cycle Assessment. PLoS ONE 2012, 7, e51145. [Google Scholar] [CrossRef] [PubMed]
- Tacon, A.G.J. Compound Aqua Feeds in a More Competitive Market: Alternative Protein Sources for a More Sustainable Future. In Avances en Nutrición Acuícola IX. Memorias del Noveno Simposium Internacional de Nutrición Acuícola; Cruz Suárez, L.E., Ed.; Universidad Autónoma de Nuevo León: Monterrey, Mexico, 2008; pp. 24–26. [Google Scholar]
- Sorjonen, J.M.; Valtonen, A.; Hirvisalo, E.; Karhapää, M.; Lehtovaara, V.J.; Lindgren, J.; Roininen, H. The Plant-Based By-Product Diets for the Mass-Rearing of Acheta domesticus and Gryllus bimaculatus. PLoS ONE 2019, 14, e0218830. [Google Scholar] [CrossRef]
- Yen, A.L. Insects as Food and Feed in the Asia Pacific Region: Current Perspectives and Future Directions. J. Insects Food Feed. 2015, 1, 33–55. [Google Scholar] [CrossRef]
- Jansson, A.; Berggren, Å. Insects as Food—Something for the Future? Future Agriculture; Swedish University of Agricultural Sciences (SLU): Uppsala, Sweden, 2015. [Google Scholar]
- Siddiqui, S.A.; Zhao, T.; Fitriani, A.; Rahmadhia, S.N.; Alirezalu, K.; Fernando, I. Acheta domesticus (House Cricket) as Human Food—An Approval of the European Commission—A Systematic Review. Food Front. 2024, 5, 435–473. [Google Scholar] [CrossRef]
- Halloran, A.; Hanboonsong, Y.; Roos, N.; Bruun, S. Life Cycle Assessment of Cricket Farming in North-Eastern Thailand. J. Clean. Prod. 2017, 156, 83–94. [Google Scholar] [CrossRef]
- Hanboonsong, Y.; Jamjanya, T.; Durst, P.B. Six-Legged Livestock: Edible Insect Farming, Collection and Marketing in Thailand; FAO: Rome, Italy, 2013. [Google Scholar]
- Collavo, A.L.B.; Glew, R.H.; Huang, Y.S.; Chuang, L.T.; Bosse, R.B.; Paoletti, M.G. House Cricket Small-Scale Farming. In Ecological Implications of Minilivestock: Potential of Insects, Rodents, Frogs and Snails; CRC Press: Boca Raton, FL, USA, 2005; pp. 515–540. [Google Scholar]
- Kok, R.; Shivhare, U.S.; Lomamliza, K. Mass and Component Balances for Insect Production. Can. Agric. Eng. 1990, 33, 185–192. [Google Scholar]
- Larde, G. Investigations on Some Factors Affecting Larval Growth in a Coffee-Pulp Bed. Biol. Wastes 1989, 30, 11–19. [Google Scholar] [CrossRef]
- Malaisse, F. Human Consumption of Lepidoptera, Termites, Orthoptera, and Ants in Africa; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Meyer-Rochow, V.B.; Changkija, S. Uses of Insects as Human Food in Papua New Guinea, Australia, and North-East India: Cross-Cultural Considerations and Cautious Conclusions. Ecol. Food Nutr. 1997, 36, 159–185. [Google Scholar] [CrossRef]
- Onore, G. A Brief Note on Edible Insects in Ecuador. Ecol. Food Nutr. 1997, 36, 277–285. [Google Scholar] [CrossRef]
- Ramos-Elorduy, J. Insects: A Sustainable Source of Food? Ecol. Food Nutr. 1997, 36, 247–276. [Google Scholar] [CrossRef]
- Ruddle, K. The Human Use of Insects: Examples from the Yukpa. Biotropica 1973, 5, 94–101. [Google Scholar] [CrossRef]
- Menzel, P.; D’Aluisio, F. Man Eating Bugs; Ten Speed Press: Berkeley, CA, USA, 1998; 192p. [Google Scholar]
- Fenaroli, G. Le Sostanze Aromatiche; Hoepli Ed.: Milano, Italy, 1963; Volume 11, 1004p. [Google Scholar]
- McFarlane, J.E.; Neilson, B.; Ghouri, A.S.K. Artificial Diets for the House Crickets. Can. J. Zool. 1959, 37, 913–916. [Google Scholar] [CrossRef]
- Patton, R.L. Olicidic Diets for Acheta domesticus (Orthoptera: Gryllidae). Ann. Entomol. Soc. Am. 1967, 60, 1238–1242. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Regulation (EU) 2021/882. Off. J. Eur. Union 2021, 64, 16–20. [Google Scholar]
- Kłobukowski, F.; Śmiechowska, M.; Skotnicka, M. Edible Insects from the Perspective of Sustainability—A Review of the Hazards and Benefits. Foods 2025, 14, 1382. [Google Scholar] [CrossRef] [PubMed]
- Olivadese, M.; Dindo, M.L. Edible Insects: A Historical and Cultural Perspective on Entomophagy with a Focus on Western Societies. Insects 2023, 14, 690. [Google Scholar] [CrossRef]
- European Union Law. Commission Implementing Regulation (EU) 2022/169. Off. J. Eur. Union 2022, 10, L28. [Google Scholar]
- European Union Law. Commission Implementing Regulation (EU) 2022/188. Off. J. Eur. Union 2022, 108, L30. [Google Scholar]
- European Union Law. Commission Implementing Regulation (EU) 2023/58. Off. J. Eur. Union 2023, 10, L5. [Google Scholar]
- Van Thielen, L.; Vermuyten, S.; Storms, B.; Rumpold, B.A.; Van Campenhout, L. Consumer Acceptance of Foods Containing Edible Insects in Belgium Two Years after Their Introduction to the Market. J. Insects Food Feed. 2018, 5, 35–44. [Google Scholar] [CrossRef]
- Raheem, D.; Carrascosa, C.; Oluwole, O.B.; Nieuwland, M.; Saraiva, A.; Millan, R.; Raposo, A. Traditional Consumption of and Rearing Edible Insects in Africa, Asia and Europe. Crit. Rev. Food Sci. Nutr. 2018, 59, 2169–2188. [Google Scholar] [CrossRef] [PubMed]
- Bußler, S.; Rumpold, B.A.; Jander, E.; Rawel, H.M.; Schlüter, O.K. Recovery and Techno-Functionality of Flours and Proteins from Two Edible Insect Species: Mealworm (Tenebrio molitor) and Black Soldier Fly (Hermetia illucens) Larvae. Heliyon 2016, 2, e00218. [Google Scholar] [CrossRef] [PubMed]
- Melgar-Lalanne, G.; Hernández-Álvarez, A.-J.; Salinas-Castro, A. Edible Insects Processing: Traditional and Innovative Technologies. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1166–1191. [Google Scholar] [CrossRef] [PubMed]
- Zuk-Gołaszewska, K.; Gałecki, R.; Obremski, K.; Smetana, S.; Figiel, S.; Gołaszewski, J. Edible Insect Farming in the Context of the EU Regulations and Marketing—An Overview. Insects 2022, 13, 446. [Google Scholar] [CrossRef]
- Pali-Schöll, I.; Meinlschmidt, P.; Larenas-Linnemann, D.; Purschke, B.; Hofstetter, G.; Rodríguez-Monroy, F.A.; Einhorn, L.; Mothes-Luksch, N.; Jensen-Jarolim, E.; Jäger, H. Edible Insects: Cross-Recognition of IgE from Crustacean- and House Dust Mite-Allergic Patients, and Reduction of Allergenicity by Food Processing. World Allergy Organ. J. 2019, 12, 100006. [Google Scholar] [CrossRef]
- De Gier, S.; Verhoeckx, K. Insect (Food) Allergy and Allergens. Mol. Immunol. 2018, 100, 82–106. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Safety of Frozen and Dried Formulations from Migratory Locust (Locusta migratoria) as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, 6667. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Safety of Partially Defatted House Cricket (Acheta domesticus) Powder as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFSA J. 2022, 20, 7258. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Safety of Frozen and Freeze-Dried Formulations of the Lesser Mealworm (Alphitobius diaperinus Larva) as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFSA J. 2022, 20, 7325. [Google Scholar]
- Niyonsaba, H.H.; Höhler, J.; Kooistra, J.; van der Fels-Klerx, H.J.; Meuwissen, M.P.M. Profitability of Insect Farms. J. Insects Food Feed. 2021, 7, 923–934. [Google Scholar] [CrossRef]
- European Commission. Approval Insect Novel Food; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- Balogh, P. Evaluation of an Alternate Source of Protein: Challenges and Opportunities of Entomophagy. Hung. J. Food Nutr. Mark. 2016, 3, 3–12. [Google Scholar]
- Looy, H.; Dunkel, F.V.; Wood, J.R. How Then Shall We Eat? Insect-Eating Attitudes and Sustainable Foodways. Agric. Hum. Values 2014, 31, 131–141. [Google Scholar] [CrossRef]
- Mancini, S.; Sogari, G.; Menozzi, D.; Nuvoloni, R.; Torracca, B.; Moruzzo, R.; Paci, G. Factors Predicting the Intention of Eating an Insect-Based Product. Foods 2019, 8, 270. [Google Scholar] [CrossRef]
- Szczepański, L.; Dupont, J.; Schade, F.; Hellberg, H.; Büscher, M.; Fiebelkorn, F. Effectiveness of a Teaching Unit on the Willingness to Consume Insect-Based Food—An Intervention Study with Adolescents from Germany. Front. Nutr. 2022, 9, 889805. [Google Scholar] [CrossRef]
- Szendrő, K.; Nagy, M.Z.; Tóth, K. Consumer Acceptance of Meat from Animals Reared. Animals 2020, 10, 1312. [Google Scholar] [CrossRef]
- Szendrő, K.; Tóth, K.; Nagy, M.Z. Opinions on Insect Consumption in Hungary. Foods 2020, 9, 1829. [Google Scholar] [CrossRef]
- Liu, X.; Chen, X.; Wang, H.; Yang, Q.; Ur Rehman, K.; Li, W.; Zheng, L. Dynamic Changes of Nutrient Composition Throughout the Entire Life Cycle of Black Soldier Fly. PLoS ONE 2017, 12, e0182601. [Google Scholar] [CrossRef]
- House, J. Consumer Acceptance of Insect-Based Foods in the Netherlands: Academic and Commercial Implications. Appetite 2016, 107, 47–58. [Google Scholar] [CrossRef]
- Abdullahi, N.; Igwe, E.C.; Dandago, M.A.; Yunusa, A.K. Consumption of Edible Insects: The Challenges and the Prospects. Food ScienTech J. 2021, 3, 1–24. [Google Scholar] [CrossRef]
- Hartmann, C.; Shi, J.; Giusto, A.; Siegrist, M. The Psychology of Eating Insects: A Cross-Cultural Comparison between Germany and China. Food Qual. Prefer. 2015, 44, 148–156. [Google Scholar] [CrossRef]
- Ruby, M.; Rozin, P.; Chan, C. Determinants of Willingness to Eat Insects in the USA and India. J. Insects Food Feed. 2015, 1, 215–225. [Google Scholar] [CrossRef]
- Lensvelt, E.J.; Steenbekkers, L.P. Exploring Consumer Acceptance of Entomophagy: A Survey and Experiment in Australia and the Netherlands. Ecol. Food Nutr. 2014, 53, 543–561. [Google Scholar] [CrossRef] [PubMed]
- Copelotti, E.; Menozzi, D.; Sogari, G.; Mora, C. Are Insect-Based Foods Healthy? An Evaluation of the Products Sold in European E-Commerce. Foods 2025, 14, 1450. [Google Scholar] [CrossRef]
- Gravel, A.; Doyen, A. The Use of Edible Insect Proteins in Food: Challenges and Issues Related to Their Functional Properties. Innov. Food Sci. Emerg. Technol. 2020, 59, 102272. [Google Scholar] [CrossRef]
- Udomsil, N.; Imsoonthornruksa, S.; Gosalawit, C.; Ketudat-Cairns, M. Nutritional Values and Functional Properties of House Cricket (Acheta domesticus) and Field Cricket (Gryllus bimaculatus). Food Sci. Technol. Res. 2019, 25, 597–605. [Google Scholar] [CrossRef]
- Feng, L.; Yan, L.; Zhang, J. The Role of Disease Management in Cricket Farming: A Review. J. Appl. Insect Sci. 2018, 57, 23–34. [Google Scholar]
- Micha, R.; Coates, J.; Leclercq, C.; Charrondiere, U.R.; Mozaffarian, D. Global Dietary Surveillance: Data Gaps and Challenges. Food Nutr. Bull. 2018, 39, 175–205. [Google Scholar] [CrossRef]
- Post, M.J. Cultured Meat from Stem Cells: Challenges and Prospects. Meat Sci. 2012, 92, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Gahukar, R.T. Factors Affecting Content and Bioefficacy of Neem (Azadirachta indica A. Juss.) Phytochemicals Used in Agricultural Pest Control: A Review. Crop Prot. 2014, 62, 93–99. [Google Scholar] [CrossRef]
- Gere, A.; Zemel, R.; Radványi, D.; Moskowitz, H. Insect-Based Foods: A Nutritional Point of View. Nutr. Food Sci. Int. J. 2017, 4, 555638. [Google Scholar] [CrossRef]
- Finke, M.D. Estimate of Chitin in Raw Whole Insects. Zoo Biol. 2007, 26, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Belluco, S.; Losasso, C.; Maggioletti, M.; Alonzi, C.C.; Paoletti, M.G.; Ricci, A. Edible Insects in the Food Industry: Opportunities and Challenges. Compr. Rev. Food Sci. Food Saf. 2013, 12, 296–313. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and Chitosan: Properties and Applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Dimopoulos, G.; Tsantes, M.; Taoukis, P. Effect of High Pressure Homogenization on the Production of Yeast Extract via Autolysis and Beta-Glucan Recovery. Innov. Food Sci. Emerg. Technol. 2020, 62, 102340. [Google Scholar] [CrossRef]
- Gorbunova, N.A.; Zakharov, A.N. Edible Insects as a Source of Alternative Protein. A Review. Theory Pract. Meat Process. 2021, 6, 23–32. [Google Scholar] [CrossRef]
- Derrien, C.; Boccuni, A. Current Status of the Insect Producing Industry in Europe. In Edible Insects in Sustainable Food Systems; Halloran, A., Flore, R., Vantomme, P., Roos, N., Eds.; Springer: New York, NY, USA, 2018; pp. 471–479. [Google Scholar] [CrossRef]
- Mandal, F.B.; Dutta, M. The Potential of Entomophagy against Malnutrition and Ensuring Food Sustainability. Afr. J. Biol. Sci. 2022, 4, 15–22. [Google Scholar] [CrossRef]
- Magara, H.J.O.; Niassy, S.; Ayieko, M.A.; Mukundamago, M.; Egonyu, J.P.; Tanga, C.M.; Kimathi, E.K.; Ongere, J.O.; Fiaboe, K.K.M.; Hugel, S.; et al. Edible Crickets (Orthoptera) Around the World: Distribution, Nutritional Value, and Other Benefits—A Review. Front. Nutr. 2021, 7, 537915. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Safety of Dried Yellow Mealworm (Tenebrio molitor Larva) as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, 6343. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Implementing Regulation (EU) 2021/882 of 1 June 2021 Authorising the Placing on the Market of Dried Tenebrio molitor Larva as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and Amending Commission Implementing Regulation (EU) 2017/2470. Off. J. Eur. Union 2021, L194, 16–20. [Google Scholar]
- European Commission. Commission Implementing Regulation (EU) 2021/1975 of 12 November 2021 Authorising the Placing on the Market of Frozen, Dried and Powder Forms of Locusta migratoria as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council and Amending Commission Implementing Regulation (EU) 2017/2470. Off. J. Eur. Union 2021, L402, 10–16. Available online: https://eur-lex.europa.eu/eli/reg_impl/2021/1975/oj (accessed on 15 July 2025).
- European Commission. Commission Implementing Regulation (EU) 2022/169 of 8 February 2022 Authorising the Placing on the Market of Frozen, Dried and Powder Forms of Tenebrio molitor (Yellow Mealworm) as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and Amending Commission Implementing Regulation (EU) 2017/2470. Off. J. Eur. Union 2022, L28, 10–16. Available online: https://eur-lex.europa.eu/eli/reg_impl/2022/169/oj (accessed on 15 July 2025).
- European Commission. Commission Implementing Regulation (EU) 2022/188 of 10 February 2022 Authorising the Placing on the Market of Frozen, Dried and Powder Forms of Acheta domesticus as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and Amending Commission Implementing Regulation (EU) 2017/2470. Off. J. Eur. Union 2022, L30, 108–113. Available online: https://eur-lex.europa.eu/eli/reg_impl/2022/188/oj (accessed on 15 July 2025).
- Finke, M.D. Complete Nutrient Content of Four Species of Commercially Available Feeder Insects. Zoo. Biol. 2013, 32, 27–36. [Google Scholar] [CrossRef]
- Tang, C.; Yang, D.; Liao, H.; Sun, H.; Liu, C. Edible Insects as a Food Source: A Review. Food Prod. Process. Nutr. 2019, 1, 1–13. [Google Scholar] [CrossRef]
- Hwang, S.S.; Baek, M.H.; Lee, J.H. Sensory Evaluation and Consumer Preferences for Cricket-Based Food Products. Food Qual. Prefer. 2017, 61, 74–85. [Google Scholar]
- Goff, M.; Peter, L. The Role of Cricket Flour in Food Product Development. Food Sci. Rev. 2018, 26, 105–114. [Google Scholar]
- Ayensu, J.; Annan, R.A.; Edusei, A.; Lutterodt, H. Beyond Nutrients, Health Effects of Entomophagy: A Systematic Review. Nutr. Food Sci. 2019, 49, 2–17. [Google Scholar] [CrossRef]
- Florenca, S.G.; Guine, R.P.; Goncalves, F.J.; Barroca, M.J.; Ferreira, M.; Costa, C.A.; Cunha, L.M. The Motivations for Consumption of Edible Insects: A Systematic Review. Foods 2022, 11, 3643. [Google Scholar] [CrossRef]
- Tobolkova, B. Edible Insects-the Future of a Healthy Diet? Nov. Tech. Nutr. Food Sci. 2019, 4, 325–328. [Google Scholar] [CrossRef]
- DeFoliart, G.R. Insects as Food: Why the Western Attitude Is Important. Annu. Rev. Entomol. 1999, 44, 21–50. [Google Scholar] [CrossRef] [PubMed]
- Kouřimská, I.; Adámková, A. Nutritional and Sensory Quality of Edible Insects. NFS J. 2016, 4, 22–26. [Google Scholar] [CrossRef]
- Kim, M.-S.; Ye, S.-J.; Roh, J.-H.; Choi, H.-W.; Baik, M.-Y. Comprehensive Analysis of Storage Stability of Hong-Jam Under Various Conditions: Correlation Between Lipid Oxidation Factors and Alternative Quality Parameters. Foods 2025, 14, 1593. [Google Scholar] [CrossRef]
- Han, R.; Shin, J.T.; Kim, J.; Choi, Y.S.; Kim, Y.W. An Overview of the South Korean Edible Insect Food Industry: Challenges and Future Pricing/Promotion Strategies. Entomol. Res. 2017, 47, 141–151. [Google Scholar] [CrossRef]
- Biro, B.; Fodor, R.; Szedljak, I.; Pasztor-Huszar, K.; Gere, A. Buckwheat-Pasta Enriched with Silkworm Powder: Technological Analysis and Sensory Evaluation. LWT 2019, 116, 108542. [Google Scholar] [CrossRef]
- Biro, B.; Sipos, M.A.; Kovacs, A.; Badak-Kerti, K.; Pasztor-Huszar, K.; Gere, A. Cricket-Enriched Oat Biscuit: Technological Analysis and Sensory Evaluation. Foods 2020, 9, 1561. [Google Scholar] [CrossRef]
A. domesticus | G. bimaculatus | |
---|---|---|
Components | % dry matter | |
Moisture | 6.3 ± 0.04 | 3.0 ± 0.03 *** |
Protein | 71.7 ± 0.5 | 60.7 ± 0.4 *** |
Lipid | 10.4 ± 0.1 | 23.4 ± 0.1 *** |
Ash | 5.4 ± 0.3 | 2.8 ± 0.06 ** |
Fibre | 4.6 ± 0.2 | 10.0 ± 0.3 *** |
Carbohydrate | 1.6 ± 0.1 | 0.1 ± 0.01 *** |
Mineral content | mg/100 g dry matter | |
Calcium (Ca) | 149.75 ± 7.16 | 105.14 ± 9.31 ** |
Sodium (Na) | 101.44 ± 7.80 | 88.84 ± 20.43 |
Potassium (K) | 389.92 ± 1.38 | 321.71 ± 6.21 ** |
Phosphorus (P) | 899.33 ± 36.19 | 702.02 ± 6.35 ** |
Magnesium (Mg) | 136.58 ± 4.92 | 72.94 ± 2.64 *** |
Iron (Fe) | 8.83 ± 3.88 | 7.16 ± 1.28 |
Copper (Cu) | 4.86 ± 0.35 | 3.86 ± 0.18 |
Manganese (Mn) | 4.40 ± 0.08 | 3.40 ± 0.13 *** |
Zinc (Zn) | 19.61 ± 0.83 | 14.39 ± 2.29 * |
A. domesticus | G. bimaculatus | |
---|---|---|
Amino acid | ||
Valine | 4.50 ± 0.03 | 3.50 ± 0.03 *** |
Isoleucine | 2.90 ± 0.10 | 2.35 ± 0.07 * |
Leucine | 3.80 ± 0.14 | 3.88 ± 0.08 |
Lysine | 3.22 ± 0.08 | 2.89 ± 0.07 ** |
Threonine | 1.65 ± 0.05 | 1.67 ± 0.09 |
Phenylalanine | 2.38 ± 0.03 | 2.24 ± 0.05 |
Methionine | 0.98 ± 0.03 | 0.86 ± 0.04 |
Histidine | 1.72 ± 0.02 | 1.57 ± 0.03 |
Tryptophan | 0.43 ± 0.03 | 0.27 ± 0.02 *** |
Arginine | 3.92 ± 0.05 | 3.47 ± 0.05 * |
Asparagine + Aspartic acid | 4.61 ± 0.23 | 2.87 ± 0.16 *** |
Glutamine + Glutamic acid | 6.45 ± 0.05 | 6.77 ± 0.07 |
Serine | 1.59 ± 0.09 | 1.32 ± 0.13 * |
Glycine | 2.60 ± 0.15 | 3.31 ± 0.26 ** |
Alanine | 3.67 ± 0.05 | 4.69 ± 0.10 *** |
Cystine | 0.40 ± 0.00 | 0.38 ± 0.00 |
Proline | 3.04 ± 0.03 | 2.81 ± 0.06 * |
Tyrosine | 2.71 ± 0.10 | 2.77 ± 0.05 |
EAA | 21.58 ± 0.28 | 19.23 ± 0.04 ** |
NEAA | 28.97 ± 0.48 | 28.40 ± 0.22 |
Total | 50.55 ± 0.20 | 47.63 ± 0.27 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farkas, V.I.; Máté, M.; Takács, K.; Jánosi, A. The House Cricket (Acheta domesticus Linnaeus) in Food Industry: Farming, Technological Challenges, and Sustainability Considerations. Appl. Sci. 2025, 15, 9494. https://doi.org/10.3390/app15179494
Farkas VI, Máté M, Takács K, Jánosi A. The House Cricket (Acheta domesticus Linnaeus) in Food Industry: Farming, Technological Challenges, and Sustainability Considerations. Applied Sciences. 2025; 15(17):9494. https://doi.org/10.3390/app15179494
Chicago/Turabian StyleFarkas, Viktória Ildikó, Mónika Máté, Krisztina Takács, and Anna Jánosi. 2025. "The House Cricket (Acheta domesticus Linnaeus) in Food Industry: Farming, Technological Challenges, and Sustainability Considerations" Applied Sciences 15, no. 17: 9494. https://doi.org/10.3390/app15179494
APA StyleFarkas, V. I., Máté, M., Takács, K., & Jánosi, A. (2025). The House Cricket (Acheta domesticus Linnaeus) in Food Industry: Farming, Technological Challenges, and Sustainability Considerations. Applied Sciences, 15(17), 9494. https://doi.org/10.3390/app15179494