Optimizing Vegan Nutrition: Current Challenges and Potential Solutions
Abstract
1. Introduction
2. Nutrients That Might Be Absent or in Very Small Amounts in Vegan or Plant-Based Diets
2.1. Omega3 Fatty Acids: Eicosapentaenoic (EPA) and Docosahexaenoic (DHA)
2.2. Vitamin A: β-Carotene and Retinol
2.3. Iodine
2.4. Selenium
2.5. Other Nutrients
3. Optimizing Micronutrient Content in Plant Foods
4. Are Current Dietary Reference Intakes Valid for Plant-Based Diets?
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Sustainable Healthy Diets: Guiding Principles. Available online: https://www.who.int/publications/i/item/9789241516648 (accessed on 15 May 2025).
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Rzymski, P.; Kulus, M.; Jankowski, M.; Dompe, C.; Bryl, R.; Petitte, J.N.; Kempisty, B.; Mozdziak, P. COVID-19 Pandemic Is a Call to Search for Alternative Protein Sources as Food and Feed: A Review of Possibilities. Nutrients 2021, 5, 150. [Google Scholar] [CrossRef]
- Hargreaves, S.M.; Rosenfeld, D.L.; Moreira, A.V.B.; Zandonadi, R.P. Plant-based and vegetarian diets: An overview and definition of these dietary patterns. Eur. J. Nutr. 2023, 62, 1109–1121. [Google Scholar] [CrossRef]
- Kent, G.; Kehoe, L.; Flynn, A.; Walton, J. Plant-based diets: A review of the definitions and nutritional role in the adult diet. Proc. Nutr. Soc. 2022, 81, 62–74. [Google Scholar] [CrossRef]
- Cena, H.; Calder, P.C. Defining a Healthy Diet: Evidence for The Role of Contemporary Dietary Patterns in Health and Disease. Nutrients 2020, 12, 334. [Google Scholar] [CrossRef]
- Wang, T.; Masedunskas, A.; Willett, W.C.; Fontana, L. Vegetarian and vegan diets: Benefits and drawbacks. Eur. Heart J. 2023, 44, 3423–3439. [Google Scholar] [CrossRef] [PubMed]
- Menos Carne, Más Vida. Spanish Ministry of Consumer Affairs. Available online: https://www.youtube.com/watch?v=OddlzKikgeA (accessed on 15 May 2025).
- Seffen, A.E.; Dohle, S. What motivates German consumers to reduce their meat consumption? Identifying relevant beliefs. Appetite 2023, 187, 106593. [Google Scholar] [CrossRef]
- Borusiak, B.; Szymkowiak, A.; Kucharska, B.; Gálová, J.; Mravcová, A. Predictors of intention to reduce meat consumption due to environmental reasons–Results from Poland and Slovakia. Meat Sci. 2022, 184, 108674. [Google Scholar] [CrossRef] [PubMed]
- Selinger, E.; Neuenschwander, M.; Koller, A.; Gojda, J.; Kühn, T.; Schwingshackl, L.; Barbaresko, J.; Schlesinger, S. Evidence of a vegan diet for health benefits and risks—An umbrella review of meta-analyses of observational and clinical studies. Crit. Rev. Food Sci. Nutr. 2023, 63, 9926–9936. [Google Scholar] [CrossRef] [PubMed]
- Bakaloudi, D.R.; Halloran, A.; Rippin, H.L.; Oikonomidou, A.C.; Dardavesis, T.I.; Williams, J.; Wickramasinghe, K.; Breda, J.; Chourdakis, M. Intake and adequacy of the vegan diet. A systematic review of the evidence. Clin. Nutr. 2021, 40, 3503–3521. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Rosenberg, I.; Uauy, R. History of modern nutrition science—Implications for current research, dietary guidelines, and food policy. BMJ 2018, 361, k2392. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Angell, S.Y.; Lang, T.; Rivera, J.A. Role of government policy in nutrition—Barriers to and opportunities for healthier eating. BMJ 2018, 361, k2426. [Google Scholar] [CrossRef]
- Crider, K.S.; Bailey, L.B.; Berry, R.J. Folic acid food fortification-its history, effect, concerns, and future directions. Nutrients 2011, 3, 370–384. [Google Scholar] [CrossRef]
- Crider, K.S.; Qi, Y.P.; Yeung, L.F.; Mai, C.T.; Head Zauche, L.; Wang, A.; Daniels, K.; Williams, J.L. Folic Acid and the Prevention of Birth Defects: 30 Years of Opportunity and Controversies. Annu. Rev. Nutr. 2022, 42, 423–452. [Google Scholar] [CrossRef]
- Craig, W.J.; Mangels, A.R.; Fresán, U.; Marsh, K.; Miles, F.L.; Saunders, A.V.; Haddad, E.H.; Heskey, C.E.; Johnston, P.; Larson-Meyer, E.; et al. The Safe and Effective Use of Plant-Based Diets with Guidelines for Health Professionals. Nutrients 2021, 13, 4144. [Google Scholar] [CrossRef]
- Raj, S.; Guest, N.S.; Landry, M.J.; Mangels, A.R.; Pawlak, R.; Rozga, M. Vegetarian Dietary Patterns for Adults: A Position Paper of the Academy of Nutrition and Dietetics. J. Acad. Nutr. Diet. 2025, 125, 831–846.e2. [Google Scholar] [CrossRef]
- Spector, A.; Kim, H.Y. Discovery of Essential Fatty Acids. J. Lipid Res. 2014, 56, 11–21. [Google Scholar] [CrossRef]
- Arterburn, L.M.; Hall, E.B.; Oken, H. Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am. J. Clin. Nutr. 2006, 83, 1467S–1476S. [Google Scholar] [CrossRef]
- Horrobin, D.F. Nutritional and medical importance of gammalinolenic acid. Prog. Lipid Res. 1992, 31, 163–194. [Google Scholar] [CrossRef]
- Sarter, B.; Kelsey, K.S.; Schwartz, T.A.; Harris, W.S. Blood docosahexaenoic acid and eicosapentaenoic acid in vegans: Associations with age and gender and effects of an algal-derived omega-3 fatty acid supplement. Clin. Nutr. 2015, 34, 212–218. [Google Scholar] [CrossRef]
- Pinto, A.M.; Sanders, T.A.; Kendall, A.C.; Nicolaou, A.; Gray, R.; Al-Khatib, H.; Hall, W.L. A comparison of heart rate variability, n-3 PUFA status and lipid mediator profile in age- and BMI-matched middle-aged vegans and omnivores. Br. J. Nutr. 2017, 117, 669–685. [Google Scholar] [CrossRef]
- Perrin, M.T.; Pawlak, R.; Dean, L.L.; Christis, A.; Friend, L. A cross-sectional study of fatty acids and brain-derived neurotropic factor (BDNF) in human milk from lactating women following vegan vegetarian and omnivore diets. Eur. J. Clin. Nutr. 2019, 58, 2401–2410. [Google Scholar] [CrossRef] [PubMed]
- Echeverría, F.R.; Valenzuela, M.C.; Hernandez-Rodas, E.; Valenzuela, A. Docosahexaenoic acid (DHA), a fundamental fatty acid for the brain: New dietary sources. Prostaglandins Leukot. Essent. Fatty Acids 2017, 124, 1–10. [Google Scholar] [CrossRef]
- Birch, E.E.; Carlson, S.E.; Hoffman, D.R.; Fitzgerald-Gustafson, K.M.; Fu, V.L.N.; Drover, J.R.; Castañeda, Y.S.; Minns, L.; Wheaton, D.K.; Mundy, D. The DIAMOND (DHA Intake and Measurement of neural development) Study: A double-masked, randomized controlled clinical trial of the maturation of infant visual acuity as a function of the dietary level of docosahexaenoic acid. Am. J. Clin. Nutr. 2010, 4, 848–859. [Google Scholar] [CrossRef]
- Davis, B.C.; Kris-Etherton, P.M. Achieving optimal essential fatty acid status in vegetarians: Current knowledge and practical implications. Am. J. Clin. Nutr. 2003, 78, 640S–646S. [Google Scholar] [CrossRef]
- Gebauer, S.K.; Psota, T.L.; Harris, W.S.; Kris-Etherton, P.M. n-3 fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular benefits. Am. J. Clin. Nutr. 2006, 83, 1526S–1535S. [Google Scholar] [CrossRef] [PubMed]
- Burns-Whitmore, B.; Froyen, E.; Heskey, C.; Parker, T.; San Pablo, G. Alpha-Linolenic and Linoleic Fatty Acids in the Vegan Diet: Do They Require Dietary Reference Intake/Adequate Intake Special Consideration? Nutrients 2019, 4, 2365. [Google Scholar] [CrossRef]
- Hovinen, T.; Korkalo, L.; Freese, R.; Skaffari, E.; Isohanni, P.; Niemi, M.; Nevalainen, J.; Gylling, H.; Suomalainen, A. Vegan diet in young children remodels metabolism and challenges the statuses of essential nutrients. EMBO Mol. Med. 2021, 5, e13492. [Google Scholar] [CrossRef]
- Sanders, T.A. DHA status of vegetarians. Prostaglandins Leukot. Essent. Fatty Acids 2009, 81, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Lane, K.E.; Wilson, M.; Hellon, T.G.; Davies, I.G. Bioavailability and conversion of plant-based sources of omega-3 fatty acids–a scoping review to update supplementation options for vegetarians and vegans. Crit. Rev. Food Sci. Nutr. 2022, 62, 4982–4997. [Google Scholar] [CrossRef]
- EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J. 2010, 8, 1461. [Google Scholar] [CrossRef]
- Abdelhamid, A.S.; Brown, T.J.; Brainard, J.S.; Biswas, P.; Thorpe, G.C.; Moore, H.J.; Deane, K.H.; AlAbdulghafoor, F.K.; Summerbell, C.D.; Worthington, H.V.; et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2018, 30, 11. [Google Scholar] [CrossRef]
- Newberry, S.J.; Chung, M.; Booth, M.; Maglione, M.A.; Tang, A.M.; O’Hanlon, C.E.; Wang, D.D.; Okunogbe, A.; Huang, C.; Motala, A.; et al. Omega-3 Fatty Acids and Maternal and Child Health: An Updated Systematic Review. Evid. Rep. Technol. Assess. 2016, 224, 1–826. [Google Scholar] [CrossRef]
- Karcz, K.; Królak-Olejnik, B. Vegan or vegetarian diet and breast milk composition–a systematic review. Crit. Rev. Food Sci. Nutr. 2021, 61, 1081–1098. [Google Scholar] [CrossRef]
- Vidailhet, M.; Rieu, D.; Feillet, F.; Bocquet, A.; Chouraqui, J.P.; Darmaun, D.; Dupont, C.; Frelut, M.L.; Girardet, J.P.; Hankard, R.; et al. Vitamin A in pediatrics: An update from the Nutrition Committee of the French Society of Pediatrics. Arch. Pediatr. 2017, 24, 288–297. [Google Scholar] [CrossRef]
- EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific opinion on Dietary Reference Values for vitamin A. EFSA J. 2015, 13, 4028. [Google Scholar] [CrossRef]
- Strobel, M.; Tinz, J.; Biesalski, H.K. The importance of beta-carotene as a source of vitamin A with special regard to pregnant and breastfeeding women. Eur. J. Nutr. 2007, 46, I1–I20. [Google Scholar] [CrossRef]
- Borel, P.; Desmarchelier, C. Genetic Variations Associated with Vitamin A Status and Vitamin A Bioavailability. Nutrients 2017, 8, 246. [Google Scholar] [CrossRef]
- Li, D.; Sinclair, A.J.; Mann, N.J.; Turner, A.; Ball, M.J. Selected micronutrient intake and status in men with differing meat intakes, vegetarians and vegans. Asia Pac. J. Clin. Nutr. 2000, 9, 18–23. [Google Scholar] [CrossRef]
- Kristensen, N.B.; Madsen, M.L.; Hansen, T.H.; Allin, K.H.; Hoppe, C.; Fagt, S.; Lausten, M.S.; Gøbel, R.J.; Vestergaard, H.; Hansen, T.; et al. Intake of macro- and micronutrients in Danish vegans. Nutr. J. 2015, 30, 115. [Google Scholar] [CrossRef]
- Weikert, C.; Trefflich, I.; Menzel, J.; Obeid, R.; Longree, A.; Dierkes, J.; Meyer, K.; Herter-Aeberli, I.; Mai, K.; Stangl, G.I.; et al. Vitamin and Mineral Status in a Vegan Diet. Dtsch. Arztebl. Int. 2020, 31, 575–582. [Google Scholar] [CrossRef]
- Tanumihardjo, S.A.; Russell, R.M.; Stephensen, C.B.; Gannon, B.M.; Craft, N.E.; Haskell, M.J.; Lietz, G.; Schulze, K.; Raiten, D.J. Biomarkers of nutrition for development (BOND)—Vitamin A review. J. Nutr. 2016, 146, 1816S–1848S. [Google Scholar] [CrossRef]
- Yee, M.M.F.; Chin, K.Y.; Ima-Nirwana, S.; Wong, S.K. Vitamin A and Bone Health: A Review on Current Evidence. Molecules 2021, 21, 1757. [Google Scholar] [CrossRef]
- Chen, G.D.; Zhu, Y.Y.; Cao, Y.; Liu, J.; Shi, W.Q.; Liu, Z.M.; Chen, Y.M. Association of dietary consumption and serum levels of vitamin A and β-carotene with bone mineral density in Chinese adults. Bone 2015, 79, 110–115. [Google Scholar] [CrossRef]
- Kopec, R.E.; Cooperstone, J.L.; Schweiggert, R.M.; Young, G.S.; Harrison, E.H.; Francis, D.M.; Clinton, S.K.; Schwartz, S.J. Avocado Consumption Enhances Human Postprandial Provitamin A. Absorption and Conversion from a Novel High-β-Carotene Tomato Sauce and from Carrots. J. Nutr. 2014, 144, 1158–1166. [Google Scholar] [CrossRef]
- Unlu, N.Z.; Bohn, T.; Clinton, S.K.; Schwartz, S.J. Carotenoid absorption from salad and salsa by humans is enhanced by the addition of avocado or avocado oil. J. Nutr. 2005, 135, 431–436. [Google Scholar] [CrossRef] [PubMed]
- White, W.S.; Zhou, Y.; Crane, A.; Dixon, P.; Quadt, F.; Flendrig, L.M. Modeling the dose effects of soybean oil in salad dressing on carotenoid and fat-soluble vitamin bioavailability in salad vegetables. Am. J. Clin. Nutr. 2017, 106, 1041–1051. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B. The role of iodine in human growth and development. Semin. Cell Dev. Biol. 2011, 22, 645–652. [Google Scholar] [CrossRef]
- Kapil, U. Health consequences of iodine deficiency. Sultan Qaboos Univ. Med. J. 2007, 7, 267–272. [Google Scholar] [CrossRef]
- Pearce, E.N.; Lazarus, J.H.; Moreno-Reyes, R.; Zimmermann, M.B. Consequences of iodine deficiency and excess in pregnant women: An overview of current knowns and unknowns. Am. J. Clin. Nutr. 2016, 104, 918s–923s. [Google Scholar] [CrossRef] [PubMed]
- Pearce, E.N.; Caldwell, K.L. Urinary iodine, thyroid function, and thyroglobulin as biomarkers of iodine status. Am. J. Clin. Nutr. 2016, 104, 898–901. [Google Scholar] [CrossRef]
- EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific Opinion on Dietary Reference Values for iodine. EFSA J. 2014, 12, 3660. [Google Scholar] [CrossRef]
- Skeaff, A.S. Iodine Nutrition in Pregnancy. In Comprehensive Handbook of Iodine; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- WHO; ICCIDD; UNICEF. Assessment of Iodine Deficiency Disorders and Monitoring Their Elimination. A Guide for Programme Managers. 2007. Available online: https://iris.who.int/bitstream/handle/10665/43781/9789241595827_eng.pdf (accessed on 21 July 2025).
- Vila, L.; Lucas, A.; Donnay, S.; De la Vieja, A.; Wengrovicz, S.; Santiago, P.; Bandrés, O.; Velasco, I.; Garcia-Fuentes, E.; Ares, S.; et al. Iodine nutrition status in Spain Needs for the future. Endocrinol. Diabetes Nutr. 2020, 67, 61–69. [Google Scholar] [CrossRef]
- Brantsæter, A.L.; Knutsen, H.K.; Johansen, N.C.; Nyheim, K.A.; Erlund, I.; Meltzer, H.M.; Henjum, S. Inadequate Iodine Intake in Population Groups Defined by Age, Life Stage and Vegetarian Dietary Practice in a Norwegian Convenience Sample. Nutrients 2018, 17, 230. [Google Scholar] [CrossRef]
- Lightowler, H.; Davies, G. Assessment of iodine intake in vegans: Weighed dietary record vs duplicate portion technique. Eur. J. Clin. Nutr. 2002, 56, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Groufh-Jacobsen, S.; Hess, S.Y.; Aakre, I.; Folven-Gjengedal, E.L.; Blandhoel-Pettersen, K.; Henjum, S. Vegans, Vegetarians and Pescatarians Are at Risk of Iodine Deficiency in Norway. Nutrients 2020, 20, 3555. [Google Scholar] [CrossRef] [PubMed]
- Krajčovičová-Kudláčková, M.; Bučková, K.; Klimeš, I.; Šeboková, E. Iodine Deficiency in Vegetarians and Vegans. Ann. Nutr. Metab. 2003, 47, 183–185. [Google Scholar] [CrossRef]
- Alles, B.; Baudry, J.; Mejean, C.; Touvier, M.; Peneau, S.; Hercberg, S.; Kesse-Guyot, E. Comparison of sociodemographic and nutritional characteristics between self-reported vegetarians, vegans, and meat-eaters from the nutriNet-santé study. Nutrients 2017, 9, 1023. [Google Scholar] [CrossRef]
- Sobiecki, J.G.; Appleby, P.N.; Bradbury, K.E.; Key, T.J. High compliance with dietary recommendations in a cohort of meat eaters, fish eaters, vegetarians, and vegans: Results from the European Prospective Investigation into Cancer and Nutrition-Oxford study. Nutr. Res. 2016, 36, 464–477. [Google Scholar] [CrossRef] [PubMed]
- Eveleigh, E.R.; Coneyworth, L.J.; Avery, A.; Welham, S.J.M. Vegans, Vegetarians, and Omnivores: How Does Dietary Choice Influence Iodine Intake? A Systematic Review. Nutrients 2020, 29, 1606. [Google Scholar] [CrossRef]
- Světnička, M.; Heniková, M.; Selinger, E.; Ouřadová, A.; Potočková, J.; Kuhn, T.; Gojda, J.; El-Lababidi, E. Prevalence of iodine deficiency among vegan compared to vegetarian and omnivore children in the Czech Republic: Cross-sectional study. Eur. J. Clin. Nutr. 2023, 77, 1061–1070. [Google Scholar] [CrossRef] [PubMed]
- Baroni, L.; Goggi, S.; Battaglino, R.; Berveglieri, M.; Fasan, I.; Filippin, D.; Griffith, P.; Rizzo, G.; Tomasini, C.; Tosatti, M.A.; et al. Vegan Nutrition for Mothers and Children: Practical Tools for Healthcare Providers. Nutrients 2018, 20, 5. [Google Scholar] [CrossRef] [PubMed]
- Zava, T.T.; Zava, D.T. Assessment of Japanese iodine intake based on seaweed consumption in Japan: A literature-based analysis. Thyroid. Res. 2011, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Bouga, M.; Combet, E. Emergence of Seaweed and Seaweed-Containing Foods in the UK: Focus on Labeling, Iodine Content, Toxicity and Nutrition. Foods 2015, 15, 240–253. [Google Scholar] [CrossRef]
- Kieliszek, M. Selenium−Fascinating Microelement, Properties and Sources in Food. Molecules 2019, 24, 1298. [Google Scholar] [CrossRef]
- Rayman, M.P. Selenium intake, status, and health: A complex relationship. Hormones 2020, 19, 9–14. [Google Scholar] [CrossRef]
- Combs, G.F., Jr. Selenium in global food systems. Br. J. Nutr. 2001, 85, 517–547. [Google Scholar] [CrossRef]
- Rayman, M.P. The use of high-Se yeast to raise Se status: How does it measure up? Br. J. Nutr. 2004, 92, 557–573. [Google Scholar] [CrossRef]
- EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific Opinion on Dietary Reference Values for selenium. EFSA J. 2014, 12, 3846. [Google Scholar] [CrossRef]
- Schupbach, R.; Wegmuller, R.; Berguerand, C.; Bui, M.; Herter-Aeberli, I. Micronutrient status and intake in omnivores, vegetarians and vegans in Switzerland. Am. J. Clin. Nutr. 2017, 56, 283–293. [Google Scholar] [CrossRef]
- Elorinne, A.L.; Alfthan, G.; Erlund, I.; Kivimaki, H.; Paju, A.; Salminen, I. Food and nutrient intake and nutritional status of Finnish vegans and non-vegetarians. PLoS ONE 2016, 11, e0148235. [Google Scholar] [CrossRef]
- Fallon, N.; Dillon, S.A. Low Intakes of Iodine and Selenium Amongst Vegan and Vegetarian Women Highlight a Potential Nutritional Vulnerability. Front. Nutr. 2020, 20, 72. [Google Scholar] [CrossRef]
- Haug, A.; Graham, R.D.; Christophersen, O.A.; Lyons, G.H. How to use the world’s scarce selenium resources efficiently to increase the selenium concentration in food. Microb. Ecol. Health Dis. 2007, 19, 209–228. [Google Scholar] [CrossRef]
- International Food Policy Research Institute. Available online: https://www.ifpri.org/topic/food-systems (accessed on 3 June 2025).
- Garg, M.; Sharma, N.; Sharma, S.; Kapoor, P.; Kumar, A.; Chunduri, V.; Arora, P. Biofortified Crops Generated by Breeding, Agronomy, and Transgenic Approaches Are Improving Lives of Millions of People around the World. Front. Nutr. 2018, 14, 12. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsch, R. Global spread of Conservation Agriculture. Int. J. Environ. Stud. 2019, 76, 29–51. [Google Scholar] [CrossRef]
- Hotz, C. Biofortification. In Encyclopedia of Human Nutrition, 3rd ed.; Caballero, B., Ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 175–181. [Google Scholar]
- Białowąs, W.; Blicharska, E.; Drabik, K. Biofortification of Plant- and Animal-Based Foods in Limiting the Problem of Microelement Deficiencies-A Narrative Review. Nutrients 2024, 16, 1481. [Google Scholar] [CrossRef] [PubMed]
- Medina-Lozano, I.; Díaz, A. Applications of Genomic Tools in Plant Breeding: Crop Biofortification. Int. J. Mol. Sci. 2022, 23, 3086. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Qu, J.; Pu, Y.; Rao, S.; Xu, F.; Wu, C. Selenium Biofortification of Crop Food by Beneficial Microorganisms. J. Fungi 2020, 6, 59. [Google Scholar] [CrossRef]
- Avnee, S.-S.; Chaudhary, D.R.; Jhorar, P.; Rana, R.S. Biofortification: An approach to eradicate micronutrient deficiency. Front. Nutr. 2023, 10, 1233070. [Google Scholar] [CrossRef]
- Buturi, C.V.; Mauro, R.P.; Fogliano, V.; Leonardi, C.; Giuffrida, F. Mineral Biofortification of Vegetables as a Tool to Improve Human Diet. Foods 2021, 10, 223. [Google Scholar] [CrossRef]
- Dary, O.; Mora, J.O. Food Fortification: Technological Aspects. In Encyclopedia of Human Nutrition, 3rd ed.; Caballero, B., Ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 306–314. [Google Scholar]
- FAO; WHO. Codex Alimentarius, 2nd ed.; FAO: Rome, Italy, 1994; Volume 4. [Google Scholar]
- Global Fortification Data Exchange. Available online: https://fortificationdata.org/ (accessed on 3 June 2025).
- European Council. Regulation (EC) No 1925/2006 of the european parliament and of the council of 20 December 2006 on the addition of vitamins and minerals and of certain other substances to foods. Off. J. Eur. Union 2006, L 404, 26–38. [Google Scholar]
- Gibson, R.S.; Raboy, V.; King, J.C. Implications of phytate in plant-based foods for iron and zinc bioavailability, setting dietary requirements, and formulating programs and policies. Nutr. Rev. 2018, 76, 793–804. [Google Scholar] [CrossRef]
- Teucher, B.; Olivares, M.; Cori, H. Enhancers of iron absorption: Ascorbic acid and other organic acids. Int. J. Vitam. Nutr. Res. 2004, 74, 403–419. [Google Scholar] [CrossRef] [PubMed]
- Kerstetter, J.E.; O’Brien, K.O.; Caseria, D.M.; Wall, D.E.; Insogna, K.L. The impact of dietary protein on calcium absorption and kinetic measures of bone turnover in women. J. Clin. Endocrinol. Metab. 2005, 90, 26–31. [Google Scholar] [CrossRef]
- Powell, D.J.; Li, D.; Smith, B.; Chen, W.N. Cultivated meat microbiological safety considerations and practices. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70077. [Google Scholar] [CrossRef]
- Liu, Y.; Aimutis, W.R.; Drake, M. Dairy, Plant, and Novel Proteins: Scientific and Technological Aspects. Foods 2024, 13, 1010. [Google Scholar] [CrossRef]
- Dey, S.; Hettiarachchy, N.; Bisly, A.A.; Luthra, K.; Atungulu, G.G.; Ubeyitogullari, A.; Mozzoni, L.A. Physical and textural properties of functional edible protein films from soybean using an innovative 3D printing technology. J. Food Sci. 2022, 87, 4808–4819. [Google Scholar] [CrossRef]
- Rebouillat, P.; Vidal, R.; Cravedi, J.P.; Taupier-Letage, B.; Debrauwer, L.; Gamet-Payrastre, L.; Touvier, M.; Hercberg, S.; Lairon, D.; Baudry, J.; et al. Estimated dietary pesticide exposure from plant-based foods using NMF-derived profiles in a large sample of French adults. Eur. J. Nutr. 2021, 60, 1475–1488. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Dietary Reference Values. Available online: https://www.efsa.europa.eu/en/topics/topic/dietary-reference-values (accessed on 13 May 2025).
- European Food Safety Authority (EFSA). Dietary Reference Values for nutrients. Summary Report. EFSA Support. Publ. 2017, 14, e15121. Available online: https://www.efsa.europa.eu/en/supporting/pub/e15121 (accessed on 14 May 2025). [CrossRef]
- National Research Council (US). Subcommittee on the tenth edition of the recommended dietary allowances. In Recommended Dietary Allowances, 10th ed.; National Academies Press: Washington, DC, USA, 1989. Available online: https://www.ncbi.nlm.nih.gov/books/NBK234926/ (accessed on 14 May 2025).
- Subcommittee on Interpretation and Uses of Dietary Reference Intakes and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary Reference Intakes: Applications in Dietary Planning; National Academies Press: Washington, DC, USA, 2003; Available online: http://www.nap.edu/catalog/10609.html (accessed on 14 May 2025).
- SCF (Scientific Committee on Food). Nutrient and energy intakes for the European Community. In Reports of the Scientific Committee for Food, 31st Series. Food–Science and Technique; European Commission: Luxembourg, 1993; Volume 248, p. 3. [Google Scholar]
- U.S. Department of Agriculture. FoodData Central. Available online: https://fdc.nal.usda.gov/ (accessed on 2 February 2022).
- Lane, K.; Derbyshire, E.; Li, W.; Brennan, C. Bioavailability and potential uses of vegetarian sources of omega-3 fatty acids: A review of the literature. Crit. Rev. Food. Sci. Nutr. 2014, 54, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Armah, S.M.; Carriquiry, A.; Sullivan, D.; Cook, J.D.; Reddy, M.B. A complete diet-based algorithm for predicting nonheme iron absorption in adults. J. Nutr. 2013, 143, 1136–1140. [Google Scholar] [CrossRef] [PubMed]
- Hunt, J.R.; Roughead, Z.K. Nonheme-iron absorption, fecal ferritin excretion, and blood indexes of iron status in women consuming controlled lactoovovegetarian diets for 8 week. Am. J. Clin. Nutr. 1999, 69, 944–952. [Google Scholar] [CrossRef] [PubMed]
- Herforth, A.; Arimond, M.; Álvarez-Sánchez, C.; Coates, J.; Christianson, K.; Muehlhoff, E. A Global Review of Food-Based Dietary Guidelines. Adv. Nutr. 2019, 10, 590–605. [Google Scholar] [CrossRef] [PubMed]
Nutrient | Chemical Formulations Allowed |
---|---|
Vitamin A | Retinol |
Retinyl acetate | |
Retinyl palmitate | |
Beta-carotene | |
Vitamin D | Cholecalciferol |
Ergocalciferol | |
Vitamin B6 | Pyridoxine hydrochloride |
Pyridoxine 5′-phosphate | |
Pyridoxine dipalmitate | |
Vitamin B8 | D-biotin |
Vitamin B12 | Cyanocobalamin |
Hydroxocobalamin | |
Calcium compounds | Calcium compounds such as carbonate, chloride, salts of citric acid, gluconate, glycerophosphate, lactate, salts of orthophosphoric acid, hydroxide, oxide, and sulphate |
Iodine | Sodium iodide and iodate, potassium iodide and iodate |
Selenium | Sodium selenite and hydrogen selenite |
Iron | Iron compounds such as ferrous carbonate, citrate, ammonium citrate, gluconate, fumarate, sodium diphosphate, lactate, sulphate, diphosphate (ferric pyrophosphate), saccharate and elemental iron (carbonyl + electrolytic + hydrogen reduced) |
Zinc | Zinc compounds: acetate, chloride, citrate, gluconate, lactate, oxide, carbonate, sulphate |
Nutrient | Main Plant Source | Bioavailability Issue | Possible Solutions |
---|---|---|---|
Vitamin B12 | Fortified foods, supplements | Absent in plants | Mandatory fortification + supplementation |
EPA/DHA | Algal oil, fortified foods | Low conversion from ALA | Algal oil fortification/supplementation |
Vitamin A (retinol) | Beta-carotene-rich plants | Variable carotene conversion to retinol | Breed high-carotene crops |
Iodine | Iodized salt, fortified foods | Low/variable (soil-dependent) plant content | Fortify plant milks or other staple plant foods |
Selenium | Brazil nuts, mushrooms, some seeds and wholegrains | Soil-dependent content | Agronomic biofortification (selenium fertilizers, selenium-accumulating plants); fortification of staple vegan foods; targeted supplementation in low-selenium regions |
Zinc | Legumes, seeds, nuts, fortified nutritional yeast | Phytate inhibition | Milling, canning, extrusion, soaking, fermentation |
Food and Nutrition Board, Institute of Medicine, US and Government of Canada 1,2 | Ministry of Health, Australia and New Zealand Government 2 | The European Food Safety Authority (EFSA) Europe 3 | Public Health England (PHE), Department of Health United Kingdom 4,5 | |
---|---|---|---|---|
The complete set of reference values representing the most current scientific knowledge on nutrient needs of healthy populations. | Dietary Reference Intakes (DRIs) | Nutrient Reference Values (NRVs) | Dietetic Reference Values (DRVs) | Nutrient Reference Values (NRVs) |
The average daily level of intake sufficient to meet the nutrient requirements of nearly all (97–98%) healthy people. | Recommended Dietary Allowance (RDA) | Recommended Dietary Intake (RDI) | Population Reference Intake (PRI) | Reference Nutrient Intake (RNI) |
The nutrient value established when evidence is insufficient to develop an RDA/PRI and is set at a level assumed to ensure nutritional adequacy. | Adequate Intake (AI) | Adequate Intake (AI) | Adequate Intake (AI) | Safe Intake |
The maximum daily intake unlikely to cause adverse health effects (NIH). | Tolerable Upper Intake Level (UL) | Tolerable Upper Intake Level (UL) | Tolerable Upper Intake Level (UL) | --- |
Nutrient | Proposed Values | Main Food Sources [103,104] |
---|---|---|
ALA | 2.2–4.4 g/day (or 1.1 g/day/1000 Kcals) [28] | ALA: oils (flaxseed; equium, walnut, canola), seeds (flax, chia, hemp), walnuts. DHA: microalgae oil |
Carotenoids | (nothing proposed yet—insufficient data) | Beta-carotene: sweet potatoes, carrots, dark leafy greens (spinach, kale), butternut squash, red bell peppers |
Iron | 1.8 times higher than that for non-vegetarians [18,105,106] | Non-heme iron: dark green leafy vegetables (spinach, kale), dried fruits, legumes, whole grains, nuts and seeds, fortified cereals |
Zinc | EFSA: requirements adjusted by level of phytate [107] | Legumes (lentils, chickpeas, beans, tempeh), seeds (hemp, sesame, pumpkin, sunflower), and nuts (pinenuts, cashews) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques-Lopes, I.; Martínez-Biarge, M.; Martínez-Pineda, M.; Menal-Puey, S. Optimizing Vegan Nutrition: Current Challenges and Potential Solutions. Appl. Sci. 2025, 15, 9485. https://doi.org/10.3390/app15179485
Marques-Lopes I, Martínez-Biarge M, Martínez-Pineda M, Menal-Puey S. Optimizing Vegan Nutrition: Current Challenges and Potential Solutions. Applied Sciences. 2025; 15(17):9485. https://doi.org/10.3390/app15179485
Chicago/Turabian StyleMarques-Lopes, Iva, Miriam Martínez-Biarge, Montserrat Martínez-Pineda, and Susana Menal-Puey. 2025. "Optimizing Vegan Nutrition: Current Challenges and Potential Solutions" Applied Sciences 15, no. 17: 9485. https://doi.org/10.3390/app15179485
APA StyleMarques-Lopes, I., Martínez-Biarge, M., Martínez-Pineda, M., & Menal-Puey, S. (2025). Optimizing Vegan Nutrition: Current Challenges and Potential Solutions. Applied Sciences, 15(17), 9485. https://doi.org/10.3390/app15179485